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Qualitative uncertainty principle

= a theorem which allows to conclude that f = 0 by giving quantitative conditions
on f and its Fourier transform f̂

In this talk:
Initial value problem for the time-dependent Schrödinger equation on a Riemannian
symmetric space of the noncompact type X :

i∂tu(t , x) + ∆u(t , x) = 0

u(0, x) = f (x)
(S)

where ∆ denotes the Laplace-Beltrami operator on X and f ∈ L2(X ).

We prove:
The solution to (S) is identically zero at all times t whenever the initial condition f and
the solution at a time t0 > 0 are simultaneously “very rapidly decreasing”.

 This is an uncertainty principle because of the relation linking the Fourier-Helgason
transforms of f and of the solution ut = u(t , ·)

The condition of rapid decrease we consider is of Beurling type.
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Previous work:

Schrödinger equation on Rn:
Escauriaza, Kenig, Ponce, Vega (& Cowling) (2006, 2008, 2010, 2011)
Also nonlinear Schrödinger equation, with a time-dependent potential,...
Uncertainty conditions on the initial condition f and the solution u(t0, ·) at a time t0 of
different types: Hardy, Morgan, Beurling...

On nilpotent Lie groups:
Ben Said & Thangavelu (2010) for the Heisenberg group
Uncertainty conditions of Hardy type

On Riemannian symmetric spaces G/K of the noncompact type:
Chanillo (2007) for G complex and K -invariant functions
Uncertainty conditions of Hardy type
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Beurling-type uncertainty principles on Rn

Theorem (Beurling’s theorem on R, Hörmander (1991))
Let f ∈ L1(R). If ∫

R

∫
R
|f (x)||̂f (y)|e|xy| dx dy <∞

then f = 0 almost everywhere.

A higher dimensional version:

Theorem (Beurling’s theorem on Rn, Bagchi & Ray (1998))
Let f ∈ L1(Rn). Suppose that∫

Rn

∫
Rn
|f (x)||̂f (y)|e|x||y| dx dy <∞ .

Then f = 0 almost everywhere.

Sharpest version: Bonami, Demange & Jaming (2003)
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Beurling’s theorem
⇓

Gelfand-Shilov type
Let f ∈ L2(Rn) and 1 < p, q <∞ with 1/p + 1/q = 1. Suppose ∃ a > 0, b > 0
so that ∫

Rn
|f (x)|e

ap
p |x|

p
dx <∞ and

∫
Rn
|̂f (x)|e

bq
q |x|

q
dx <∞

If ab ≥ 1, then f = 0 almost everywhere.

⇓
Cowling-Price type
Let f ∈ L2(Rn) and let 1 ≤ p, q <∞. Suppose ∃ a > 0, b > 0 so that∫

Rn

(
|f (x)|ea|x|2)pdx <∞ and

∫
Rn

(
|̂f (x)|eb|x|2)qdx <∞

If ab > 1/4, then f = 0 almost everywhere.

⇓
Hardy type
Let f be measurable on Rn. Suppose ∃ a > 0, b > 0 so that

|f (x)| ≤ e−a|x|2 and |̂f (x)| ≤ e−b|x|2

If ab > 1/4, then f = 0 almost everywhere.
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The damped Schrödinger equation on Rn

Initial value problem for the time-dependent damped Schrödinger equation on Rn:

i∂tu(t , x) + (∆− c)u(t , x) = 0

u(0, x) = f (x)
(Sc)

where:
∆ = Laplace operator on Rn

c ∈ R = the damping parameter

Suppose f ∈ L2(Rn).
Take Fourier transform in the x-variable of both sides of the equations.
This gives rise to an ODE in the t-variable that can be solved directly.

 If f ∈ L2(Rn), then ∃ unique u ∈ C(R : L2(Rn)) satisfying (Sc) in the sense of
distributions. The solution ut (x) = u(t , x) is characterized by the equation

ût (λ) = e−i(|λ|2+c)t f̂ (λ) . (*)

More generally: (*) admits unique solution ut ∈ S′(Rn) if f ∈ S ′(Rn).
Explicitly: for t 6= 0 and f ∈ L2(Rn) (or f ∈ L1(Rn) ⊂ S ′(Rn)):

u(t , x) = (2π)n/2(2|t |)−n/2e−ict e−πi(sign t)n/4ei |x|
2

4t ĥt
( x

2t

)
where

ht (y) = ei |y|
2

4t f (y) .

Remark: If exists t0 > 0 so that ht0 = 0 (i.e. ut0 = 0), then f = 0
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Theorem (Cowling et al., P.-Sundari)
Let ut (x) = u(t , x) be the solution to the damped Schrödinger equation (Sc) with initial
condition f ∈ L2(Rn) or f ∈ L1(Rn). If there is t0 > 0 so that∫

Rn

∫
Rn
|f (x)||u(t0, y)|e

|x||y|
2t0 dx dy <∞ (BS)

then f = 0. Hence u(t , ·) = 0 for all t ∈ R.

Proof. Suppose first f ∈ L1(Rn). Then:

+∞ >

∫
Rn

∫
Rn
|f (x)||u(t0, y)|e

|x||y|
2t0 dx dy =

1
(2t0)n/2

∫
Rn

∫
Rn

∣∣ht0 (x)ĥt0
( y

2t0

)∣∣e |x||y|2t0 dx dy

= (2t0)n/2
∫
Rn

∫
Rn
|ht0 (x)||ĥt0 (y)|e|x||y| dx dy

Hence f = e
−i |·|

2

4t0 ht0 = 0 by Beurling’s theorem.
If f ∈ L2(Rn) satisfies (BS), then f ∈ L1(Rn). Indeed:

|u(t0, y)|
∫
Rn
|f (x)|e

|x||y|
2t0 dx < +∞ for almost all y .

If u(t0, y) = 0 a.e. y , then f = 0.

If not, ∃y0 such that ‖f‖1 ≤
∫
Rn |f (x)|e

|x||y0|
2t0 dx < +∞.
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The Schrödinger equation on X = G/K
X = G/K Riemannian symmetric space of the noncompact type
where G = noncompact connected semisimple Lie group with finite center

K = maximal compact subgroup of G
∆ = Laplace-Beltrami operator on X

Initial value problem for the time-dependent Schrödinger equation on X with f ∈ L2(X ):
i∂tu(t , x) + ∆u(t , x) = 0

u(0, x) = f (x)
(S)

o = eK the base point of X
σ(x) = d(x , o) = distance from x ∈ X to o wrt the Riemannian metric d
Ξ(x) = the (elementary) spherical function of spectral parameter 0

Theorem
Let u(t , x) ∈ C(R : L2(X )) denote the solution of (S) with initial condition f ∈ L2(X ). If
there is a time t0 > 0 so that∫

X

∫
X
|f (x)||u(t0, y)|Ξ(x)Ξ(y)e

σ(x)σ(y)
2t0 dx dy <∞ , (BS)

then u(t , ·) = 0 for all t ∈ R.

Idea of proof: Helgason-Fourier transform + (careful) Euclidean reduction via Radon transform.
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The Helgason-Fourier and the Radon transforms
g = k⊕ p Cartan decomposition of the Lie algebra g of G

where k = Lie algebra of K
a ⊂ p max abelian subspace (Cartan subspace)
A = exp a abelian subgroup of G

G = KAN Iwasawa decomposition
H(g) = Iwasawa projection of g ∈ G on a, i.e. g = k(g) exp H(g)n(g)
M = centralizer of A in K , and B = K/M
A : X × B → a by A(gK , kM) := −H(g−1k)

Σ ⊂ a∗ roots of (g, a)
Σ+ = choice of positive roots
mα = multiplicity of the root α ∈ Σ
ρ = 1/2

∑
α∈Σ+ mαα

For λ ∈ a∗C and b ∈ B, define: eλ,b(x) = e(iλ+ρ)(A(x,b)) , x ∈ X .

The Helgason-Fourier transform of a (sufficiently regular) function f : X → C is the
function F f : a∗C × B → C defined by

F f (λ, b) =

∫
X

f (x)e−λ,b(x) dx =

∫
AN

f (kan · o)e(−iλ+ρ)(log a) da dn

(b = kM; Haar measures da and dn suitably normalized)
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Theorem (Helgason, 1965; Eguchi, 1980)
1 (Plancherel theorem) F extends to an isometry of L2(X ) onto

L2(a∗+ × B, |c(λ)|−2dλ db). Here c is Harish-Chandra’s c-function.
2 (Inversion formula) If f ∈ L1(X ) and F f ∈ L1(a∗+ × B, |c(λ)|−2dλ db), then

f (x) =
1
|W |

∫
a∗×B

F f (λ, b)eλ,b(x)
dλ db
|c(λ)|2 a.e. x ∈ X

The (modified) Radon transform of a (sufficiently regular) function f : X → C is the
function Rf : B × A→ C defined by

Rf (b, a) = eρ(log a)

∫
N

f (kan · o) dn , b = kM .

The Euclidean Fourier transform of a (sufficiently regular) function f : A→ C is the
function FAf : a∗ → C defined by

(FAf )(λ) :=

∫
A

f (a)e−iλ(log a) da , λ ∈ a∗ .

F and R (on suitable classes of functions on X ) are linked by the Euclidean transform.
For instance: if f ∈ L1(X), then Rf ∈ L1(B × A) and

F f (λ, b) = FA
(
Rf (b, ·)

)
(λ) =

∫
A

Rf (b, a)e−iλ(log a) da .
for almost all b ∈ B and all λ ∈ a∗.
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Solution of the Schrod̈inger equation on X = G/K
i∂tu(t , x) + ∆u(t , x) = 0

u(0, x) = f (x) ∈ L2(X )
(S)

The Fourier-transform method used on Rn carries out to (S) when the Fourier
transform is replaced by the Helgason-Fourier transform F .

The functions eλ,b appearing in the definition of F are eigenfunctions of ∆

Plancherel: F is a unitary equivalence between ∆ on L2(G/K ) and the multiplication
operator M on L2(a∗ × B, dλ db

|c(λ)|2 ) defined by (Mf )(λ, b) = −(|λ|2 + |ρ|2)f (λ, b).

Hence: there is a unique ut (x) = u(t , x) ∈ C(R : L2(X )) satisfying (S) in the sense of
distributions. It is characterized by the equation

(Fut )(λ, b) = e−i(|λ|2+|ρ|2)tF f (λ, b) .

i.e.

ut = F−1(e−i(|λ|2+|ρ|2)tF f
)
.

Remark: If f = 0, then ut = 0. Conversely, if ∃ t0 ∈ R so that ut0 = 0, then
e−i(|λ|2+|ρ|2)t0F f (λ, b) = 0 for all (λ, b). Hence f = 0 as F is injective on L2(X ).
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Fourier analysis on B = K/M

K̂M = (equiv classes of) irreducible unitary reps of K with nonzero M-fixed vectors

Vδ = space of δ ∈ K̂M

inner product 〈·, ·〉
d(δ) = dim Vδ
{vδ1 , . . . , vδd(δ)} = ON basis of Vδ

The Fourier coefficients of F ∈ L1(B) are

F δi,j =

∫
K
〈δ(k−1)vδi , v

δ
j 〉F (kM) dk .

Then:

F = 0 if and only if F δi,j = 0 for all δ ∈ K̂M and all i , j = 1, . . . , d(δ).
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The space L1(X )C (with C ≥ 0)
For measurable h : X → C set: ‖h‖1,C :=

∫
X |h(x)|Ξ(x)eCσ(x) dx

L1(X )C = (equiv classes of a.e. equal) functions h : X → C with ‖h‖1,C <∞.

Motivation: If f , ut0 satisfy
∫

X

∫
X |f (x)||u(t0, y)|Ξ(x)Ξ(y)eσ(x)σ(y)/(2t0) dx dy <∞,

then ∃C > 0 so that f ∈ L1(X)C . Likewise for ut0 .

Remark: L1(X)C ⊂ L1(X) if C >> 0 (e.g. C ≥ |ρ|).

Lemma
Let h ∈ L1(X)C . Then:

1 The Radon transform Rh is a.e. defined and in L1(B × A, db da)

2 For all λ ∈ a∗, the Helgason-Fourier transform Fh(λ, ·) is a.e. defined and in L1(B)

Proof for C = 0.

∞ > ‖h‖1,C=0 =

∫
G
|h(g · o)|e−ρ(H(g)) dg (by Ξ(g) =

∫
K e−ρ(H(gk))dk & K -inv of σ and h)

≥
∫

K

∫
A

(
eρ(log a)

∫
N
|h(kan · o)| dn

)
da dk (by Iwasawa decomp & σ(an) ≥ σ(a))

≥
∫

B

∫
A
|(Rh)(b, a)| da db

Moreover: |Fh(λ, b)| ≤
∫

A

∫
N |h(kan · o)|eρ(log a) da dn ≤

∫
A |(Rh)(b, a)| da (b = kM)
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Consequence: If h ∈ L1(X )C then Rh(b, ·) ∈ L1(A) for almost all b ∈ B
⇒ we can consider FA

(
Rh(b, ·)

)
Lemma
F = FA ◦ R on L1(X )C .

Proof (Sketch).
For δ ∈ K̂M and i, j = 1, . . . , d(δ) define:

(Rh)δi,j (a) :=
(
Rh(·, a)

)δ
i,j for almost all a ∈ A

(Fh)δi,j (λ) :=
(
Fh(λ, ·)

)δ
i,j for all λ ∈ a∗

Get: FA
(
(Rh)δi,j (a)

)
: a∗ → C and (Fh)δi,j : a∗ → C .

The functions L1(X)C → L∞(a∗) defined by

{
h 7→ FA

(
(Rh)δi,j (a)

)
h 7→ (Fh)δi,j

are continuous and equal on C∞c (X).
For all λ ∈ a∗:

Fh(λ, ·)δi,j = (Fh)δi,j (λ) = FA
(
(Rh)δi,j (a)

)
(λ) =

(
FA(Rh)(λ, ·)

)δ
i,j

⇒ Fh(λ, ·) = FA(Rh)(λ, ·)
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Proof of the
main theorem:

Theorem
Let u(t , x) ∈ C(R : L2(X)) denote the solution of (S) with initial
condition f ∈ L2(X). If there is a time t0 > 0 so that∫

X

∫
X
|f (x)||u(t0, y)|Ξ(x)Ξ(y)e

σ(x)σ(y)
2t0 dx dy <∞ , (BS)

then u(t , ·) = 0 for all t ∈ R.

If (BS) holds, then f ∈ L1(X )C for some C > 0.
For δ ∈ K̂M and i , j = 1, . . . , d(δ), condition (BS) yields∫

A

∫
A
|(Rf )δi,j (a1)||(Rut0 )δi,j (a2)|e

| log a1|| log a2|
2t0 da1 da2 <∞

Using F = FA ◦ R, we obtain from (Fut )(λ, b) = e−i(|λ|2+|ρ|2)tF f (λ, b):

FA
(
(Rut )

δ
i,j
)
(λ) = e−i(|λ|2+|ρ|2)tFA

(
(Rf )δi,j

)
(λ) .

Euclidean case: (Rf )δi,j = 0 a.e. on A. Conclusion: Rf = 0.
Hence F f = FA(Rf ) = 0. Thus f = 0 as F injective on L2(X ).

Corollary
Let u(t , x) ∈ C(R : L2(X)) be the solution of (S) with initial condition f ∈ L2(X).
Suppose that f has compact support.
If ∃ t0 > 0 so that u(t0, ·) has compact support, then u(t , ·) = 0 for all t ∈ R.
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Applications: other uncertaninty principles
Let u(t , x) ∈ C(R : L2(X )) be the solution of (S) with initial condition f ∈ L2(X ).

Corollary (Gelfand-Shilov type)
Let 1 < p <∞ and 1/p + 1/q = 1. Suppose ∃ α > 0, β > 0 and a time t0 > 0 so that∫

X
|f (x)|Ξ(x)e

αp
p σp(x) dx <∞ and

∫
X
|u(t0, x)|Ξ(x)e

βq
q σq (x) dx <∞ .

If 2t0αβ ≥ 1, then f = 0 and hence u(t , ·) = 0 for all t ∈ R.

Corollary (Cowling-Price type)
Let 1 ≤ p, q <∞. Suppose ∃ α > 0, β > 0 and a time t0 > 0 so that∫

X

(
|f (x)|eaσ2(x)

)p
dx <∞ and

∫
X

(
|u(t0, x)|ebσ2(x)

)q
dx <∞ .

If 16t2
0 ab > 1, then f = 0 and hence u(t , ·) = 0 for all t ∈ R.

Corollary (Hardy type; S.Chanillo, 2007, for G complex & f K -inv)

Suppose ∃ A > 0, α > 0 so that |f (x)| ≤ A e−ασ
2(x) for all x ∈ X.

Suppose ∃ t0 > 0 and B > 0, β > 0 so that |u(t0, x)| ≤ B e−βσ
2(x) for all x ∈ X.

If 16αβt2
0 > 1, then u(t , ·) = 0 for all t ∈ R.
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