Bistatic Ultrasound Tomography

Todd Quinto This includes joint work with Gaik Ambartsoumian, Venky Krishnan, and Howard Levinson

Department of Mathematics Tufts University http://www.tufts.edu/~equinto

Geometric Analysis on Euclidean and Homogeneous Spaces, Tufts University January 9, 2012 (Partial support from U.S. NSF)

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Acoustic waves are emitted from a source and reflect off of inhomogeneities inside the body. Their echoes are measured by a receiver. Then, emitter and receiver are moved about the body.

Acoustic waves are emitted from a source and reflect off of inhomogeneities inside the body. Their echoes are measured by a receiver. Then, emitter and receiver are moved about the body.

This measured data are then used to reconstruct the unknown ultrasonic reflectivity function, which is used to generate cross-sectional images of the body.

Advantage:

- URT is safe and cost effective.
- URT does a good job imaging soft tissue.

Bistatic Data Acquisition Method

The ultrasound emitter is focussed to send sound waves in a plane.

- The emitter and receiver are separated on the circle, a fixed distance apart.
- The emitter and receiver rotate around the body on the circle (*c* =constant speed of sound, *t* =time).

Separated emitted and receiver

Bistatic Data Acquisition Method

The ultrasound emitter is focussed to send sound waves in a plane.

- The emitter and receiver are separated on the circle, a fixed distance apart.
- The emitter and receiver rotate around the body on the circle (*c* =constant speed of sound, *t* =time).
- The data can be modeled as integrals of the reflectivity over ellipses with foci the emitter and receiver.

Separated emitted and receiver

Figure: A sketch of ellipses of integration in bistatic URT

The emitter and receiver move along the unit circle and are 2α radians apart, $\alpha \in (0, \pi/2)$.

$$a = \sin(\alpha),$$

 $b = \cos(\alpha)$

2a = distance between the foci

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

$$D_b = \{x \in \mathbb{R}^2 \, \big| \, \|x\| < b\}$$

Figure: *a*, *b*, and *D*_b

The emitter and receiver move along the unit circle and are 2α radians apart, $\alpha \in (0, \pi/2)$.

Figure: a, b, and D_b

$$a = \sin(\alpha),$$

 $b = \cos(\alpha)$

2a = distance between the foci

$$D_b = \{x \in \mathbb{R}^2 \, | \, \|x\| < b\}$$

For
$$s \in [0, 2\pi]$$
,
 $\gamma_E(s) = (\cos(s - \alpha), \sin(s - \alpha))$
 $\gamma_B(s) = (\cos(s + \alpha), \sin(s + \alpha))$

Ellipse:
$$E(s, L) = \{x \in \mathbb{R}^2 | ||x - \gamma_E(s)|| + ||x - \gamma_R(s)|| = L\}$$

L is the major diameter–the sum of the distances from the foci to any point on the ellipse.

s =angle from the positive x axis to the center of the ellipse

(日)

Figure: An ellipse E(s, L)

The set of ellipses: $Y = \{(s, L) | s \in [0, 2\pi], L > 2a\}$

The Elliptical Radon Transform: $f \in \mathcal{E}'(D_b)$, $(s, L) \in Y$

$$\mathcal{R}f(s,L) = \int_{E(s,L)} f(x) dx$$

The Backprojection Transform: $g \in \mathcal{D}'(Y), x \in D_b$

$$\mathcal{R}^*g(x) = \int_{s \in [0,2\pi]} g(s, \|x - \gamma_E(s)\| + \|x - \gamma_R(s)\|) ds$$

ds is standard Lebesgue measure and \mathcal{R}^* is close to the L^2 adjoint of \mathcal{R} .

 \mathcal{R}^* is an integral of *g* over all ellipses through *x*.

Our Reconstruction Algorithm

For $f \in \mathcal{E}'(D_b)$, $\mathcal{L}(f)(x) := \mathcal{R}^*(D\mathcal{R}f)(x)$

where D is a second order differential operator to be chosen using microlocal analysis.

This is a generalization of Lambda tomography for the line transform: $R^*(-d^2/dp^2)Rf = \sqrt{-\Delta}f$.

Our Reconstruction Algorithm

For $f \in \mathcal{E}'(D_b)$, $\mathcal{L}(f)(x) := \mathcal{R}^*(D\mathcal{R}f)(x)$

where D is a second order differential operator to be chosen using microlocal analysis.

This is a generalization of Lambda tomography for the line transform: $R^*(-d^2/dp^2)Rf = \sqrt{-\Delta}f$.

We have developed derivative-backprojection algorithms

- SPECT [Bakhos, Chung, Q]
- Electron Microscopy [Q, Öktem]
- Common Offset Bistatic Synthetic Aperture Radar [Levinson, Q]
- Sonar [Q, Rieder, Schuster]

Our Reconstruction Algorithm and Microlocal Analysis

For $f \in \mathcal{E}'(D_b)$, $\mathcal{L}(f)(x) := \mathcal{R}^*(D\mathcal{R}f)(x)$

where D is a second order differential operator to be chosen using microlocal analysis.

This is a generalization of Lambda tomography for the line transform: $R^*(-d^2/dp^2)Rf = \sqrt{-\Delta}f$.

We have developed derivative-backprojection algorithms and analyzed their microlocal properties

- SPECT [Bakhos, Chung, Q] Admissible Line Transform
- Electron Microscopy [Q, Öktem] Admissible Line Transform
- Common Offset Bistatic Synthetic Aperture Radar [Levinson, Q] Like an Elliptical Transform
- Sonar [Q, Rieder, Schuster] Spherical Transform

In each case the forward operator is a FIO related to a Radon transform.

Incidence Relation: $Z = \{(s, L; x) \in Y \times D_b | x \in E(s, L)\}.$

Guillemin used the double fibration

to prove microlocal properties of generalized Radon transforms.

[Ambartsoumian, Krishnan, Q] prove that \mathcal{R} fits into Guillemin's theory since both projections are fiber maps and π_R has compact fiber, S^1 .

Guillemin [G 1975, GS, G 1985] showed that generalized Radon transforms defined by such double fibrations are elliptic FIOs. The canonical relation is $C = (N^*(Z) \setminus \mathbf{0})'$:

Guillemin [G 1975, GS, G 1985] showed that generalized Radon transforms defined by such double fibrations are elliptic FIOs. The canonical relation is $C = (N^*(Z) \setminus \mathbf{0})'$:

Theorem (Ambartsoumian, Krishnan, Q)

For functions supported in D_b , \mathcal{R} satisfies the Bolker Assumption: $\Pi_L : \mathcal{C} \to T^*(Y)$ is an injective immersion. Therefore, if D is elliptic, then our reconstruction operator $\mathcal{L} = \mathcal{R}^* D\mathcal{R}$ is an elliptic pseudodifferential operator from $\mathcal{E}'(D_b)$ to $\mathcal{D}'(D_b)$.

Notes

- The composition of two FIOs does not have to be a FIO, and many FIO do not satisfy the Bolker assumption: our transform in D_b is special.
- Our theorem implies that, for *f* ∈ *E*'(*D_b*), *L*(*f*) shows all singularities of *f* in *D_b*.

Notes

- The composition of two FIOs does not have to be a FIO, and many FIO do not satisfy the Bolker assumption: our transform in D_b is special.
- Our theorem implies that, for *f* ∈ *E*'(*D_b*), *L*(*f*) shows all singularities of *f* in *D_b*.
- If one considers a larger domain than D_b, then R does not fit into this framework since π_R is no longer proper, and the fibers are not closed manifolds. Π_L drops rank and singularities can be added to the reconstruction.

Notes

- The composition of two FIOs does not have to be a FIO, and many FIO do not satisfy the Bolker assumption: our transform in D_b is special.
- Our theorem implies that, for *f* ∈ *E*'(*D_b*), *L*(*f*) shows all singularities of *f* in *D_b*.
- If one considers a larger domain than D_b, then R does not fit into this framework since π_R is no longer proper, and the fibers are not closed manifolds. Π_L drops rank and singularities can be added to the reconstruction.
- In the proof, we put coordinates on C, (s, L, φ, η) where φ is a "polar angle" on the ellipse E(s, L) and η ∈ ℝ \ 0 is a cotangent coordinate. We reduce to proving that, as a function of φ, Π_L is an injective immersion.

Reconstructions

My senior honors thesis student Howard Levinson implemented the algorithm and showed that $D = -d^2/dL^2$ gives better reconstructions than $-d^2/ds^2$ (for microlocal reasons!).

Reconstructions

My senior honors thesis student Howard Levinson implemented the algorithm and showed that $D = -d^2/dL^2$ gives better reconstructions than $-d^2/ds^2$ (for microlocal reasons!).

1000

Figure: Reconstruction of a square

Figure: Reconstruction of two circles

・ロット (雪) (日) (日)

Reconstructions

My senior honors thesis student Howard Levinson implemented the algorithm and showed that $D = -d^2/dL^2$ gives better reconstructions than $-d^2/ds^2$ (for microlocal reasons!).

Figure: Reconstruction of a square

Artifacts are outside of D_b!

Figure: Reconstruction of two circles

A D > A B > A B > A B >

