On Approximate Cloaking by Nonsingular Transformation Media

TING ZHOU

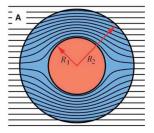
MIT

Geometric Analysis on Euclidean and Homogeneous Spaces

Tufts University

January 9, 2012

Invisibility and Cloaking



From Pendry et al's paper

- J. B. Pendry, D. Schurig and D. R. Smith (2006)
- U. Leonhard (2006)
- Transformation Optics and *Metamaterials*
- A. Greenleaf, M. Lassas and G. Uhlmann (2003)

Outline

Cloaking for Electrostatics

- 2 On Electromagnetic Cloaking (joint work with Hongyu Liu)
 - Ideal cloaking for Maxwell's equations
 - Nonsingular approximate cloaking
 - Regularization scheme
 - Cloaking a passive medium
 - Cloaking an active medium
 - Cloak-busting inclusion and lossy layer
- On 2D Acoustic Cloaking (joint work with Matti Lassas)
 - Ideal cloaking for the Helmholtz equation
 - Nonsingular regularization and non-local boundary conditions

Outline

Cloaking for Electrostatics

- 2 On Electromagnetic Cloaking (joint work with Hongyu Liu)
 - Ideal cloaking for Maxwell's equations
 - Nonsingular approximate cloaking
 - Regularization scheme
 - Cloaking a passive medium
 - Cloaking an active medium
 - Cloak-busting inclusion and lossy layer
- 3 On 2D Acoustic Cloaking (joint work with Matti Lassas)
 - Ideal cloaking for the Helmholtz equation
 - Nonsingular regularization and non-local boundary conditions

Non-uniqueness for Calderón's problem

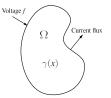
Conductivity equation:

 $\nabla \cdot \gamma \nabla u = 0 \quad \text{in } \Omega.$

Dirichlet to Neumann map:

 $\Lambda_{\gamma}: f \mapsto \nu \cdot \gamma \nabla u|_{\partial \Omega}.$

Anisotropic conductivity: $\gamma = (\gamma^{ij})$ pos. def. sym. matrix



Calderón's problem:
$$\Lambda_{\gamma_1} = \Lambda_{\gamma_2} \Rightarrow \gamma_1 = \gamma_2$$
?

Non-uniqueness

If $\psi: \, \Omega \, \to \, \Omega$ is a diffeomorphism, $\psi|_{\partial\Omega} =$ Identity, then

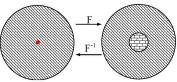
$$\Lambda_{\psi_*\gamma} = \Lambda_\gamma \text{ where } \psi_*\gamma = \left(\frac{(D\psi)^T \gamma (D\psi)}{|\text{det } (D\psi)|}\right) \circ \psi^{-1}.$$

Cloaking for EIT

$$F: B_2 \setminus \{0\} \to B_2 \setminus \overline{B_1}$$

$$F(y) = \left(1 + \frac{|y|}{2}\right) \frac{y}{|y|}.$$

$$F|_{\partial B_2} = \text{Identity.}$$



Greenleaf-Lassas-Uhlmann (2003) $\gamma = I$: Identity matrix in B_2 ,
 $\tilde{\gamma} = \begin{cases} F_* \gamma & \text{in } B_2 \setminus \overline{B_1} \\ \text{arbitrary } \gamma_a & \text{in } B_1 \end{cases} \Rightarrow \overline{\Lambda_{\tilde{\gamma}} = \Lambda_{\gamma}}.$

• Removable singularity argument (only works for Laplacian).

Outline

Cloaking for Electrostatics

- 2 On Electromagnetic Cloaking (joint work with Hongyu Liu)
 - Ideal cloaking for Maxwell's equations
 - Nonsingular approximate cloaking
 - Regularization scheme
 - Cloaking a passive medium
 - Cloaking an active medium
 - Cloak-busting inclusion and lossy layer
- 3 On 2D Acoustic Cloaking (joint work with Matti Lassas)
 - Ideal cloaking for the Helmholtz equation
 - Nonsingular regularization and non-local boundary conditions

Maxwell's equations and Impedance map

• Maxwell's equations of electromagnetic fields E(x) and H(x) (as 1-forms):

$$abla imes E = i\omega\mu H$$
 $\nabla imes H = -i\omega\varepsilon E + J$ in Ω

with permittivity $\varepsilon(x)$ and permeability $\mu(x)$ (as linear operators that map 1-forms to 2-forms).

- For regular (Nonsingular) medium: ε and μ are pos. def. sym. and bounded from below, $(E, H) \in H(\text{curl}) \times H(\text{curl})$.
- Impedance map:

$$\Lambda_{\mu,\varepsilon}: \, \nu \times E|_{\partial\Omega} \, \mapsto \, \nu \times H|_{\partial\Omega}.$$

Transformation invariance

Let $F : \Omega \to \Omega$ be a diffeomorphism. Denote y = F(x).

• Pullback fields by F^{-1} :

 $\tilde{E}(y) = (F^{-1})^* E := (DF^T)^{-1} E \circ F^{-1}(y) \text{ similarly define } \tilde{H}(y),$ $\tilde{J}(y) = (F^{-1})^* J := [\det(DF)]^{-1} DF J \circ F^{-1}$

• Push-forward of medium by *F*:

$$\tilde{\mu}(y) = F_*\mu := \frac{1}{\det\left(DF(x)\right)} DF(x) \,\mu(x) \, DF(x)^T \Big|_{x = F^{-1}(y)} \quad \text{similarly define } \tilde{\varepsilon}(y).$$

• Then

$$\nabla \times \tilde{E} = i\omega \tilde{\mu} \tilde{H}, \quad \nabla \times \tilde{H} = -i\omega \tilde{\varepsilon} \tilde{E} + \tilde{J} \quad \text{ in } \Omega$$

• Moreover, if $F|_{\partial\Omega} =$ Identity, we have

$$\Lambda_{\tilde{\mu},\tilde{\varepsilon}}=\Lambda_{\mu,\varepsilon}$$

Ideal cloaking for Maxwell's equations Nonsingular approximate cloaking

Electromagnetic ideal cloaking design in B₂

$$F: B_2 \setminus \{0\} \to B_2 \setminus \overline{B_1}$$

$$F(x) = \left(1 + \frac{|x|}{2}\right) \frac{x}{|x|}.$$

$$F|_{\partial B_2} = \text{Identity.}$$

Greenleaf-Kurylev-Lassas-Uhlmann (2007)

 $\begin{array}{l} (\mu,\varepsilon) = (I,I) \text{ in } B_2 \\ (\tilde{\mu},\tilde{\varepsilon}) = \left\{ \begin{array}{l} (F_*I,F_*I) & \text{ in } B_2 \setminus \overline{B_1} \\ (\mu_0,\varepsilon_0) \text{ arbitrary } & \text{ in } B_1 \end{array} \right\} \Rightarrow \overline{\Lambda_{\tilde{\mu},\tilde{\varepsilon}} = \Lambda_{I,I}}.$

Singular cloaking medium

• Cloaking device medium:

$$\tilde{\mu} = \tilde{\varepsilon} = F_*I = \boxed{2\frac{(|x|-1)^2}{|x|^2}\Pi(x)} + 2(I - \Pi(x))$$

where $\Pi(x) = \hat{x}\hat{x}^T = xx^T/|x|^2$ is the projection along the radial direction.

- Degenerate singularity at $|x| = 1^+$!
- Notions of solutions for singular systems:
 - Physically meaningful
 - Forms with degenerate singular weighted energy may not be distributions
 - In what sense the equations are satisfied?
 - The cloaked region is considered isolated from the cloaking device or not?

Finite energy solutions (\tilde{E}, \tilde{H}) (Greenleaf-Kurylev-Lassas-Uhlmann).

Blow-up-a-small-ball regularization scheme

• Nonsingular transformation that blows up $B_{\rho}(0 < \rho < 1)$ to B_1 and fixes the boundary ∂B_2 .

$$F_{\rho}(\mathbf{y}) := \begin{cases} \left(\frac{2(1-\rho)}{2-\rho} + \frac{|\mathbf{y}|}{2-\rho} \right) \frac{\mathbf{y}}{|\mathbf{y}|}, & \rho < |\mathbf{y}| < 2, \\ \frac{\mathbf{y}}{\rho}, & |\mathbf{y}| < \rho. \end{cases}$$

- Regularized cloaking for Scalar optics and Acoustics (Helmholtz equations): Kohn-Onofrei-Vogelius-Weinstein
 - Scattering estimates of small inhomogeneity. Analysis as $\rho \rightarrow 0^+$ (Nguyen; Nguyen-Vogelius)
- Truncation-based regularization scheme for Helmholtz equations in 3D: Greenleaf-Kurylev-Lassas-Uhlmann

EM approximate cloaking

• Construct regular EM anisotropic material

$$(\tilde{\mu}_{\rho}, \tilde{\varepsilon}_{\rho}) := \begin{cases} ((F_{\rho})_*I, (F_{\rho})_*I), & 1 < |x| < 2, \\ (\mu_0, \varepsilon_0), & |x| < 1. \end{cases}$$

$$(F_{\rho})_*I = \frac{\left((2-\rho)|x|-2+2\rho\right)^2}{(2-\rho)|x|^2}\Pi(x) + (2-\rho)(I-\Pi(x))$$

• Well-posedness: well-defined *H*(curl) solutions satisfying transmission problems in both physical space (cloaking device + cloaked region) and virtual space (pullback of physical space).

• Is
$$\Lambda_{\tilde{\mu}_{\rho},\tilde{\varepsilon}_{\rho}} \approx \Lambda_{I,I}$$
? Yes and No.

EM waves in physical and virtual space

Physical space:

Virtual space:

Cloaking a passive medium: $\tilde{J} = 0$

Assume μ_0 and ε_0 are positive constants.

• Spherical expansion:

$$\tilde{E}_{\rho}^{-} = \varepsilon_0^{-1/2} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \alpha_n^m M_{n,k\omega}^m + \beta_n^m \nabla \times M_{n,k\omega}^m$$

$$E_{\rho}^{+} = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} c_n^m N_{n,\omega}^m + d_n^m \nabla \times N_{n,\omega}^m + \gamma_n^m M_{n,\omega}^m + \eta_n^m \nabla \times M_{n,\omega}^m.$$

- Systems of linear equations for coefficients with coefficients matrix A
- Convergence order as $\rho \rightarrow 0$:

$$\begin{split} \gamma_n^m &= O(1), \, \eta_n^m = O(1); \, c_n^m = O(\rho^{2n+1}), \, d_n^m = O(\rho^{2n+1}); \\ \alpha_n^m &= O(\rho^{n+1}), \; \beta_n^m = O(\rho^{n+1}). \end{split}$$

Ideal cloaking for Maxwell's equations Nonsingular approximate cloaking

Cloaking a passive medium: $\tilde{J} = 0$

Theorem 1 (Liu-Z)

Suppose ω is not an eigenvalue of the transmission problems. Then we have

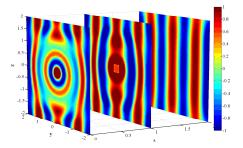
$$\|\Lambda_{\tilde{\mu},\tilde{\varepsilon}} - \Lambda_{I,I}\| = \mathcal{O}(\rho^3) \quad \text{as} \ \rho \to 0^+.$$

boundary condition from the interior

$$\nu\times \tilde{E}_{\rho}^{-}|_{\partial B_{1}^{-}}\rightarrow 0, \quad \nu\times \tilde{H}_{\rho}^{-}|_{\partial B_{1}^{-}}\rightarrow 0.$$

Ideal cloaking for Maxwell's equations Nonsingular approximate cloaking

Demonstration (passive)



$$\begin{aligned} &\operatorname{Re}(\tilde{E}_{\rho})_{1} \text{ (sliced at} \\ &x=0,1,2), \, \omega=5, \\ &\varepsilon_{0}=\mu_{0}=2, \, \rho=1/6. \end{aligned}$$

ρ	0.1	0.05	0.01	0.005	0.002	0.001
$Er(\rho)$	0.1810	0.0139	8.42e - 05	1.02e - 06	6.42e - 07	7.97e - 08
r(ho)		3.703	3.173	3.044	3.020	3.009

Boundary errors and convergence order when $\omega = 5$, $\varepsilon_0 = \mu_0 = 2$.

Cloaking an active medium: $\tilde{J} \neq 0$ **supported in** B_1

Given an internal point current $\tilde{J} = \sum_{|\alpha| < K} (\partial_x^{\alpha} \delta_0(x)) \mathbf{v}_{\alpha}$ at the origin,

• Spherical expansion:

$$\tilde{E}_{\rho}^{-} = \varepsilon_{0}^{-1/2} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \alpha_{n}^{m} M_{n,k\omega}^{m} + \beta_{n}^{m} \nabla \times M_{n,k\omega}^{m} + p_{n}^{m} N_{n,k\omega}^{m} + q_{n}^{m} \nabla \times N_{n,k\omega}^{m},$$

$$E_{\rho}^{+} = \sum_{n=1}^{\infty} \sum_{m=-n}^{n} c_{n}^{m} N_{n,\omega}^{m} + d_{n}^{m} \nabla \times N_{n,\omega}^{m} + \gamma_{n}^{m} M_{n,\omega}^{m} + \eta_{n}^{m} \nabla \times M_{n,\omega}^{m}.$$

• Convergence order as $\rho \to 0$:

$$\begin{split} \gamma_n^m &= O(1), \, \eta_n^m = O(1); \, c_n^m = O(\rho^{n+1}), \, d_n^m = O(\rho^{n+1}); \\ \alpha_n^m &= O(1), \, \, \beta_n^m = O(1). \end{split}$$

Ideal cloaking for Maxwell's equations Nonsingular approximate cloaking

Cloaking an active medium: $\tilde{J} \neq 0$ **supported in** B_1

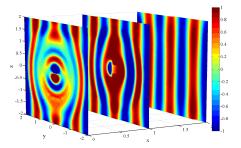
Theorem 2 (Liu-Z)

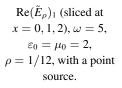
With an internal point current $\tilde{J} = \sum_{|\alpha| < K} (\partial_x^{\alpha} \delta_0(x)) \mathbf{v}_{\alpha}$ at the origin, if ω is not an eigenvalue of the transmission problems, we have

$$\|\Lambda_{\tilde{\mu},\tilde{\varepsilon}} - \Lambda_{I,I}\| = \mathcal{O}(\rho^2) \quad \text{as } \rho \to 0^+.$$

Ideal cloaking for Maxwell's equations Nonsingular approximate cloaking

Demonstration (active)





ρ	0.1	0.05	0.01	0.005	0.002	0.001
$Er(\rho)$	1.9787	0.3509	0.0114	0.0028	4.41e - 04	1.10e - 04 2.006
$r(\rho)$		2.495	2.129	2.031	2.013	2.006

Boundary errors and convergence order $\omega = 5$, $\varepsilon_0 = \mu_0 = 2$, with a point source.

Resonance and Cloak-busting inclusion

For a fixed cloaking scheme, i.e., fixed ρ > 0, there exists some frequency ω and cloaked medium (μ₀, ε₀) such that the transmission problems are **NOT well-posed**. Therefore, the boundary measurement Λ_{μ,ε̃} is significantly different from Λ_{I,I}. For example, when (ω, μ₀, ε₀) satisfies for some n

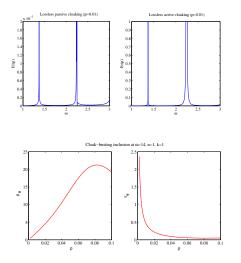
$$\mu_0 \frac{j_n(k\omega)}{\mathcal{J}_n(k\omega)} = \rho \frac{j_n(\omega\rho)h_n^{(1)}(2\omega) - h_n^{(1)}(\omega\rho)j_n(2\omega)}{\mathcal{J}_n(\omega\rho)h_n^{(1)}(2\omega) - \mathcal{H}_n(\omega\rho)j_n(2\omega)}$$

where $k = (\mu_0 \epsilon_0)^{1/2}$.

- ω is the resonant frequency;
- (μ_0, ε_0) is called cloak-busting inclusion.

Ideal cloaking for Maxwell's equations Nonsingular approximate cloaking

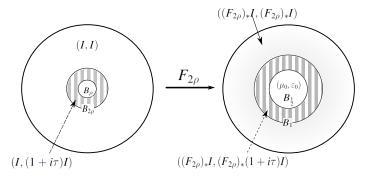
Demonstration (Resonance and Cloak-busting inclusion)



Boundary error $Er(\rho)$ for mode n = 1, when $\rho = 0.01$ and $\mu_0 = \varepsilon_0 = 2$, against frequency $\omega \in [1, 3]$ (Left: passive; Right: active). Cloak-busting inclusion medium μ_0 (left) and ε_0 (right) against $\rho \in (0, 0.1)$ at $\omega = 14$ for mode n = 1. Notice the singular behavior of the coefficients near the cloaking surface in resonant modes!

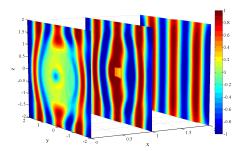
Ideal cloaking for Maxwell's equations Nonsingular approximate cloaking

Remedy: Lossy layer



- $F_{2\rho}$ blows up $B_{2\rho}$ to B_1 , τ is the damping parameter (conductivity).
- Spherical expansion of EM fields in three layers.
- Lossy regularization for the Helmholtz equations (Kohn-Onofrei-Vogelius-Weinstein, Kohn-Nguyen).
- Remedies by SS lining, SH lining (FSH lining) (Liu).

Demonstration (lossy)



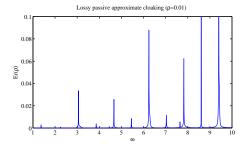
$$\begin{split} & \operatorname{Re}(\tilde{E}_{\rho})_1 \text{ when } \omega = 5, \\ & \varepsilon_0 = \mu_0 = 2, \, \rho = 1/6 \\ & \operatorname{and } \tau = 3 \text{ for the lossy} \\ & \operatorname{cloaking of a passive} \\ & \operatorname{medium.} \end{split}$$

• The boundary convergence order is the same as the lossless cloaking (3 for passive, 2 for active).

Ideal cloaking for Maxwell's equations Nonsingular approximate cloaking

Ideal cloaking for Maxwell's equations Nonsingular approximate cloaking

Demonstration (lossy)



Boundary error $Er(\rho)$ for mode n = 1 when $\rho = 0.01$ of lossy approximate cloaking (passive), against frequency $\omega \in [1, 10]$.

• Resonant frequencies disappear.

• Observation: At some frequencies $Er(\rho)$ is relatively large. Are such frequencies the *poles* or *transmission eigenvalues* in the complex plane?

Outline

Cloaking for Electrostatics

- 2 On Electromagnetic Cloaking (joint work with Hongyu Liu)
 - Ideal cloaking for Maxwell's equations
 - Nonsingular approximate cloaking
 - Regularization scheme
 - Cloaking a passive medium
 - Cloaking an active medium
 - Cloak-busting inclusion and lossy layer
- On 2D Acoustic Cloaking (joint work with Matti Lassas)
 - Ideal cloaking for the Helmholtz equation
 - Nonsingular regularization and non-local boundary conditions

Ideal cloaking for the Helmholtz equations

• The Helmholtz equation for acoustics or scalar optics, with a source term p, inverse of the anisotropic mass density $\sigma = (\sigma^{jk})$ and the bulk modulus λ

$$\lambda \nabla \cdot \sigma \nabla u + \omega^2 u = p \quad \text{in } \Omega.$$

- Dirichlet to Neumann map: $\Lambda_{\sigma,\lambda}: u|_{\partial\Omega} \mapsto \nu \cdot \sigma \nabla u|_{\partial\Omega}$.
- **Cloaking medium** in the whole space \mathbb{R}^2 :

$$(\tilde{\sigma}, \tilde{\lambda}) = \begin{cases} (I, 1) & |x| > 2\\ (F_*I, F_*1) & 1 < |x| \le 2\\ (\sigma_a, \lambda_a) & |x| \le 1 \end{cases}$$

where $F_*\lambda(x) := [\det(DF)\lambda] \circ F^{-1}(x)$.

Ideal cloaking for the Helmholtz equation Nonsingular regularization and non-local boundary conditions

Singular cloaking medium

• Cloaking device medium: in $B_2 \setminus \overline{B_1}$

$$\tilde{\sigma} = F_*I = \boxed{\frac{|x| - 1}{|x|}} \Pi(x) + \boxed{\frac{|x|}{|x| - 1}} (I - \Pi(x))$$
$$\tilde{\lambda} = F_*1 = \frac{|x|}{4(|x| - 1)}$$

• Both degenerate and blow-up singularities at $|x| = 1^+$!

Truncation based regularization scheme

• **Regular** approximate inverse of mass tensor and bulk modulus with regularization parameter 1 < R < 2

$$(\tilde{\sigma}_R, \tilde{\lambda}_R) = \begin{cases} (\tilde{\sigma}, \tilde{\lambda}) & |x| > R \\ (\sigma_a, \lambda_a) & |x| \le R \end{cases}$$

• Case without internal source p = 0 in B_R : Greenleaf-Kurylev-Lassas-Uhlmann

Cloaking a homogeneous medium with an internal source

Suppose (σ_a, λ_a) is constant. Set $\kappa^2 = (\sigma_a \lambda_a)^{-1}$ and $\rho = F^{-1}(R)$ • Physical space:

$$(\tilde{\lambda}\nabla\cdot\tilde{\sigma}\nabla+\omega^2)u_R^+=p,\quad\text{in }B_2\backslash\overline{B_R}$$
$$(\Delta+\kappa^2\omega^2)u_R^-=\kappa^2p\quad\text{in }B_R$$

• Virtual space: $v_R^+ = u_R^+ \circ F$,

$$(\Delta + \omega^2)v_R^+ = p \circ F \quad \text{in } B_2 \setminus \overline{B_{\rho}}$$

• Transmission conditions and boundary conditions:

$$\begin{aligned} v_R^+|_{\partial B_\rho^+} &= u_R^-|_{\partial B_R^-}, \quad \rho \partial_r v_R^+|_{\partial B_\rho^+} &= \kappa R \partial_r u_R^-|_{\partial B_R^-}, \\ v_R^+|_{\partial B_2} &= f. \end{aligned}$$

Cloaking a homogeneous medium with an internal source

Given
$$p \in C^{\infty}(\mathbb{R}^2)$$
 with supp $(p) \subset B_{R_0}$ $(0 < R_0 < 1)$

• Spherical expansions:

$$u_{R}^{-}(\tilde{r},\theta) = \sum_{n=-\infty}^{\infty} (a_{n}J_{|n|}(\kappa\omega\tilde{r}) + p_{n}H_{|n|}^{(1)}(\kappa\omega\tilde{r}))e^{in\theta}, \quad \tilde{r} \in (R_{0},R)$$

$$v_R^+(r,\theta) = \sum_{n=-\infty}^{\infty} (b_n J_{|n|}(\omega r) + c_n H_{|n|}^{(1)}(\omega r)) e^{in\theta}, \quad r \in (\rho,2)$$

• Linear system about a_n , b_n and c_n by the transmission conditions and boundary condition.

Resonance observations due to the internal source

Resonant frequency limit $\omega \Leftrightarrow$ cloak-busting inclusion limit $\kappa = (\sigma_0 \lambda_0)^{-1/2}$

 $\Leftrightarrow |a_n|, |b_n|, |c_n| \to \infty \text{ as } R \to 1^+(\rho \to 0^+) (n \ge 1)$

$$\Leftrightarrow \left[\omega \kappa^2 R(J_{|n|})'(\kappa \omega R) + |n|J_{|n|}(\kappa \omega R)] \right]_{R=1} = 0$$

 $\Leftrightarrow V_{\pm n}(\tilde{r}, \theta) := J_{|n|}(\kappa \omega \tilde{r}) e^{\pm i n \theta}$ are **eigenfunctions** of

$$(\Delta + \kappa^2 \omega^2) V = 0$$
 in B_1 ,
 $[\kappa \tilde{r} \partial_{\tilde{r}} V + (-\partial_{\theta}^2)^{1/2} V]|_{\tilde{r}=1^+} = 0.$

• A non-local boundary condition

Non-resonant result: non-local boundary conditions

Suppose ω and (σ_a, λ_a) satisfy

$$\begin{cases} \left[\omega\kappa^2 R(J_{|n|})'(\kappa\omega R) + |n|J_{|n|}(\kappa\omega R)]\right]_{R=1} \neq 0, \\ J_{|n|}(2\omega) \neq 0, \end{cases} \quad \text{for } n \in \mathbb{Z}.$$

Lassas-Z

As $R \to 1^+$, u_R (the solution in the physical space) converges uniformly in compact subsets of $B_2 \setminus \partial B_1$ to the limit u_1 satisfying

$$\begin{aligned} (\Delta + \kappa^2 \omega^2) u_1 &= \kappa^2 p \quad \text{in } B_1, \\ [\kappa \partial_{\bar{r}} u_1 + (-\partial_{\theta}^2)^{1/2} u_1] \Big|_{\partial B_1} &= 0. \end{aligned}$$

Conclusions

- Electromagnetic non-singular approximate cloaking
 - Convergence orders are 3 for passive cloaking and 2 for active cloaking for both lossless and lossy cloaking;
- 2D acoustic cloaking: A non-local boundary condition is obtained as $R \rightarrow 1^+$.

Thank you!