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Ultrasound Reflection Tomography (URT)

Acoustic waves are emitted from a source and reflect off of
inhomogeneities inside the body. Their echoes are measured
by a receiver. Then, emitter and receiver are moved about the
body.

This measured data are then used to reconstruct the unknown
ultrasonic reflectivity function, which is used to generate
cross-sectional images of the body.

Advantage:
URT is safe and cost effective.
URT does a good job imaging soft tissue.
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Bistatic Data Acquisition Method

The ultrasound emitter is focussed to send sound waves in a
plane.

The emitter and receiver are separated on the circle, a
fixed distance apart.
The emitter and receiver rotate around the body on the
circle (c =constant speed of sound, t =time).
The data can be modeled as integrals of the reflectivity
over ellipses with foci the emitter and receiver.
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Figure: A sketch of ellipses of integration in bistatic URT



Bistatic Data Acquisition Method

The ultrasound emitter is focussed to send sound waves in a
plane.

The emitter and receiver are separated on the circle, a
fixed distance apart.
The emitter and receiver rotate around the body on the
circle (c =constant speed of sound, t =time).
The data can be modeled as integrals of the reflectivity
over ellipses with foci the emitter and receiver.

Separated emitted and receiver

emitter

receiver

r1

r2

r1+r2=ct

Figure: A sketch of ellipses of integration in bistatic URT



The Parameters

The emitter and receiver move along the unit circle and are 2α
radians apart, α ∈ (0, π/2).
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Figure: a, b, and Db

a = sin(α),

b = cos(α)

2a =distance between the foci

Db = {x ∈ R2
∣∣‖x‖ < b}
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Figure: a, b, and Db

a = sin(α),

b = cos(α)

2a =distance between the foci

Db = {x ∈ R2
∣∣‖x‖ < b}

For s ∈ [0,2π],
γE (s) = (cos(s−α), sin(s−α))
γR(s) = (cos(s+α), sin(s+α))



Ellipse: E(s,L) = {x ∈ R2 ∣∣‖x − γE (s)‖+ ‖x − γR(s)‖ = L}
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Figure: An ellipse E(s,L)

L is the major diameter–the
sum of the distances from the
foci to any point on the ellipse.

s =angle from the positive x
axis to the center of the ellipse

The set of ellipses: Y = {(s,L)
∣∣s ∈ [0,2π], L > 2a}



The Transforms

The Elliptical Radon Transform: f ∈ E ′(Db), (s,L) ∈ Y

Rf (s,L) =

∫
E(s,L)

f (x)dx

The Backprojection Transform: g ∈ D′(Y ), x ∈ Db

R∗g(x) =

∫
s∈[0,2π]

g(s, ‖x − γE (s)‖+ ‖x − γR(s)‖)ds

ds is standard Lebesgue measure and R∗ is close to the L2

adjoint of R.
R∗ is an integral of g over all ellipses through x .



Our Reconstruction Algorithm and Microlocal Analysis

For f ∈ E ′(Db), L(f )(x) := R∗(DRf )(x)
where D is a second order differential operator to be chosen
using microlocal analysis.

This is a generalization of Lambda tomography for the line
transform: R∗(−d2/dp2)Rf =

√
−∆f .

We have developed derivative-backprojection algorithms and
analyzed their microlocal properties

SPECT [Bakhos, Chung, Q] Admissible Line Transform
Electron Microscopy [Q, Öktem] Admissible Line Transform
Common Offset Bistatic Synthetic Aperture Radar
[Levinson, Q] Like an Elliptical Transform
Sonar [Q, Rieder, Schuster] Spherical Transform

In each case the forward operator is a FIO related to a Radon
transform.
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Double Fibration and FIO

Incidence Relation: Z = {(s,L; x) ∈ Y × Db
∣∣x ∈ E(s,L)}.

Guillemin used the double fibration

Z
πL↙ ↘πR

Y Db

to prove microlocal properties of generalized Radon transforms.

[Ambartsoumian, Krishnan, Q] prove that R fits into Guillemin’s
theory since both projections are fiber maps and πR has
compact fiber, S1.



The Main Theorem

Guillemin [G 1975, GS, G 1985] showed that generalized
Radon transforms defined by such double fibrations are elliptic
FIOs. The canonical relation is C = (N∗(Z ) \ 0)′:

C
ΠL↙ ↘ΠR

T ∗(Y ) T ∗(X )

Theorem (Ambartsoumian, Krishnan, Q)
For functions supported in Db, R satisfies the Bolker Assumption:
ΠL : C → T ∗(Y ) is an injective immersion. Therefore, if D is
elliptic, then our reconstruction operator L = R∗DR is an
elliptic pseudodifferential operator from E ′(Db) to D′(Db).
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Notes

The composition of two FIOs does not have to be a FIO,
and many FIO do not satisfy the Bolker assumption:
our transform in Db is special.
Our theorem implies that, for f ∈ E ′(Db), L(f ) shows all
singularities of f in Db.

If one considers a larger domain than Db, then R does not
fit into this framework since πR is no longer proper, and the
fibers are not closed manifolds. ΠL drops rank and
singularities can be added to the reconstruction.

In the proof, we put coordinates on C, (s,L, φ, η) where φ is
a “polar angle” on the ellipse E(s,L) and η ∈ R \ 0 is a
cotangent coordinate. We reduce to proving that, as a
function of φ, ΠL is an injective immersion.
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Reconstructions

My senior honors thesis student Howard Levinson implemented
the algorithm and showed that D = −d2/dL2 gives better
reconstructions than −d2/ds2 (for microlocal reasons!).
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Artifacts are outside of Db!
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