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Global Seismology

Inverse Problem: Determine inner structure of Earth by measuring

travel time of seismic waves.
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Human Body Seismology

ULTRASOUND TRANSMISSION TOMOGRAPHY(UTT)

T =
∫
γ

1

c(x)
ds = Travel Time (Time of Flight).

2



TechniScan

(Loading TechniScan.mp4)
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TechniScan.mp4
Media File (video/mp4)



Thermoacoustic Tomography

Wikipedia
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Mathematical Model

First Step : in PAT and TAT is to reconstruct H(x) from u(x, t)|∂Ω×(0,T ),
where u solves

(∂2
t − c2(x)∆)u = 0 on Rn × R+

u|t=0 = βH(x)

∂tu|t=0 = 0

Second Step : in PAT and TAT is to reconstruct the optical or

electrical properties from H(x) (internal measurements).

How to reconstruct c(x)?

Proposal: To use UTT (Y. Xin-L. V. Wang, Phys.

Med. Biol. 51 (2006) 6437–6448).
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THIRD MOTIVATION
OCEAN ACOUSTIC TOMOGRAPHY

Ocean Acoustic Tomography

Ocean Acoustic Tomography is a tool with which we can study

average temperatures over large regions of the ocean. By measur-

ing the time it takes sound to travel between known source and

receiver locations, we can determine the soundspeed. Changes in

soundspeed can then be related to changes in temperature.
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REFLECTION TOMOGRAPHY

Scattering

Points in medium

Obstacle
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TRAVELTIME TOMOGRAPHY (Transmission)

Motivation:Determine inner structure of Earth by
measuring travel times of seismic waves

Herglotz, Wiechert-Zoeppritz (1905)

Sound speed c(r), r = |x|

d
dr

(
r

c(r)

)
> 0

Reconstruction method of c(r) from lengths of
geodesics
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ds2 = 1
c2(r)

dx2

More generally ds2 = 1
c2(x)

dx2

Velocity v(x, ξ) = c(x), |ξ| = 1 (isotropic)

Anisotropic case

ds2 =
n∑

i,j=1

gij(x)dxidxj
g = (gij) is a positive defi-

nite symmetric matrix

Velocity v(x, ξ) =
√∑n

i,j=1 g
ij(x)ξiξj, |ξ| = 1

gij = (gij)
−1

The information is encoded in the
boundary distance function
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More general set-up

(M, g) a Riemannian manifold with boundary
(compact) g = (gij)

x, y ∈ ∂M

dg(x, y) = inf
σ(0)=x
σ(1)=y

L(σ)

L(σ) = length of curve σ

L(σ) =
∫ 1
0

√∑n
i,j=1 gij(σ(t))dσidt

dσj
dt dt

Inverse problem

Determine g knowing dg(x, y) x, y ∈ ∂M
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dg ⇒ g ?

(Boundary rigidity problem)

Answer NO ψ : M →M diffeomorphism

ψ
∣∣∣
∂M

= Identity

dψ∗g = dg

ψ∗g =
(
Dψ ◦ g ◦ (Dψ)T

)
◦ ψ

Lg(σ) =
∫ 1
0

√∑n
i,j=1 gij(σ(t))dσidt

dσj
dt dt

σ̃ = ψ ◦ σ Lψ∗g(σ̃) = Lg(σ)
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dψ∗g = dg

Only obstruction to determining g from dg ? No

dg(x0, ∂M) > supx,y∈∂M dg(x, y)

Can change metric

near SP
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Acoustic Shadow Zone

Figure: Beyond Discovery: Sounding Out the Ocean’s Secrets

by Victoria Kaharl
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Def (M, g) is boundary rigid if (M, g̃) satisfies dg̃ = dg.

Then ∃ψ : M →M diffeomorphism, ψ
∣∣∣
∂M

= Identity, so

that

g̃ = ψ∗g

Need an a-priori condition for (M, g) to be boundary

rigid.

One such condition is that (M, g) is simple
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DEF (M, g) is simple if given two points x, y ∈ ∂M , ∃!
geodesic joining x and y and ∂M is strictly convex

CONJECTURE

(M, g) is simple then (M, g) is boundary rigid ,that is

dg determines g up to the natural obstruction.

(dψ∗g = dg)

( Conjecture posed by R. Michel, 1981 )
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Results (M, g) simple

• R. Michel (1981) Compact subdomains of R2 or H2

or the open round hemisphere

• Gromov (1983) Compact subdomains of Rn

• Besson-Courtois-Gallot (1995) Compact subdomains
of negatively curved symmetric spaces

(All examples above have constant curvature)

•


Lassas-Sharafutdinov-U
(2003)
Burago-Ivanov (2010)

 dg = dg0 , g0 close to

Euclidean

• n = 2 Otal and Croke (1990) Kg < 0
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n = 2

THEOREM(Pestov-U, 2005)

Two dimensional Riemannian manifolds with boundary

which are simple are boundary rigid (dg ⇒ g up to

natural obstruction)
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Theorem (n ≥ 3) (Stefanov-U, 2005)

There exists a generic set L̃ ⊂ Ck(M)× Ck(M) such
that

(g1, g2) ∈ L̃, gi simple, i = 1,2, dg1 = dg2

=⇒ ∃ψ : M →M diffeomorphism,

ψ
∣∣∣
∂M

= Identity, so that g1 = ψ∗g2 .

Remark

If M is an open set of Rn, L̃ contains all pairs of
simple and real-analytic metrics in Ck(M).
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Theorem (n ≥ 3) (Stefanov-U, 2005)

(M, gi) simple i = 1,2, gi close to g0 ∈ L where L is a

generic set of simple metrics in Ck(M). Then

dg1 = dg2 ⇒ ∃ψ : M →M diffeomorphism,

ψ
∣∣∣
∂M

= Identity, so that g1 = ψ∗g2

Remark

If M is an open set of Rn, L contains all simple and

real-analytic metrics in Ck(M).
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Geodesics in Phase Space

g =
(
gij(x)

)
symmetric, positive definite

Hamiltonian is given by

Hg(x, ξ) =
1

2

( n∑
i,j=1

gij(x)ξiξj − 1
)

g−1 =
(
gij(x)

)

Xg(s,X0) =
(
xg(s,X0), ξg(s,X0)

)
be bicharacteristics ,

sol. of
dx

ds
=
∂Hg

∂ξ
,

dξ

ds
= −

∂Hg

∂x

x(0) = x0, ξ(0) = ξ0, X0 = (x0, ξ0), where ξ0 ∈ Sn−1
g (x0)

Sn−1
g (x) =

{
ξ ∈ Rn; Hg(x, ξ) = 0

}
.

Geodesics Projections in x: x(s) .
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Scattering Relation

dg only measures first arrival times of waves.

We need to look at behavior of all geodesics

‖ξ‖g = ‖η‖g = 1

αg(x, ξ) = (y, η), αg is SCATTERING RELATION

If we know direction and point of entrance of geodesic

then we know its direction and point of exit (plus travel

time).
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Scattering relation follows all geodesics.

Conjecture Assume (M,g) non-trapping. Then αg de-

termines g up to natural obstruction.

(Pestov-U, 2005) n = 2 Connection between αg and

Λg (Dirichlet-to-Neumann map)

(M, g) simple then dg ⇔ αg
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Theorem (Vargo, 2009)

(Mi, gi), i = 1,2, compact Riemannian real-analytic

manifolds with boundary satisfying a mild condition.

Assume

αg1 = αg2

Then ∃ψ : M →M diffeomorphism, such that

ψ∗g1 = g2
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Dirichlet-to-Neumann Map (Lee–U, 1989)
(M, g) compact Riemannian manifold with boundary.
∆g Laplace-Beltrami operator g = (gij) pos. def. sym-
metric matrix

∆gu =
1

√
det g

n∑
i,j=1

∂

∂xi

√det g gij
∂u

∂xj

 (gij) = (gij)
−1

∆gu = 0 on M

u
∣∣∣
∂M

= f

Conductivity:

γij =
√

det g gij

Λg(f) =
n∑

i,j=1

νjgij
∂u

∂xi

√
det g

∣∣∣∣∣
∂M

ν = (ν1, · · · , νn) unit-outer normal
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∆gu = 0

u
∣∣∣
∂M

= f

Λg(f) =
∂u

∂νg
=

n∑
i,j=1

νjgij
∂u

∂xi

√
det g

∣∣∣∣∣
∂M

current flux at ∂M

Inverse-problem (EIT)

Can we recover g from Λg ?

Λg = Dirichlet-to-Neumann map or voltage to current
map
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Theorem (n = 2)(Lassas-U, 2001)

(M, gi), i = 1,2, connected Riemannian manifold with

boundary. Assume

Λg1 = Λg2

Then ∃ψ : M →M diffeomorphism, ψ
∣∣∣
∂M

= Identity,

and β > 0, β
∣∣∣
∂M

= 1 so that

g1 = βψ∗g2

In fact, one can determine topology of M as well.
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n = 2

THEOREM(Pestov-U, 2005)

Two dimensional Riemannian manifolds with boundary

which are simple are boundary rigid (dg ⇒ g up to

natural obstruction)
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CONNECTION BETWEEN BOUNDARY RIGIDITY AND

DIRICHLET-TO-NEUMANN MAP

THEOREM (n = 2) (Pestov-U, 2005)

If we know dg then we can determine Λg if (M, g)

simple.

IN FACT (M, g) simple n = 2

dg ⇒ αg ⇒ Λg

αg(x, ξ) = (y, η)
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CONNECTION BETWEEN SCATTERING RELATION

AND DIRICHLET-TO-NEUMANN MAP(n = 2)

αg(x, ξ) = (y, η)

dg determines Λg if geodesic X-ray transform injective

If(x, ξ) =
∫
γ
f If = 0 =⇒ f = 0

Now Λg
L−U
=⇒ βψ∗g, β > 0

If I is injective, we can also recover β.
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Dirichlet-to-Neumann map Boundary distance function

Λg(f)(x) =
∫
∂M λg(x, y)f(y)dSy dg(x, y), x, y ∈ ∂M

λg depends on 2n-2 variables dg(x, y) dep. on 2n-2 variables

∆gu = 0, u
∣∣∣
∂M

= f dg(x, y) = infσ(0)=x
σ(1)=y

Lg(σ)

Λg ⇐⇒ Qg
Qg(f) =

∑∫
M gij ∂u∂xi

∂u
∂xj

dx
Lg(σ) =

∫ 1
0

√
gij(σ(t))∂σi∂t

∂σj
∂t dt= inf

v
∣∣∣
∂M

=f

∫
M gij ∂v∂xi

∂v
∂xj

dx
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Dirichlet-to-Neumann map (Scattering relation)

∆gu = 0

u
∣∣∣
∂M

= f Hg(x, ξ) = 1
2

(∑
gijξiξj − 1

)
Λg(f) = ∂u

∂νg
dxg
ds = +

∂Hg
∂ξ

dξg
ds = −∂Hg∂x

xg(0) = x, ξg(0) = ξ, ‖ξ‖g = 1
we know (xg(T ), ξg(T )){

(f,Λg(f))
}
⊆ L2(∂M)× L2(∂M) αg(x, ξ) = (y, η)

is Lagrangian manifold
{

(x, ξ), αg(x, ξ)
}

projected

g=e=Euclidean to T ∗(∂M)× T ∗(∂M) is〈
(f1, g1), (f2, g2)

〉
Lagrangian manifold

=
∫
∂M(g1f2 − f1g2)dS
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TENSOR TOMOGRAPHY

Linearized Boundary Rigidity Problem

Recover a tensor (fij) from the geodesic X-ray
transform

Igf(γ) =
∫
γ
fij(γ(t))γ̇i(t)γ̇jdt

known for all maximal geodesics γ on M .

f = fs + dv, v|∂M = 0

and δfs = 0 , δ=divergence. Ig(dv) = 0 .

Linearized Problem To recover fs from Igf .

Stefanov-U, 2005 If we solve this we solve the
boundary rigidity problem locally (near a metric).

32



TENSOR TOMOGRAPHY

Igf(γ) =
∫
γ
fij(γ(t))γ̇i(t)γ̇jdt,

f = (fij) = fs + dv, v|∂M = 0
Recover fs from Igf .

Theorem (n = 2) (Sharafutdinov 2007,
Paternain-Salo-U 2011) (M, g) simple. Then Ig is
injective on solenoidal vector fields.

Remark Also stability estimates are valid (Stefanov-U
2005). This implies stability for non-linear problem
(boundary rigidity).

Theorem (n ≥ 3) (Stefanov-U 2005) (M, g) simple, g
real-analytic. Then Ig is injective on solenoidal vector
fields.

Remark This implies solution of boundary rigidity near
real-analytic metrics and also stability.
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REFLECTION TRAVELTIME TOMOGRAPHY

Broken Scattering Relation

(M, g): manifold with boundary with Riemannian metric

g

((x0, ξ0), (x1, ξ1), t) ∈ B
t = s1 + s2

Theorem (Kurylev-Lassas-U 2010)

n ≥ 3. Then ∂M and the broken scattering relation B
determines (M, g) uniquely.
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Identity (Stefanov-U, 1998)

∫ T
0

∂Xg2

∂X0

(
T − s,Xg1(s,X0)

)
(Vg1 − Vg2)

∣∣∣
Xg1(s,X0)

dS

= Xg1(T,X0)−Xg2(T,X0)

Vgj :=

(
∂Hgj

∂ξ
,−
∂Hgj

∂x

)
the Hamiltonian vector field.

Particular case:

(gk) =
1

c2k

(
δij
)
, k = 1,2

Vgk =
(
c2kξ, −

1

2
∇(c2k)|ξ|2

)
Linear in c2k!
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Reconstruction

∫ T
0

∂Xg1

∂X0

(
T − s,Xg2(s,X0)

)
×(

(c21 − c
2
2)ξ, −

1

2
∇(c21 − c

2
2)|ξ|2

)∣∣∣
Xg2(s,X0)

dS

= Xg1(T,X0)︸ ︷︷ ︸
data

−Xg2(T,X0)

Inversion of geodesic X-ray transform.

Consider X∗X for inversion.
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Numerical Method
(Chung-Qian-Zhao-U, IP 2011)

∫ T
0

∂Xg1

∂X0

(
T − s,Xg2(s,X0)

)
×(

(c21 − c
2
2)ξ, −

1

2
∇(c21 − c

2
2)|ξ|2

)∣∣∣
Xg2(s,X0)

dS

= Xg1(T,X0)−Xg2(T,X0)

Adaptive method

Start near ∂Ω with

c2 = 1 and iterate.
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Numerical examples

Example 1: An example with no broken geodesics,

c(x, y) = 1 + 0.3 sin(2πx) sin(2πy), c0 = 0.8.

Left: Numerical solution (using adaptive) at the 55-th iteration.

Middle: Exact solution. Right: Numerical solution (without

adaptive) at the 67-th iteration.
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Example 2: A known circular obstacle enclosed by a

square domain. Geodesic either does not hit the

inclusion or hits the inclusion (broken) once.

c(x, y) = 1 + 0.2 sin(2πx) sin(πy), c0 = 0.8.

Left: Numerical solution at the 20-th iteration. The relative error

is 0.094%. Right: Exact solution.
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Example 3: A concave obstacle (known).

c(x, y) = 1 + 0.1 sin(0.5πx) sin(0.5πy), c0 = 0.8.

Left: Numerical solution at the 117-th iteration. The relative

error is 2.8%. Middle: Exact solution. Right: Absolute error.
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Example 4: Unknown obstacles and medium.

Left: The two unknown obstacles. Middle: Ray coverage of the

unknown obstacle. Right: Absolute error.
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Example 4: Unknown obstacles and medium (contin-

ues).

r = 1 + 0.6 cos(3θ) with r =
√

(x− 2)2 + (y − 2)2.

c(r) = 1 + 0.2 sin r

Left: The two unknown obstacles. Middle: Ray coverage of the

unknown obstacle. Right: Absolute error.
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Example 5: The Marmousi model.

Left: The exact solution on fine grid. Middle: The exact solution

projected on a coarse grid. Right: The numerical solution at the

16-th iteration. The relative error is 2.24%.
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Example 5: The Marmousi model (with noise).

Left: The numerical solution with 0.1% noise. The relative error

is 4.16%. Right: The numerical solution with 1% noise. The

relative error is 5.53%.
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Dirichlet-to-Neumann map
Boundary distance function

(Scattering relation)
n = 2 (M, g) simple

dg(x, y)

αg(x, ξ) = (y, η)
⇐=Λg

n = 2 (M, g)
αg

?⇐=Λg

n = 3
dg or αg

?
=⇒Λg

Λg = Λe, e=Euclidean dg = de ⇒ g = ψ∗e
g = ψ∗e ? (Gromov)

45


