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Ultrasound Reflection Tomography (URT)

Acoustic waves are emitted from a source and reflect off of
inhomogeneities inside the body. Their echoes are measured
by a receiver. Then, emitter and receiver are moved about the
body.
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Ultrasound Reflection Tomography (URT)

Acoustic waves are emitted from a source and reflect off of
inhomogeneities inside the body. Their echoes are measured
by a receiver. Then, emitter and receiver are moved about the
body.

This measured data are then used to reconstruct the unknown
ultrasonic reflectivity function, which is used to generate
cross-sectional images of the body.

Advantage:
@ URT is safe and cost effective.
@ URT does a good job imaging soft tissue.
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Bistatic Data Acquisition Method

The ultrasound emitter is focussed to send sound waves in a
plane.
@ The emitter and receiver are separated on the circle, a
fixed distance apart.
@ The emitter and receiver rotate around the body on the
circle (c =constant speed of sound, t =time).

/ \ receiver
ri+r2=ct

emitter

Separated emitted and receiver
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Bistatic Data Acquisition Method

The ultrasound emitter is focussed to send sound waves in a
plane.

@ The emitter and receiver are separated on the circle, a
fixed distance apart.

@ The emitter and receiver rotate around the body on the
circle (c =constant speed of sound, t =time).

@ The data can be modeled as integrals of the reflectivity
over ellipses with foci the emitter and receiver.

/ \ receiver
ri+r=ct

emitter

Separated emitted and receiver

Figure: A sketch of ellipses of integration in bistatic URT Tufts



The Parameters

The emitter and receiver move along the unit circle and are 2a
radians apart, o € (0,7/2).

e a = sin(a),
a b (©)
b = cos(«)

A 2a =distance between the foci

b1
\\J Dy = {x € B||x|| < b}

Figure: a, b, and Dy
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The Parameters

The emitter and receiver move along the unit circle and are 2a
radians apart, o € (0,7/2).

e a = sin(a),
s )
b = cos(«)

A 2a =distance between the foci

b1
K/ Dy = {x € B||x|| < b}

For s € [0, 27],
Figure: a, b, and Dy Ve(S) = (cos(s—a),sin(s—a))
~vr(S) = (cos(s+a),sin(s+a))
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Ellipse: E(s, L) = {x € R?|||x — 7&(s)|| + ||x — va(s)|| = L}

I ————

a b a

L is the major diameter—the
S sum of the distances from the

bji foci to any point on the ellipse.
s =angle from the positive x

axis to the center of the ellipse

Figure: An ellipse E(s, L)

The set of ellipses: Y = {(s,L)|s € [0,2n], L > 2a}
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The Transforms

The Elliptical Radon Transform: f € £'(Dy), (s,L) € Y

The Backprojection Transform: g € D'(Y), x € D,
R*g(x) = / 9(s; l[x —ye(s)ll + lIx —va(s)l/)ds
se(0,27]

ds is standard Lebesgue measure and R* is close to the L?
adjoint of R.
R* is an integral of g over all ellipses through x.
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Our Reconstruction Algorithm

For f € £&'(Dp), L(f)(x):=R*(DRf)(x)
where D is a second order differential operator to be chosen
using microlocal analysis.

This is a generalization of Lambda tomography for the line
transform: R*(—d?/dp?)Rf = \/—Af.
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Our Reconstruction Algorithm

For f € £&'(Dp), L(f)(x):=R*(DRf)(x)
where D is a second order differential operator to be chosen
using microlocal analysis.

This is a generalization of Lambda tomography for the line
transform: R*(—d?/dp?)Rf = \/—Af.

We have developed derivative-backprojection algorithms

@ SPECT [Bakhos, Chung, Q]
@ Electron Microscopy [Q, Oktem]

@ Common Offset Bistatic Synthetic Aperture Radar
[Levinson, Q]

@ Sonar [Q, Rieder, Schuster]
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Our Reconstruction Algorithm and Microlocal Analysis

For f € £&'(Dp), L(f)(x):=R*(DRf)(x)
where D is a second order differential operator to be chosen
using microlocal analysis.

This is a generalization of Lambda tomography for the line
transform: R*(—d?/dp?)Rf = \/—Af.

We have developed derivative-backprojection algorithms and
analyzed their microlocal properties

@ SPECT [Bakhos, Chung, Q] Admissible Line Transform
@ Electron Microscopy [Q, Oktem] Admissible Line Transform

@ Common Offset Bistatic Synthetic Aperture Radar
[Levinson, Q] Like an Elliptical Transform

@ Sonar [Q, Rieder, Schuster] Spherical Transform

In each case the forward operator is a FIO related to a Radon
transform. Tufts



Double Fibration and FIO

Incidence Relation: Z = {(s,L; x) € Y x Dp|x € E(s,L)}.

Guillemin used the double fibration

V4

1% Dy

to prove microlocal properties of generalized Radon transforms.

[Ambartsoumian, Krishnan, Q] prove that R fits into Guillemin’s
theory since both projections are fiber maps and 7z has
compact fiber, S'.
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Guillemin [G 1975, GS, G 1985] showed that generalized
Radon transforms defined by such double fibrations are elliptic
FIOs. The canonical relation is C = (N*(Z2) \ 0)':

C

FIL/ \HR
(Y) (X)
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The Main Theorem

Guillemin [G 1975, GS, G 1985] showed that generalized
Radon transforms defined by such double fibrations are elliptic
FIOs. The canonical relation is C = (N*(Z2) \ 0)':

C

FIL/ \HR
(Y) (X)

Theorem (Ambartsoumian, Krishnan, Q)

For functions supported in Dy, R satisfies the Bolker Assumption:
My : C — T*(Y) is an injective immersion. Therefore, if D is
elliptic, then our reconstruction operator L = R*DR is an
elliptic pseudodifferential operator from £'(Dy) to D' (Dp).
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@ The composition of two FIOs does not have to be a FIO,
and many FIO do not satisfy the Bolker assumption:
our transform in Dy, is special.

@ Our theorem implies that, for f € £'(Dp), L(f) shows all
singularities of f in Dp,.
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@ The composition of two FIOs does not have to be a FIO,
and many FIO do not satisfy the Bolker assumption:
our transform in Dy, is special.

@ Our theorem implies that, for f € £'(Dp), L(f) shows all
singularities of f in Dp,.

@ If one considers a larger domain than D, then R does not
fit into this framework since 7 is no longer proper, and the
fibers are not closed manifolds. N, drops rank and
singularities can be added to the reconstruction.
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@ The composition of two FIOs does not have to be a FIO,
and many FIO do not satisfy the Bolker assumption:
our transform in Dy, is special.

@ Our theorem implies that, for f € £'(Dp), L(f) shows all
singularities of f in Dp,.

@ If one considers a larger domain than D, then R does not
fit into this framework since 7 is no longer proper, and the
fibers are not closed manifolds. N, drops rank and
singularities can be added to the reconstruction.

@ In the proof, we put coordinates on C, (s, L, ¢,n) where ¢ is
a “polar angle” on the ellipse E(s,L)andn € R\ Oisa
cotangent coordinate. We reduce to proving that, as a

function of ¢, M, is an injective immersion.
o ’ Tufts



Reconstructions

My senior honors thesis student Howard Levinson implemented
the algorithm and showed that D = —d?/dL? gives better
reconstructions than —d?/ds? (for microlocal reasons!).
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Reconstructions

My senior honors thesis student Howard Levinson implemented
the algorithm and showed that D = —d?/dL? gives better
reconstructions than —d?/ds? (for microlocal reasons!).
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Figure: Reconstruction of a
square
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Figure: Reconstruction of two
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Reconstructions

My senior honors thesis student Howard Levinson implemented
the algorithm and showed that D = —d?/dL? gives better
reconstructions than —d?/ds? (for microlocal reasons!).
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Figure: Reconstruction of a
square

Artifacts are outside of D!
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Figure: Reconstruction of two
circles
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