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In the last decade, methods based on various kinds of spherical
wavelet bases have found applications in virtually all areas
where analysis of spherical data is required, including
cosmology, weather prediction, and geodesy. In particular, the
so-called needlets (=band-limited Parseval frames) have
become an important tool for the analysis of Cosmic Microwave
Background (CMB) temperature data.



The goal of the present paper is to construct band-limited and
highly localized Parseval frames on general compact
homogeneous manifolds. Our construction can be considered
as an analogue of the well-known ϕ-transform on Euclidean
spaces.



Frames were introduced in the 1950s by Duffin and Schaeffer
to represent functions via over-complete sets. Frames arise
naturally in wavelet analysis on Euclidean spaces when
continuous wavelet transforms are discretized. They provide a
redundancy that helps reduce the effect of noise in data, and
they have been constructed, studied, and employed extensively
in both theoretical and applied problems.



A set of vectors {θv} in a Hilbert space H is called a frame if
there exist constants A,B > 0 such that for all f ∈ H

A‖f‖22 ≤
∑

v

| < f , θv > |2 ≤ B‖f‖22. (1)

The largest A and smallest B are called lower and upper frame
bounds. The set of scalars {< f , θv >} represents a set of
measurements of a signal f . To synthesize signal f from this set
of measurements one has to find another (dual) frame {Θv}
and then a reconstruction formula is

f =
∑

v

< f , θv > Θv . (2)

Dual frame is not unique in general. Moreover it is not easy
(and expensive) to find a dual frame.



However, if a frame is tight, which means that A = B, then
synthesis can be performed by using the original frame {θv}.
If in particular A = B = 1 the frame is known as the Parseval
frame.
Parseval frames are similar in many respects to orthonormal
wavelet bases. For example, if in addition all vectors θv are unit
vectors, then the frame is an orthonormal basis.



But the main feature of Parseval frames is that decomposing
and synthesizing a signal or image from known data are
tasks carried out with the same set of functions, the ones in
the frame.



A property that makes one frame preferable to another is
simultaneous localization of the frame functions in both
space and frequency. Frames with this feature have been
successfully developed in Euclidean spaces. One of them is
the so-called ϕ-transform which was discovered in 90s by M.
Frazier and B. Jawerth.



A homogeneous compact manifold M is a C∞-compact
manifold on which a compact Lie group G acts transitively. In
this case M is necessary of the form G/K , where K is a closed
subgroup of G. The notation L2(M), is used for the usual Hilbert
spaces, where dx is an invariant measure.



If g is the Lie algebra of a compact Lie group G then it is a
direct sum g = a + [g,g], where a is the center of g, and [g,g]
is a semi-simple algebra. Let Q be a positive-definite quadratic
form on g which, on [g,g], is opposite to the Killing form. Let
X1, ...,Xd be a basis of g, which is orthonormal with respect to
Q. Since the form Q is Ad(G)-invariant, the operator

−X 2
1 − X 2

2 − ...− X 2
d , d = dim G

is a bi-invariant operator on G. This implies in particular that the
corresponding operator on Lp(M), 1 ≤ p ≤ ∞,

L = −D2
1 − D2

2 − ...− D2
d , Dj = DXj , d = dim G, (3)

commutes with all operators Dj = DXj .



This operator involved in most of the constructions and results
of our research.
Operator L, which is usually called the Laplace operator, is the
image of the Casimir operator under differential of quazi-regular
representation in L2(M).
The operator L is elliptic, positive definite and has a discrete
spectrum 0 = λ0 < λ1 ≤ λ2 ≤ ...... which goes to infinity.
Let {ϕj} be a corresponding system of orthonormal
eigenfunctions which forms a basis in L2(M).



Our strategy is the following.
Given a compact Riemannian manifold M with distance d we
consider a sequence of what we call 2−j -lattices Mj . By a 2−j

we mean a set of points

Mj = {x (j)
k }
Nj
k=1

which are "uniformly" distributed over M in the sense that there
exist constants a,b > 0 which are independent on natural j
such that for all x (j)

k , y (j)
m ∈ Mj

a2−j ≤ max
k

min
k 6=m

dist (x (j)
k , y (j)

m ) ≤ b2−j .



With every node x (j)
k we associate a smooth function ψ(j)

k which
is
1) "essentially" supported in a ball of radius 2−j around x (j)

k
and
2) is bandlimited in a sense it is a polynomial in eigenfunctions
of L.
Once again, the objective is to show that such construction can
be performed in such way that the set of functions ψ(j)

k will form
a Parseval frame i.e. one would have the equality

‖f‖22 =
∑
j,k

| < f , ψ(j)
k > |2

for any f ∈ L2(M).



Definition
The span of all eigenfunctions of L whose eigenvalues are not
greater an ω > 0 will be denoted as Eω(L).

For the operator L we were able to prove the following property
which is of crucial importance for our construction.

Theorem
(Product property) If M = G/K is a compact homogeneous
manifold and L is the same as above, then for any f and g
belonging to Eω(L), their product fg belongs to E4dω(L), where
d is the dimension of the group G.



To introduce our second key result we need more preparations.

Lemma
For any compact Riemannian manifold M there exists a natural
number NM, such that for any sufficiently small ρ > 0 there
exists a set of points {yν} such that:

1 the balls B(yν , ρ/4) are disjoint,
2 the balls B(yν , ρ/2) form a cover of M,
3 the multiplicity of the cover by balls B(yν , ρ) is not greater

than NM.

Definition
Any set of points Mρ = {yν} which is as described in Lemma
will be called a metric ρ-lattice.



Theorem
(Cubature formula) There exists a positive constant a0, such
that if ρ = a0(ω + 1)−1/2, then for any ρ-lattice Mρ, there exist
strictly positive coefficients λxk > 0, xk ∈ Mρ, for which the
following equality holds for all functions in Eω(M):∫

M
fdx =

∑
xk∈Mρ

λxk f (xk ). (4)

Moreover, there exists constants c1, c2, such that the following
inequalities hold:

c1ρ
n ≤ λxk ≤ c2ρ

n, n = dim M. (5)

(Relevant results were obtained independently by H. Mhaskar,
F. Filbir, F. Narcowich, J. Ward).



According to spectral theorem if F is a Schwartz function on the
line, then there is a well defined operator F (L) in the space
L2(M) such that for any f ∈ L2(M) one has

(F (L)f ) (x) =

∫
M

K F (x , y)f (y)dy ,

where

K F (x , y) =
∞∑

j=0

F (λj)ϕj(x)ϕj(y).



We will be especially interested in operators of the form F (t2L),
where F is a Schwartz function and t > 0. The corresponding
kernel will be denoted as K F

t (x , y) and

K F
t (x , y) =

∞∑
j=0

F (t2λj)ϕj(x)ϕj(y).

Variable t here is a kind of scaling parameter.



Choose a function F ∈ C∞c , supported in the interval [2−2,24]
such that

∞∑
j=−∞

|F (2−2js)|2 = 1 (6)

for all s > 0.
(For example, we could choose a smooth function Φ on R+ with
0 ≤ Φ ≤ 1, with Φ ≡ 1 in [0,2−2] and with Φ = 0 in [22,∞), and
let F (t) = [Φ(t/22)− Φ(t)]1/2 for t > 0.)



Note that the eigenspace for L corresponding to the eigenvalue
λ0 = 0 is the space of constant functions. Let P be the
projection in L2(M) onto the space of constant functions. Using
digonalization of L one can obtain

∞∑
j=−∞

|F |2(2−2jL) = I − P, (7)

where the sum converges strongly on L2(M).



Pick a function f ∈ L2(M). We apply (7) to f and take the inner
product with f . We find

∞∑
j=−∞

‖F (2−2jL)f‖22 = ‖(I − P)f‖22 (8)

Expand f ∈ L2(M) in terms of eigenfunctions of L

f =
∑

m

cmϕm, cm =< f , ϕm > .

Then one has

F (2−2jL)f =
∑

m

F (2−2jλm)cmϕm.

Since for every j function F (2−2js) is supported in the interval
[22j+2,22j+4] the function F (2−2jL)f is bandlimited and belongs
to E22j+4(L).



We also have F (2−2jL)f ∈ E22j+4(L)
According to the product rule, the product |F (2−2jL)f |2 of these
two functions is also bandlimited and

|F (2−2jL)f |2 ∈ E4d22j+4(L),

where d = dim G, M = G/K .



To summarize, we proved that for every f ∈ L2(M) we have
decomposition

∞∑
j=−∞

‖F (2−2jL)f‖22 = ‖(I − P)f‖22 (9)

where for every j

‖F (2−2jL)f‖22 =

∫
M
|F (2−2jL)f |2(x)dx (10)

and where
|F (2−2jL)f |2 ∈ E4d22j+4(L). (11)



The next objective is to perform a discretization step. According
to our result about cubature formula there exists a constant
a0 > 0 such that for all integer j if

ρj = a0(4d22j+4 + 1)−1/2 (12)

then for any ρj -lattice Mρj one can find coefficients b(j)
k with

b(j)
k ∼ ρ

n
j , (13)

for which the following exact cubature formula holds

‖F (2−2jL)f‖22 =

Nj∑
k=1

b(j)
k |[F (2−2jL)f ](x (j)

k )|2, (14)

where x (j)
k ∈ Mρj , (k = 1, . . . ,Nj = N(Mρj ))



Now, for t > 0, let K F
t be the kernel of F (t2L), so that, for

f ∈ L2(M),

[F (t2L)Ff (x) =

∫
M

Kt (x , y)F (y)dy . (15)

For x , y ∈ M, we have

K F
t (x , y) =

∑
m

F (t2λm)ϕm(x)ϕm(y). (16)



Corresponding to each x (j)
k we now define the functions

ψ
(j)
k (y) = K F

a−j (x
(j)
k , y) =

∑
m

F (a−2jλm)ϕm(x (j)
k )ϕm(y), (17)

Ψ
(j)
k =

√
b(j)

k ψ
(j)
k . (18)



We find that for all f ∈ L2(M),

‖(I − P)f‖22 =
∑
j,k

|〈f ,Ψ(j)
k 〉|

2. (19)

Note that, by (17) and (18), and the fact that F (0) = 0, each
Ψ

(j)
k ∈ (I − P)L2(M).



Thus the Ψ
(j)
k form a Parseval frame (i.e. normalized tight

frame) for (I − P)L2(M).
Note also that each Ψ

(j)
k is a finite linear combination of

eigenfunctions of L.



Moreover, since F vanishes on [24,∞), we have Ψ
(j)
k ≡ 0 once

2−2jλ1 ≥ 24. Thus, for some Ω
specifically Ω = [(log2 λ1/2)− 1],
we have

Ψ
(j)
k ≡ 0, j < Ω. (20)

Note that, by out choice of ρ (see (12)), for j ≥ Ω, we have

ρj ∼ 2−j , (21)

in the sense that the ratio of these quantities is bounded above
and below by positive constants.



By gereral frame theory, if f ∈ L2(M), we have

(I − P)f =
∞∑

j=Ω

∑
k

〈f ,Ψ(j)
k 〉Ψ

(j)
k =

∞∑
j=Ω

∑
k

b(j)
k 〈f , ψ

(j)
k 〉ψ

(j)
k , (22)

with convergence in L2(M).



Concerning localization of Ψ
(j)
k one can prove the following

Theorem
(Near-diagonal localization)
Assume that F ∈ S(R) is a Schwartz functions on R.
For t > 0, let K F

t (x , y) be the kernel of F (t2L).
If F (0) = 0 then for every integer N ≥ 0, there exists CN such
that

|Kt (x , y)| ≤ CN tN−n (1 + dist (x , y))−N , n = dim M,

for all t > 0 and all x , y ∈ M.



THANK YOU FOR COMING!


