Geometric Analysis on Euclidean and Homogeneous Spaces

Travel Time Tomography and
 Tensor Tomography

Gunther UhImann

UC Irvine \& University of Washington

Tufts University, January, 2012

Global Seismology

Inverse Problem: Determine inner structure of Earth by measuring travel time of seismic waves.

Human Body Seismology

ULTRASOUND TRANSMISSION TOMOGRAPHY(UTT)

$$
T=\int_{\gamma} \frac{1}{c(x)} d s=\text { Travel Time (Time of Flight) }
$$

TechniScan

Thermoacoustic Tomography

Wikipedia

Mathematical Model

First Step: in PAT and TAT is to reconstruct $H(x)$ from $\left.u(x, t)\right|_{\partial \Omega \times(0, T)}$, where u solves

$$
\begin{aligned}
\left(\partial_{t}^{2}-c^{2}(x) \Delta\right) u & =0 \quad \text { on } \mathbb{R}^{n} \times \mathbb{R}^{+} \\
\left.u\right|_{t=0} & =\beta H(x) \\
\left.\partial_{t} u\right|_{t=0} & =0
\end{aligned}
$$

Second Step: in PAT and TAT is to reconstruct the optical or electrical properties from $H(x)$ (internal measurements).

How to reconstruct $c(x)$?
Proposal: To use UTT (Y. Xin-L. V. Wang, Phys.
Med. Biol. 51 (2006) 6437-6448).

THIRD MOTIVATION

OCEAN ACOUSTIC TOMOGRAPHY

Ocean Acoustic Tomography
Ocean Acoustic Tomography is a tool with which we can study average temperatures over large regions of the ocean. By measuring the time it takes sound to travel between known source and receiver locations, we can determine the soundspeed. Changes in soundspeed can then be related to changes in temperature.

REFLECTION TOMOGRAPHY

Scattering

Points in medium

Obstacle

TRAVELTIME TOMOGRAPHY (Transmission)

Motivation:Determine inner structure of Earth by measuring travel times of seismic waves

Herglotz, Wiechert-Zoeppritz (1905)
Sound speed $c(r), r=|x|$

$$
\frac{d}{d r}\left(\frac{r}{c(r)}\right)>0
$$

Reconstruction method of $c(r)$ from lengths of geodesics

$$
d s^{2}=\frac{1}{c^{2}(r)} d x^{2}
$$

$$
\text { More generally } d s^{2}=\frac{1}{c^{2}(x)} d x^{2}
$$

$$
\text { Velocity } v(x, \xi)=c(x), \quad|\xi|=1 \text { (isotropic) }
$$

Anisotropic case

$$
d s^{2}=\sum_{i, j=1}^{n} g_{i j}(x) d x_{i} d x_{j} \quad \begin{aligned}
& g=\left(g_{i j}\right) \text { is a positive defi- } \\
& \text { nite symmetric matrix }
\end{aligned}
$$

Velocity $v(x, \xi)=\sqrt{\sum_{i, j=1}^{n} g^{i j}(x) \xi_{i} \xi_{j}}, \quad|\xi|=1$

$$
g^{i j}=\left(g_{i j}\right)^{-1}
$$

The information is encoded in the boundary distance function

More general set-up
(M, g) a Riemannian manifold with boundary

$$
(\text { compact }) g=\left(g_{i j}\right)
$$

$$
x, y \in \partial M
$$

$$
d_{g}(x, y)=\inf _{\substack{ \\\sigma(0)=x \\ \sigma(1)=y}} L(\sigma)
$$

$L(\sigma)=$ length of curve σ

$$
L(\sigma)=\int_{0}^{1} \sqrt{\sum_{i, j=1}^{n} g_{i j}(\sigma(t)) \frac{d \sigma_{i}}{d t} \frac{d \sigma_{j}}{d t}} d t
$$

Inverse problem

Determine g knowing $d_{g}(x, y) \quad x, y \in \partial M$

(Boundary rigidity problem)
Answer NO $\quad \psi: M \rightarrow M$ diffeomorphism

$$
\begin{gathered}
\left.\psi\right|_{\partial M}=\text { Identity } \\
d_{\psi^{*} g}=d_{g} \\
\psi^{*} g=\left(D \psi \circ g \circ(D \psi)^{T}\right) \circ \psi \\
L_{g}(\sigma)=\int_{0}^{1} \sqrt{\sum_{i, j=1}^{n} g_{i j}(\sigma(t)) \frac{d \sigma_{\sigma}}{d t} \frac{d \sigma_{j}}{d t} d t} \\
\tilde{\sigma}=\psi \circ \sigma L_{\psi^{*} g}(\tilde{\sigma})=L_{g}(\sigma)
\end{gathered}
$$

$$
d_{\psi^{*} g}=d_{g}
$$

Only obstruction to determining g from $d_{g} ?$ No

$$
d_{g}\left(x_{0}, \partial M\right)>\sup _{x, y \in \partial M} d_{g}(x, y)
$$

Can change metric near SP

Acoustic Shadow Zone

Figure: Beyond Discovery: Sounding Out the Ocean's Secrets by Victoria Kaharl

Def (M, g) is boundary rigid if (M, \tilde{g}) satisfies $d_{\widetilde{g}}=d_{g}$. Then $\exists \psi: M \rightarrow M$ diffeomorphism, $\left.\psi\right|_{\partial M}=$ Identity, so that

$$
\tilde{g}=\psi^{*} g
$$

Need an a-priori condition for (M, g) to be boundary rigid.

One such condition is that (M, g) is simple

DEF (M, g) is simple if given two points $x, y \in \partial M, \exists$! geodesic joining x and y and ∂M is strictly convex

CONJECTURE

(M, g) is simple then (M, g) is boundary rigid, that is d_{g} determines g up to the natural obstruction.
$\left(d_{\psi^{*} g}=d_{g}\right)$
(Conjecture posed by R. Michel, 1981)

Results (M, g) simple

- R. Michel (1981) Compact subdomains of \mathbb{R}^{2} or \mathbb{H}^{2} or the open round hemisphere
- Gromov (1983) Compact subdomains of \mathbb{R}^{n}
- Besson-Courtois-Gallot (1995) Compact subdomains of negatively curved symmetric spaces
(All examples above have constant curvature)
- $\left\{\begin{array}{l}\text { Lassas-Sharafutdinov-U } \\ \left.\begin{array}{l}\text { (2003) } \\ \text { Burago-Ivanov (2010) }\end{array}\right\} \Delta d g=d g_{0}, \\ , \begin{array}{c}g_{0} \text { close to } \\ \text { Euclidean }\end{array} ~\end{array}\right.$
- $n=2$ Otal and Croke (1990) $K_{g}<0$

$$
n=2
$$

THEOREM (Pestov-U, 2005)

Two dimensional Riemannian manifolds with boundary which are simple are boundary rigid $\left(d_{g} \Rightarrow g\right.$ up to natural obstruction)

Theorem ($n \geq 3$) (Stefanov-U, 2005)
There exists a generic set $\widetilde{\mathcal{L}} \subset C^{k}(M) \times C^{k}(M)$ such that

$$
\begin{gathered}
\left(g_{1}, g_{2}\right) \in \widetilde{\mathcal{L}}, g_{i} \text { simple, } i=1,2, d_{g_{1}}=d_{g_{2}} \\
\Longrightarrow \exists \psi: M \rightarrow M \text { diffeomorphism } \\
\left.\psi\right|_{\partial M}=\text { Identity, so that } g_{1}=\psi^{*} g_{2} .
\end{gathered}
$$

Remark

If M is an open set of $\mathbb{R}^{n}, \widetilde{\mathcal{L}}$ contains all pairs of simple and real-analytic metrics in $C^{k}(M)$.

Theorem ($n \geq 3$) (Stefanov-U, 2005)
$\left(M, g_{i}\right)$ simple $i=1,2, g_{i}$ close to $g_{0} \in \mathcal{L}$ where \mathcal{L} is a generic set of simple metrics in $C^{k}(M)$. Then

$$
\begin{aligned}
d_{g_{1}}=d_{g_{2}} & \Rightarrow \exists \psi: M \rightarrow M \text { diffeomorphism } \\
\left.\psi\right|_{\partial M} & =\text { Identity, so that } g_{1}=\psi^{*} g_{2}
\end{aligned}
$$

Remark

If M is an open set of $\mathbb{R}^{n}, \mathcal{L}$ contains all simple and real-analytic metrics in $C^{k}(M)$.

Geodesics in Phase Space

$$
g=\left(g_{i j}(x)\right) \text { symmetric, positive definite }
$$

Hamiltonian is given by

$$
\begin{gathered}
H_{g}(x, \xi)=\frac{1}{2}\left(\sum_{i, j=1}^{n} g^{i j}(x) \xi_{i} \xi_{j}-1\right) \quad g^{-1}=\left(g^{i j}(x)\right) \\
X_{g}\left(s, X^{0}\right)=\left(x_{g}\left(s, X^{0}\right), \xi_{g}\left(s, X^{0}\right)\right) \text { be bicharacteristics, } \\
\text { sol. of } \frac{d x}{d s}=\frac{\partial H_{g}}{\partial \xi}, \frac{d \xi}{d s}=-\frac{\partial H_{g}}{\partial x} \\
x(0)=x^{0}, \xi(0)=\xi^{0}, X^{0}=\left(x^{0}, \xi^{0}\right), \text { where } \xi^{0} \in \mathcal{S}_{g}^{n-1}\left(x^{0}\right) \\
\mathcal{S}_{g}^{n-1}(x)=\left\{\xi \in \mathbb{R}^{n} ; H_{g}(x, \xi)=0\right\} .
\end{gathered}
$$

Geodesics Projections in $x: x(s)$.

Scattering Relation

d_{g} only measures first arrival times of waves.

We need to look at behavior of all geodesics

$$
\|\xi\|_{g}=\|\eta\|_{g}=1
$$

$\alpha_{g}(x, \xi)=(y, \eta), \alpha_{g}$ is SCATTERING RELATION

If we know direction and point of entrance of geodesic then we know its direction and point of exit (plus travel time).

Scattering relation follows all geodesics.

Conjecture Assume (M, g) non-trapping. Then α_{g} determines g up to natural obstruction.
(Pestov-U, 2005) $n=2$ Connection between α_{g} and Λ_{g} (Dirichlet-to-Neumann map)
(M, g) simple then $d_{g} \Leftrightarrow \alpha_{g}$

Theorem (Vargo, 2009)
$\left(M_{i}, g_{i}\right), i=1,2$, compact Riemannian real-analytic manifolds with boundary satisfying a mild condition. Assume

$$
\alpha_{g_{1}}=\alpha_{g_{2}}
$$

Then $\exists \psi: M \rightarrow M$ diffeomorphism, such that

$$
\psi^{*} g_{1}=g_{2}
$$

Dirichlet-to-Neumann Map (Lee-U, 1989)

(M, g) compact Riemannian manifold with boundary. Δ_{g} Laplace-Beltrami operator $g=\left(g_{i j}\right)$ pos. def. symmetric matrix

$$
\Delta_{g} u=\frac{1}{\sqrt{\operatorname{det} g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(\sqrt{\operatorname{det} g} g^{i j} \frac{\partial u}{\partial x_{j}}\right) \quad\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}
$$

$$
\begin{array}{r}
\Delta_{g} u=0 \text { on } M \\
\left.u\right|_{\partial M}=f
\end{array}
$$

Conductivity:
$\gamma^{i j}=\sqrt{\operatorname{det} g} g^{i j}$

$$
\wedge_{g}(f)=\left.\sum_{i, j=1}^{n} \nu^{j} g^{i j} \frac{\partial u}{\partial x_{i}} \sqrt{\operatorname{det} g}\right|_{\partial M}
$$

$$
\nu=\left(\nu^{1}, \cdots, \nu^{n}\right) \text { unit-outer normal }
$$

$$
\begin{aligned}
\Delta_{g} u & =0 \\
\left.u\right|_{\partial M} & =f
\end{aligned}
$$

$$
\Lambda_{g}(f)=\frac{\partial u}{\partial \nu_{g}}=\left.\sum_{i, j=1}^{n} \nu^{j} g^{i j} \frac{\partial u}{\partial x_{i}} \sqrt{\operatorname{det} g}\right|_{\partial M}
$$

current flux at ∂M

Inverse-problem (EIT)
Can we recover g from Λ_{g} ?
$\Lambda_{g}=$ Dirichlet-to-Neumann map or voltage to current map

Theorem ($n=2$)(Lassas-U, 2001)
(M, g_{i}), $i=1,2$, connected Riemannian manifold with boundary. Assume

$$
\wedge_{g_{1}}=\wedge_{g_{2}}
$$

Then $\exists \psi: M \rightarrow M$ diffeomorphism, $\left.\psi\right|_{\partial M}=$ Identity, and $\beta>0,\left.\beta\right|_{\partial M}=1$ so that

$$
g_{1}=\beta \psi^{*} g_{2}
$$

In fact, one can determine topology of M as well.

$$
n=2
$$

THEOREM (Pestov-U, 2005)

Two dimensional Riemannian manifolds with boundary which are simple are boundary rigid $\left(d_{g} \Rightarrow g\right.$ up to natural obstruction)

CONNECTION BETWEEN BOUNDARY RIGIDITY AND

 DIRICHLET-TO-NEUMANN MAPTHEOREM $(n=2)$ (Pestov-U, 2005)
If we know d_{g} then we can determine Λ_{g} if (M, g) simple.

IN FACT (M, g) simple $n=2$

$$
d_{g} \Rightarrow \alpha_{g} \Rightarrow \wedge_{g}
$$

$$
\alpha_{g}(x, \xi)=(y, \eta)
$$

CONNECTION BETWEEN SCATTERING RELATION AND DIRICHLET-TO-NEUMANN MAP $(n=2)$

$$
\alpha_{g}(x, \xi)=(y, \eta)
$$

d_{g} determines Λ_{g} if geodesic X-ray transform injective

$$
I f(x, \xi)=\int_{\gamma} f \quad I f=0 \Longrightarrow f=0
$$

Now $\wedge_{g} \stackrel{L-U}{\Longrightarrow} \beta \psi^{*} g, \beta>0$
If I is injective, we can also recover β.

Dirichlet-to-Neumann map
$\wedge_{g}(f)(x)=\int_{\partial M} \lambda_{g}(x, y) f(y) d S_{y}$ λ_{g} depends on $2 \mathrm{n}-2$ variables

$$
\begin{gathered}
\Delta_{g} u=0,\left.\quad u\right|_{\partial M}=f \\
\wedge_{g} \Longleftrightarrow Q_{g} \\
Q_{g}(f)=\sum \int_{M} g^{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} d x \\
=\left.\inf \right|_{\partial M}=f \int_{M} g^{i j} \frac{\partial v}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} d x
\end{gathered}
$$

Boundary distance function

$$
d_{g}(x, y), \quad x, y \in \partial M
$$

$d_{g}(x, y)$ dep. on $2 \mathrm{n}-2$ variables

$$
\begin{gathered}
d_{g}(x, y)=\inf _{\sigma(0)=x} L_{g}(\sigma) \\
\sigma(1)=y
\end{gathered} L_{g}(\sigma)=\int_{0}^{1} \sqrt{g_{i j}(\sigma(t)) \frac{\partial \sigma_{i}}{\partial t} \frac{\partial \sigma_{j}}{\partial t}} d t .
$$

TENSOR TOMOGRAPHY

Linearized Boundary Rigidity Problem
Recover a tensor $\left(f_{i j}\right)$ from the geodesic X-ray transform

$$
I_{g} f(\gamma)=\int_{\gamma} f_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j} d t
$$

known for all maximal geodesics γ on M.

$$
f=f^{s}+d v,\left.\quad v\right|_{\partial M}=0
$$

and $\delta f^{s}=0, \delta=$ divergence. $\quad I_{g}(d v)=0$.
Linearized Problem To recover f^{s} from $I_{g} f$.
Stefanov-U, 2005 If we solve this we solve the boundary rigidity problem locally (near a metric).

TENSOR TOMOGRAPHY

$$
\begin{aligned}
& I_{g} f(\gamma)=\int_{\gamma} f_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j} d t, \\
& f=\left(f_{i j}\right)=f^{s}+d v,\left.\quad v\right|_{\partial M}=0
\end{aligned}
$$

Recover f^{s} from $I_{g} f$.

Theorem ($n=2$) (Sharafutdinov 2007,
Paternain-Salo-U 2011) (M, g) simple. Then I_{g} is injective on solenoidal vector fields.
Remark Also stability estimates are valid (Stefanov-U 2005). This implies stability for non-linear problem (boundary rigidity).
Theorem ($n \geq 3$) (Stefanov-U 2005) (M, g) simple, g real-analytic. Then I_{g} is injective on solenoidal vector fields.
Remark This implies solution of boundary rigidity near real-analytic metrics and also stability.

REFLECTION TRAVELTIME TOMOGRAPHY Broken Scattering Relation

(M, g) : manifold with boundary with Riemannian metric g

$$
\begin{gathered}
\left(\left(x_{0}, \xi_{0}\right),\left(x_{1}, \xi_{1}\right), t\right) \in \mathcal{B} \\
t=s_{1}+s_{2}
\end{gathered}
$$

Theorem (Kurylev-Lassas-U 2010)
$n \geq 3$. Then ∂M and the broken scattering relation \mathcal{B} determines (M, g) uniquely.

Identity (Stefanov-U, 1998)

$$
\begin{aligned}
\int_{0}^{T} \frac{\partial X_{g_{2}}}{\partial X^{0}}\left(T-s, X_{g_{1}}\left(s, X^{0}\right)\right) & \left.\left(V_{g_{1}}-V_{g_{2}}\right)\right|_{X_{g_{1}}\left(s, X^{0}\right)} d S \\
& =X_{g_{1}}\left(T, X^{0}\right)-X_{g_{2}}\left(T, X^{0}\right)
\end{aligned}
$$

$$
V_{g_{j}}:=\left(\frac{\partial H_{g_{j}}}{\partial \xi},-\frac{\partial H_{g_{j}}}{\partial x}\right) \text { the Hamiltonian vector field. }
$$

Particular case:

$$
\begin{aligned}
\left(g_{k}\right)= & \frac{1}{c_{k}^{2}}\left(\delta_{i j}\right), \quad k=1,2 \\
V_{g_{k}}= & \left(c_{k}^{2} \xi,-\frac{1}{2} \nabla\left(c_{k}^{2}\right)|\xi|^{2}\right) \\
& \text { Linear in } c_{k}^{2}!
\end{aligned}
$$

Reconstruction

$$
\begin{aligned}
& \int_{0}^{T} \frac{\partial X_{g_{1}}}{\partial X^{0}}\left(T-s, X_{g_{2}}\left(s, X^{0}\right)\right) \times \\
& \qquad\left.\left(\left(c_{1}^{2}-c_{2}^{2}\right) \xi,-\frac{1}{2} \nabla\left(c_{1}^{2}-c_{2}^{2}\right)|\xi|^{2}\right)\right|_{X_{g_{2}}\left(s, X^{0}\right)} d S \\
&=\underbrace{X_{g_{1}}\left(T, X^{0}\right)}_{\text {data }}-X_{g_{2}}\left(T, X^{0}\right)
\end{aligned}
$$

Inversion of geodesic X-ray transform.
Consider $X^{*} X$ for inversion.

Numerical Method

(Chung-Qian-Zhao-U, IP 2011)

$$
\begin{aligned}
& \int_{0}^{T} \frac{\partial X_{g_{1}}}{\partial X^{0}}\left(T-s, X_{g_{2}}\left(s, X^{0}\right)\right) \times \\
& \qquad \begin{aligned}
&\left.\left(\left(c_{1}^{2}-c_{2}^{2}\right) \xi,-\frac{1}{2} \nabla\left(c_{1}^{2}-c_{2}^{2}\right)|\xi|^{2}\right)\right|_{X_{g_{2}}\left(s, X^{0}\right)} d S \\
&=X_{g_{1}}\left(T, X^{0}\right)-X_{g_{2}}\left(T, X^{0}\right)
\end{aligned}
\end{aligned}
$$

Adaptive method

Start near $\partial \Omega$ with $c_{2}=1$ and iterate.

Numerical examples

Example 1: An example with no broken geodesics,

$$
c(x, y)=1+0.3 \sin (2 \pi x) \sin (2 \pi y), c_{0}=0.8
$$

Left: Numerical solution (using adaptive) at the 55-th iteration. Middle: Exact solution. Right: Numerical solution (without adaptive) at the 67-th iteration.

Example 2: A known circular obstacle enclosed by a square domain. Geodesic either does not hit the inclusion or hits the inclusion (broken) once.

$$
c(x, y)=1+0.2 \sin (2 \pi x) \sin (\pi y), c_{0}=0.8
$$

Left: Numerical solution at the 20-th iteration. The relative error is 0.094%. Right: Exact solution.

Example 3: A concave obstacle (known).
$c(x, y)=1+0.1 \sin (0.5 \pi x) \sin (0.5 \pi y), c_{0}=0.8$.

Left: Numerical solution at the 117-th iteration. The relative error is 2.8\%. Middle: Exact solution. Right: Absolute error.

Example 4: Unknown obstacles and medium.

Left: The two unknown obstacles. Middle: Ray coverage of the unknown obstacle. Right: Absolute error.

Example 4: Unknown obstacles and medium (continues).

$$
\begin{gathered}
r=1+0.6 \cos (3 \theta) \text { with } r=\sqrt{(x-2)^{2}+(y-2)^{2}} \\
c(r)=1+0.2 \sin r
\end{gathered}
$$

Left: The two unknown obstacles. Middle: Ray coverage of the unknown obstacle. Right: Absolute error.

Example 5: The Marmousi model.

Left: The exact solution on fine grid. Middle: The exact solution projected on a coarse grid. Right: The numerical solution at the 16 -th iteration. The relative error is 2.24%.

Example 5: The Marmousi model (with noise).

Left: The numerical solution with 0.1% noise. The relative error is 4.16%. Right: The numerical solution with 1% noise. The relative error is 5.53%.

