Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type

Angela Pasquale

Université de Lorraine

Joint work with Maddala Sundari

Geometric Analysis on Euclidean and Homogeneous Spaces Tufts University

January 8-9, 2012

イロト イポト イヨト イヨト

Qualitative uncertainty principle

= a theorem which allows to conclude that f = 0 by giving quantitative conditions on f and its Fourier transform \hat{f}

In this talk:

Initial value problem for the time-dependent Schrödinger equation on a Riemannian symmetric space of the noncompact type X:

$$i\partial_t u(t,x) + \Delta u(t,x) = 0$$

 $u(0,x) = f(x)$ (S)

< 日 > < 同 > < 回 > < 回 > < □ > <

where Δ denotes the Laplace-Beltrami operator on X and $f \in L^2(X)$.

We prove:

The solution to (S) is identically zero at all times *t* whenever the initial condition *f* and the solution at a time $t_0 > 0$ are simultaneously "very rapidly decreasing".

→ This is an uncertainty principle because of the relation linking the Fourier-Helgason transforms of *f* and of the solution $u_t = u(t, \cdot)$

The condition of rapid decrease we consider is of Beurling type.

Previous work:

Schrödinger equation on \mathbb{R}^n :

Escauriaza, Kenig, Ponce, Vega (& Cowling) (2006, 2008, 2010, 2011) Also nonlinear Schrödinger equation, with a time-dependent potential,... Uncertainty conditions on the initial condition f and the solution $u(t_0, \cdot)$ at a time t_0 of different types: Hardy, Morgan, Beurling...

On nilpotent Lie groups:

Ben Said & Thangavelu (2010) for the Heisenberg group Uncertainty conditions of Hardy type

On Riemannian symmetric spaces G/K of the noncompact type:

Chanillo (2007) for *G* complex and *K*-invariant functions Uncertainty conditions of Hardy type

(日)

Beurling-type uncertainty principles on \mathbb{R}^n

Theorem (Beurling's theorem on \mathbb{R} , Hörmander (1991)) Let $f \in L^1(\mathbb{R})$. If $\int \int |f(x)| |\widehat{f}(y)| e^{|xy|} dx dy \leq \infty$

$$\int_{\mathbb{R}}\int_{\mathbb{R}}|f(x)||\widehat{f}(y)|e^{|xy|}\,\,dx\,\,dy<\infty$$

then f = 0 almost everywhere.

A higher dimensional version:

Theorem (Beurling's theorem on \mathbb{R}^n , Bagchi & Ray (1998)) Let $f \in L^1(\mathbb{R}^n)$. Suppose that

$$\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|f(x)||\widehat{f}(y)|e^{|x||y|}\,\,dx\,dy<\infty\,.$$

Then f = 0 almost everywhere.

Sharpest version: Bonami, Demange & Jaming (2003)

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

Beurling's theorem

Gelfand-Shilov type

Let $f \in L^2(\mathbb{R}^n)$ and $1 < p, q < \infty$ with 1/p + 1/q = 1. Suppose $\exists a > 0, b > 0$ so that $\int_{\mathbb{R}^n} |f(x)| e^{\frac{a^p}{p}|x|^p} dx < \infty \quad and \quad \int_{\mathbb{R}^n} |\widehat{f}(x)| e^{\frac{b^q}{q}|x|^q} dx < \infty$ If $ab \ge 1$, then f = 0 almost everywhere.

1

Cowling-Price type

Let
$$f \in L^2(\mathbb{R}^n)$$
 and let $1 \le p, q < \infty$. Suppose $\exists a > 0, b > 0$ so that

$$\int_{\mathbb{R}^n} (|f(x)|e^{a|x|^2})^p dx < \infty \quad and \quad \int_{\mathbb{R}^n} (|\widehat{f}(x)|e^{b|x|^2})^q dx < \infty$$
If $ab > 1/4$, then $f = 0$ almost even where

₩

Hardy type

Let f be measurable on
$$\mathbb{R}^n$$
. Suppose $\exists a > 0, b > 0$ so that $|f(x)| \le e^{-a|x|^2}$ and $|\widehat{f}(x)| \le e^{-b|x|^2}$

If ab > 1/4, then f = 0 almost everywhere.

The damped Schrödinger equation on \mathbb{R}^n

Initial value problem for the time-dependent damped Schrödinger equation on \mathbb{R}^n :

$$\begin{aligned} &i\partial_t u(t,x) + (\Delta-c)u(t,x) = 0 \\ &u(0,x) = f(x) \end{aligned}$$

where:

 Δ = Laplace operator on \mathbb{R}^n

 $\textbf{\textit{c}} \in \mathbb{R} = \text{the damping parameter}$

Suppose $f \in L^2(\mathbb{R}^n)$.

Take Fourier transform in the x-variable of both sides of the equations.

This gives rise to an ODE in the *t*-variable that can be solved directly.

→ If $f \in L^2(\mathbb{R}^n)$, then \exists unique $u \in C(\mathbb{R} : L^2(\mathbb{R}^n))$ satisfying (S_c) in the sense of distributions. The solution $u_t(x) = u(t, x)$ is characterized by the equation

$$\widehat{\mu}_t(\lambda) = e^{-i(|\lambda|^2 + c)t} \widehat{f}(\lambda).$$
 (*

More generally: (*) admits unique solution $u_t \in S'(\mathbb{R}^n)$ if $f \in S'(\mathbb{R}^n)$. Explicitly: for $t \neq 0$ and $f \in L^2(\mathbb{R}^n)$ (or $f \in L^1(\mathbb{R}^n) \subset S'(\mathbb{R}^n)$): $u(t, x) = (2\pi)^{n/2} (2|t|)^{-n/2} e^{-ict} e^{-\pi i (\operatorname{sign} t)n/4} e^{i\frac{|x|^2}{4t}} \widehat{h_t}(\frac{x}{2t})$

where

$$h_t(y) = e^{i\frac{|y|^2}{4t}} f(y).$$

Remark: If exists $t_0 > 0$ so that $h_{t_0} = 0$ (i.e. $u_{t_0} = 0$), then f = 0

Theorem (Cowling et al., P.-Sundari)

Let $u_t(x) = u(t, x)$ be the solution to the damped Schrödinger equation (S_c) with initial condition $f \in L^2(\mathbb{R}^n)$ or $f \in L^1(\mathbb{R}^n)$. If there is $t_0 > 0$ so that

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x)| |u(t_0, y)| e^{\frac{|x||y|}{2t_0}} dx dy < \infty$$
(BS)

• • • • • • • • • • • •

then f = 0. Hence $u(t, \cdot) = 0$ for all $t \in \mathbb{R}$.

Proof. Suppose first $f \in L^1(\mathbb{R}^n)$. Then:

H

$$\begin{split} +\infty &> \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x)| |u(t_0, y)| e^{\frac{|x||y|}{2t_0}} \, dx \, dy = \frac{1}{(2t_0)^{n/2}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |h_{t_0}(x) \widehat{h_{t_0}}(\frac{y}{2t_0})| e^{\frac{|x||y|}{2t_0}} \, dx \, dy \\ &= (2t_0)^{n/2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |h_{t_0}(x)| |\widehat{h_{t_0}}(y)| e^{|x||y|} \, dx \, dy \\ &\text{ence } f = e^{-i\frac{|\cdot|^2}{4t_0}} \, h_{t_0} = 0 \text{ by Beurling's theorem.} \\ f \in L^2(\mathbb{R}^n) \text{ satisfies (BS), then } f \in L^1(\mathbb{R}^n). \text{ Indeed:} \\ &\quad |u(t_0, y)| \int_{\mathbb{R}^n} |f(x)| e^{\frac{|x||y|}{2t_0}} \, dx < +\infty \quad \text{ for almost all } y \,. \end{split}$$

If $u(t_0, y) = 0$ a.e. y, then f = 0. If not, $\exists y_0$ such that $||f||_1 \leq \int_{\mathbb{R}^n} |f(x)| e^{\frac{|x||y_0|}{2t_0}} dx < +\infty$.

The Schrödinger equation on X = G/K

X = G/K Riemannian symmetric space of the noncompact type where G = noncompact connected semisimple Lie group with finite center

K = maximal compact subgroup of G

 $\Delta =$ Laplace-Beltrami operator on X

Initial value problem for the time-dependent Schrödinger equation on X with $f \in L^2(X)$:

$$i\partial_t u(t,x) + \Delta u(t,x) = 0$$

 $u(0,x) = f(x)$ (S)

o = eK the base point of X

 $\sigma(x) = d(x, o)$ = distance from $x \in X$ to o wrt the Riemannian metric d

 $\Xi(x)$ = the (elementary) spherical function of spectral parameter 0

Theorem

Let $u(t, x) \in C(\mathbb{R} : L^2(X))$ denote the solution of (S) with initial condition $f \in L^2(X)$. If there is a time $t_0 > 0$ so that

$$\int_X \int_X |f(x)| |u(t_0, y)| \Xi(x) \Xi(y) e^{\frac{\sigma(x)\sigma(y)}{2t_0}} dx dy < \infty,$$
(BS)

then $u(t, \cdot) = 0$ for all $t \in \mathbb{R}$.

Idea of proof: Helgason-Fourier transform + (careful) Euclidean reduction via Radon transform.

The Helgason-Fourier and the Radon transforms

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition of the Lie algebra \mathfrak{g} of G where $\mathfrak{k} = \text{Lie}$ algebra of K $\mathfrak{a} \subset \mathfrak{p}$ max abelian subspace (Cartan subspace) $A = \exp \mathfrak{a}$ abelian subgroup of G G = KAN Iwasawa decomposition H(g) = Iwasawa projection of $g \in G$ on a, i.e. $g = k(g) \exp H(g)n(g)$ M = centralizer of A in K, and B = K/M $A: X \times B \rightarrow \mathfrak{a}$ by $A(gK, kM) := -H(g^{-1}k)$ $\Sigma \subset \mathfrak{a}^*$ roots of $(\mathfrak{g}, \mathfrak{a})$ Σ^+ = choice of positive roots m_{α} = multiplicity of the root $\alpha \in \Sigma$ $\rho = 1/2 \sum_{\alpha \in \Sigma^+} m_\alpha \alpha$

For $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ and $b \in B$, define: $e_{\lambda,b}(x) = e^{(i\lambda+\rho)(A(x,b))}$, $x \in X$.

The *Helgason-Fourier transform* of a (sufficiently regular) function $f : X \to \mathbb{C}$ is the function $\mathcal{F}f : \mathfrak{a}^*_{\mathbb{C}} \times B \to \mathbb{C}$ defined by

$$\mathcal{F}f(\lambda,b) = \int_X f(x)e_{-\lambda,b}(x) \, dx = \int_{AN} f(kan \cdot o)e^{(-i\lambda+\rho)(\log a)} \, da \, dn$$

(b = kM; Haar measures *da* and *dn* suitably normalized)

Theorem (Helgason, 1965; Eguchi, 1980)

(Plancherel theorem) *F* extends to an isometry of L²(X) onto L²(a^{*}₊ × B, |c(λ)|⁻²dλ db). Here c is Harish-Chandra's c-function.
 (Inversion formula) If f ∈ L¹(X) and Ff ∈ L¹(a^{*}₊ × B, |c(λ)|⁻²dλ db), then f(x) = 1/|W| ∫_{a^{*}×B} Ff(λ, b)e_{λ,b}(x) dλ db/|c(λ)|² a.e. x ∈ X

The *(modified)* Radon transform of a (sufficiently regular) function $f : X \to \mathbb{C}$ is the function $Rf : B \times A \to \mathbb{C}$ defined by

$$Rf(b,a) = e^{
ho(\log a)} \int_N f(kan \cdot o) \ dn \,, \qquad b = kM \,.$$

The *Euclidean Fourier transform* of a (sufficiently regular) function $f : A \to \mathbb{C}$ is the function $\mathcal{F}_A f : \mathfrak{a}^* \to \mathbb{C}$ defined by

$$(\mathcal{F}_{\mathcal{A}}f)(\lambda) := \int_{\mathcal{A}} f(a) e^{-i\lambda(\log a)} \, da, \qquad \lambda \in \mathfrak{a}^* \, .$$

 \mathcal{F} and R (on suitable classes of functions on X) are linked by the Euclidean transform. For instance: if $f \in L^1(X)$, then $Rf \in L^1(B \times A)$ and

$$\mathcal{F}f(\lambda, b) = \mathcal{F}_{\mathcal{A}}(Rf(b, \cdot))(\lambda) = \int_{\mathcal{A}} Rf(b, a)e^{-i\lambda(\log a)} da.$$

for almost all $b \in B$ and all $\lambda \in \mathfrak{a}^*$.

Solution of the Schrodinger equation on X = G/K

$$i\partial_t u(t,x) + \Delta u(t,x) = 0$$

 $u(0,x) = f(x) \in L^2(X)$

The Fourier-transform method used on \mathbb{R}^n carries out to (S) when the Fourier transform is replaced by the Helgason-Fourier transform \mathcal{F} .

The functions $e_{\lambda,b}$ appearing in the definition of \mathcal{F} are eigenfunctions of Δ Plancherel: \mathcal{F} is a unitary equivalence between Δ on $L^2(G/K)$ and the multiplication operator M on $L^2(\mathfrak{a}^* \times B, \frac{d\lambda db}{|c(\lambda)|^2})$ defined by $(Mf)(\lambda, b) = -(|\lambda|^2 + |\rho|^2)f(\lambda, b)$.

Hence: there is a unique $u_t(x) = u(t, x) \in C(\mathbb{R} : L^2(X))$ satisfying (S) in the sense of distributions. It is characterized by the equation

$$(\mathcal{F}u_t)(\lambda, b) = e^{-i(|\lambda|^2 + |\rho|^2)t} \mathcal{F}f(\lambda, b).$$

i.e.

$$u_t = \mathcal{F}^{-1} \left(e^{-i(|\lambda|^2 + |\rho|^2)t} \mathcal{F} f \right).$$

Remark: If f = 0, then $u_t = 0$. Conversely, if $\exists t_0 \in \mathbb{R}$ so that $u_{t_0} = 0$, then $e^{-i(|\lambda|^2 + |\rho|^2)t_0} \mathcal{F}f(\lambda, b) = 0$ for all (λ, b) . Hence f = 0 as \mathcal{F} is injective on $L^2(X)$.

イロト 不得 トイヨト イヨト

(S)

Fourier analysis on B = K/M

 $\widehat{K}_{M} = (\text{equiv classes of}) \text{ irreducible unitary reps of } K \text{ with nonzero } M \text{-fixed vectors}$ $V_{\delta} = \text{space of } \delta \in \widehat{K}_{M}$ inner product $\langle \cdot, \cdot \rangle$ $d(\delta) = \dim V_{\delta}$ $\{v_{1}^{\delta}, \dots, v_{d(\delta)}^{\delta}\} = \text{ON basis of } V_{\delta}$ The Fourier coefficients of $F \in L^{1}(B)$ are

 $F_{i,j}^{\delta} = \int_{V} \langle \delta(k^{-1}) v_i^{\delta}, v_j^{\delta}
angle F(kM) \, dk$.

Then:

$$F = 0$$
 if and only if $F_{i,j}^{\delta} = 0$ for all $\delta \in \widehat{K}_M$ and all $i, j = 1, \dots, d(\delta)$.

A (1) > A (2) > A (2) > A

The space $L^1(X)_C$ (with $C \ge 0$)

For measurable $h: X \to \mathbb{C}$ set: $\|h\|_{1,C} := \int_X |h(x)| \equiv (x) e^{C\sigma(x)} dx$ $L^1(X)_C =$ (equiv classes of a.e. equal) functions $h: X \to \mathbb{C}$ with $\|h\|_{1,C} < \infty$.

Motivation: If f, u_{t_0} satisfy $\int_X \int_X |f(x)| |u(t_0, y)| \Xi(x) \Xi(y) e^{\sigma(x)\sigma(y)/(2t_0)} dx dy < \infty$, then $\exists C > 0$ so that $f \in L^1(X)_C$. Likewise for u_{t_0} .

Remark: $L^1(X)_C \subset L^1(X)$ if C >> 0 (e.g. $C \ge |\rho|$).

Lemma

Let h ∈ L¹(X)_C. Then:
The Radon transform Rh is a.e. defined and in L¹(B × A, db da)
For all λ ∈ α*, the Helgason-Fourier transform Fh(λ, ·) is a.e. defined and in L¹(B)

Proof for
$$C = 0$$
.

$$\infty > ||h||_{1,C=0} = \int_{G} |h(g \cdot o)|e^{-\rho(H(g))} dg \quad (by \equiv (g) = \int_{K} e^{-\rho(H(gk))} dk \& K \text{-inv of } \sigma \text{ and } h)$$

$$\geq \int_{K} \int_{A} \left(e^{\rho(\log a)} \int_{N} |h(kan \cdot o)| dn \right) da dk \quad (by \text{ lwasawa decomp } \& \sigma(an) \ge \sigma(a))$$

$$\geq \int_{B} \int_{A} |(Rh)(b,a)| da db$$
Moreover: $|\mathcal{F}h(\lambda,b)| \le \int_{A} \int_{N} |h(kan \cdot o)|e^{\rho(\log a)} da dn \le \int_{A} |(Rh)(b,a)| da \quad (b = kM)$

Consequence: If $h \in L^1(X)_C$ then $Rh(b, \cdot) \in L^1(A)$ for almost all $b \in B$ \Rightarrow we can consider $\mathcal{F}_A(Rh(b, \cdot))$

Lemma

 $\mathcal{F} = \mathcal{F}_A \circ R$ on $L^1(X)_C$.

Proof (Sketch). For $\delta \in \widehat{K}_{M}$ and $i, j = 1, ..., d(\delta)$ define: $(Rh)_{i,j}^{\delta}(a) := (Rh(\cdot, a))_{i,j}^{\delta} \quad \text{for almost all } a \in A$ $(\mathcal{F}h)_{i,j}^{\delta}(\lambda) := (\mathcal{F}h(\lambda, \cdot))_{i,j}^{\delta} \quad \text{for all } \lambda \in \mathfrak{a}^{*}$ Get: $\mathcal{F}_{A}((Rh)_{i,j}^{\delta}(a)) : \mathfrak{a}^{*} \to \mathbb{C} \quad \text{and} \quad (\mathcal{F}h)_{i,j}^{\delta} : \mathfrak{a}^{*} \to \mathbb{C}.$ The functions $L^{1}(X)_{C} \to L^{\infty}(\mathfrak{a}^{*})$ defined by $\begin{cases} h \mapsto \mathcal{F}_{A}((Rh)_{i,j}^{\delta}(a)) \\ h \mapsto (\mathcal{F}h)_{i,j}^{\delta}(a) \end{cases}$

are continuous and equal on $C_c^{\infty}(X)$. For all $\lambda \in \mathfrak{a}^*$:

$$\mathcal{F}h(\lambda,\cdot)_{i,j}^{\delta} = (\mathcal{F}h)_{i,j}^{\delta}(\lambda) = \mathcal{F}_{\mathcal{A}}((\mathcal{R}h)_{i,j}^{\delta}(\boldsymbol{a}))(\lambda) = \left(\mathcal{F}_{\mathcal{A}}(\mathcal{R}h)(\lambda,\cdot)\right)_{i,j}^{\delta}$$

 $\Rightarrow \quad \mathcal{F}h(\lambda,\cdot) = \mathcal{F}_{\mathcal{A}}(\mathcal{R}h)(\lambda,\cdot)$

くぼう くほう くほう

Proof of the main theorem:

Theorem

Let $u(t, x) \in C(\mathbb{R} : L^2(X))$ denote the solution of (S) with initial condition $f \in L^2(X)$. If there is a time $t_0 > 0$ so that $\int_X \int_X |f(x)| |u(t_0, y)| \Xi(x) \Xi(y) e^{\frac{\sigma(X)\sigma(y)}{2t_0}} dx dy < \infty, \quad (BS)$ then $u(t, \cdot) = 0$ for all $t \in \mathbb{R}$.

If (BS) holds, then $f \in L^1(X)_C$ for some C > 0. For $\delta \in \widehat{K}_M$ and $i, j = 1, \dots, d(\delta)$, condition (BS) yields $\int_A \int_A |(Rf)_{i,j}^{\delta}(a_1)||(Ru_{t_0})_{i,j}^{\delta}(a_2)| e^{\frac{|\log a_1| |\log a_2|}{2t_0}} da_1 da_2 < \infty$

Using $\mathcal{F} = \mathcal{F}_A \circ R$, we obtain from $(\mathcal{F}u_t)(\lambda, b) = e^{-i(|\lambda|^2 + |\rho|^2)t} \mathcal{F}f(\lambda, b)$:

$$\mathcal{F}_{\mathcal{A}}((\mathcal{R}u_{t})_{i,j}^{\delta})(\lambda) = e^{-i(|\lambda|^{2}+|\rho|^{2})t} \mathcal{F}_{\mathcal{A}}((\mathcal{R}f)_{i,j}^{\delta})(\lambda).$$

Euclidean case: $(Rf)_{i,j}^{\delta} = 0$ a.e. on *A*. Conclusion: Rf = 0. Hence $\mathcal{F}f = \mathcal{F}_A(Rf) = 0$. Thus f = 0 as \mathcal{F} injective on $L^2(X)$.

Corollary

Let $u(t, x) \in C(\mathbb{R} : L^2(X))$ be the solution of (S) with initial condition $f \in L^2(X)$. Suppose that f has compact support. If $\exists t_0 > 0$ so that $u(t_0, \cdot)$ has compact support, then $u(t, \cdot) = 0$ for all $t \in \mathbb{R}$.

Applications: other uncertaninty principles

Let $u(t,x) \in C(\mathbb{R} : L^2(X))$ be the solution of (S) with initial condition $f \in L^2(X)$.

Corollary (Gelfand-Shilov type)

Let 1 and <math>1/p + 1/q = 1. Suppose $\exists \alpha > 0, \beta > 0$ and a time $t_0 > 0$ so that $\int_X |f(x)| \equiv (x) e^{\frac{\alpha^p}{p} \sigma^p(x)} dx < \infty \quad and \quad \int_X |u(t_0, x)| \equiv (x) e^{\frac{\beta^q}{q} \sigma^q(x)} dx < \infty.$ If $2t_0 \alpha \beta \ge 1$, then f = 0 and hence $u(t, \cdot) = 0$ for all $t \in \mathbb{R}$.

Corollary (Cowling-Price type)

Let
$$1 \leq p, q < \infty$$
. Suppose $\exists \alpha > 0, \beta > 0$ and a time $t_0 > 0$ so that

$$\int_X \left(|f(x)|e^{a\sigma^2(x)} \right)^p dx < \infty \quad \text{and} \quad \int_X \left(|u(t_0, x)|e^{b\sigma^2(x)} \right)^q dx < \infty.$$
If $16t_0^2 ab > 1$, then $f = 0$ and hence $u(t, \cdot) = 0$ for all $t \in \mathbb{R}$.

Corollary (Hardy type; S.Chanillo, 2007, for G complex & f K-inv)

Suppose $\exists A > 0, \alpha > 0$ so that $|f(x)| \le A e^{-\alpha \sigma^2(x)}$ for all $x \in X$. Suppose $\exists t_0 > 0$ and $B > 0, \beta > 0$ so that $|u(t_0, x)| \le B e^{-\beta \sigma^2(x)}$ for all $x \in X$. If $16\alpha\beta t_0^2 > 1$, then $u(t, \cdot) = 0$ for all $t \in \mathbb{R}$.