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Notation:

x = (x1, x2) ∈ R2, also use y , ξ etc.

Scalar (inner, dot) product: 〈x , y〉 = x1y1 + x2y2.

u = u(θ) = (cos θ, sin θ),

v = u⊥ = u(θ + π/2).



Radon transform:

Rf (u, t) =

∫ ∞

−∞
f (tu + sv)ds = fu(t).

Applications are well known.



Circular mean transform:

Mf (ξ, r) =

∫ 2π

0
f (ξ + ru(φ))dφ

Models the data acquisition scheme in photoacoustic, also known
as thermoacoustic, tomography that is currently being tested for
possible clinical applications.



Typical assumptions are that f has support in the unit disk and
ξ = u(θ), 0 ≤ θ < 2π.

We are interested in reconstruction of f in terms of the data
Mf (ξ, r), ξ ∈ Ξ, where Ξ is some appropriate collection of
detectors exterior to the unit disk. An important special case is
Ξ = S1 the unit circle, the boundary of the unit disk with data
Mf (u(θ), r), 0 ≤ θ < 2π.

In the case Ξ = S1 exact inversion formulas are known but, as in
the case of the classical Radon transform, need to be regularized
for numerical work.



Inversion formulas for f in terms of the data Mf (u(θ), r),
0 ≤ θ < 2π, were first published in
FHR = D. Finch, M. Haltmeier, and Rakesh, Inversion of spherical
means and the wave equation in even dimensions, SIAM J. Appl.
Math. 68, no. 2, (2007), 392-412.

An alternate derivation and further generalizations can be found in
Y. A. Antipov, R, Estrada, and B. Rubin, Inversion formulas for
spherical means in constant curvature spaces, (2011) preprint.

A different inversion formula can be found in
L. A. Kunyansky, Explicit inversion formulae for the spherical mean
Radon transform, Inv. Prob. 23, (2007), 373-383.



Our method is a adaptation of a variant of a classical summability
procedure used for Radon transform data outlined in
W. R. Madych, Summability and approximate reconstruction from
Radon Transform data, Contemporary Mathematics, Vol 113
(1990), 189-219.

Recall the notion of a ridge function:

H(x) = h(〈x , u〉)

If f (x) has compact support

H ∗ f (x) =

∫
R2

h(y)f (x − y)dy

=

∫ ∞

−∞
h(t)Rf (u, 〈x , u〉 − t)dt

= h ∗ fu(〈x , u〉).



If K (x) is a sum of ridge functions, i. e.

K (x) =

∫ 2π

0
h(〈x , u(θ)〉)dθ

2π

then

K ∗ f (x) =

∫ 2π

0

{ ∫ ∞

−∞
h(t)Rf (u(θ), 〈x , u(θ)〉 − t)dt

}
dθ

2π

=

∫ 2π

0
h ∗ fu(θ)

(
〈x , u(θ)〉

)dθ

2π
.

(1)

If K is a an approximation of the identity then (1) gives rise to a
reconstruction algorithm for f in terms of its Radon transform
data.

Remark: There is a formula for h in terms of K that can be
explicitly evaluated in certain cases.



Typical examples:

(2) K (x) =
1

π

{
1 if |x | ≤ 1

0 otherwise

h(t) =
1

π

{
1 if |t| ≤ 1

1− |t|/(t2 − 1)1/2 otherwise,

(3) K (x) =
3

π

{
1− |x | if |x | ≤ 1

0 otherwise

h(t) =
3

π

{
1− π

2 |t| if |t| ≤ 1

1− t arcsin(1/t) otherwise.



(4) K (x) =
1

2π

1

(1 + |x |2)3/2
h(t) =

1

2π

1− t2

(1 + t2)2
,

Note that in all the above cases the family of functions
parametrized by ε

Kε(x) =
1

ε2
K

(x

ε

)
are well known approximations of the identity as ε → 0. The
corresponding functions hε(t) of course, are given by

hε(t) =
1

ε2
h
( t

ε

)



We use the same philosophy to reconstruct f from its circular
mean transform data.

G is radial with center ξ:

G (x) = g(|x − ξ|)

If f has compact support∫
Rn

G (x)f (x)dx =

∫ ∞

0

∫ 2π

0
g(r)f (ξ + ru(θ))rdθ dr

=

∫ ∞

0
g(r)Mf (ξ, r)rdr .



If K (x , y) is a sum of radial functions in the variable y , i. e.

K (x , y) =

∫
Ξ

k(x , ξ, |y − ξ|)dµ(ξ)

then

(5)

∫
R2

K (x , y)f (y)dy =

∫
Ξ

{∫ ∞

0
k(x , ξ, r)Mf (ξ, r)rdr

}
dµ(ξ).

If f is sufficiently regular and has support in a region Ω and
K (x , y) is a good approximation of the identity in y at each x ∈ Ω
then then identity (5) represents an approximate reconstruction of
f in terms of the data Mf (ξ, r), ξ ∈ Ξ and r > 0.



Such a kernel K (x , y) can be conveniently viewed as a family of
functions in the y variable parameterized by x , each member of
which is a sum of radial functions with centers in Ξ.

As alluded to earlier, we will study the case
Ξ = S1 = {ξ = u(θ) : 0 ≤ θ < 2π} with dµ(ξ) = dθ

2π and f
supported in B = {x : |x | < 1}.

Remark: I don’t know how to solve

G (y) =

∫
S1

g(|y − u|)dµ(u)

for g and µ in terms of G .

This leaves us with the problem of how to construct such K (x , y)
and k(x , ξ, |y − ξ|) pairs?



Note that

lim
r→∞

{
|x − ru| − |y − ru|

}
= 〈y − x , u〉.

This suggests that, roughly speaking, if the detector ξ = ru is
relatively far from x and y then |x − ξ| − |y − ξ| looks like
〈y − x , u〉.

We know that

ε−2K ((y − x)/ε) =

∫ 2π

0

1

ε2
h
(〈y − x , u(θ)〉

ε

)dθ

2π

is a good approximation of the identity at x with an appropriate
choice of h. i. e. one of the examples of K , h pairs.

Hence, it is not unreasonable to expect that

K1(x , y ; ε) =

∫ 2π

0

1

ε2
h
( |x − u(θ)| − |y − u(θ)|

ε

)dθ

2π

where h comes from the ridge function representation of a kernel
K , i. e. one of the examples (3) or (4), looks like a summability
kernel or approximate identity at x . At least for x and y close to
the origin.



Plots of K1(x , y ; ε) for fixed x and ε as a function of y . Here

h(t) = 1
2π

1−t2

(1+t2)2
as in example (4).

x = (0, 0), ε = 0.5. x = (0, 0), ε = 0.25.

x = (0, 0), ε = 0.125. x = (0, 0), ε = 0.0625.



More plots of K1(x , y ; ε) for fixed x and ε as a function of y with
the same h(t).

x = (0, 0), ε = 0.0625. x = − 1
2
√

2
(1, 1), ε = 0.0625.

x = − 3
4
√

2
(1, 1), ε = 0.0625. x = − 7

8
√

2
(1, 1), ε = 0.0625.
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Phantom and detectors.

We use a discretization of∫
|y |<1

K1(x , y ; ε)f (y)dy

=

∫ 2π

0

{∫ 2

0
hε(|x − u(θ)| − r)Mf (u(θ), r)rdr

}
dθ

2π
.



Reconstruction

f̃ (x) =
C

MN

N∑
j=1

{ M∑
i=1

hε(|x − uθj
| − ri )Mf (uθj

, ri )ri

}

hε(t) =
ε2 − t2

(ε2 + t2)2
, ε = 0.01, M = 299, N = 300.
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Data and reconstruction.



These and similar numerical experiments suggest that K1(x , y ; ε) is
a summability kernel and a good approximation of the identity at x
for |x | < 1 as a function of y , |y | < 1, for sufficiently small ε.

Further numerical experiments suggest that the set of detectors Ξ
need not be restricted to circles. For example

K (x , y ; ε) = C
∑
ξi∈Ξ

hε(|x − ξi | − |y + ξi |)

will still be a good approximation of the identity at x for |x | < 1 as
a function of y , |y | < 1, for appropriate ε as long as, roughly
speaking, the set of detectors Ξ is a sufficiently dense set
surrounding the unit disk. F. Filbir, R. Hielscher, and W.R.
Madych, Reconstruction from circular and spherical mean data,
Applied and Computational Harmonic Analysis 29, (2010),
111-120.



Is it true that

lim
ε→0

∫
|y |<1

K1(x , y ; ε)f (y)dy = f (x)

whenever f is bounded, vanishes outside the unit disk, and is
continuous at x?

To hopefully simplify the matter try working with

K2(x , y ; ε) =

∫ 2π

0

1

ε2
h
( |x − u(θ)|2 − |y − u(θ)|2

2ε

)dθ

2π

which is also a sum of radial functions in the variable y , seems
pretty much like K1(x , y ; ε), but the argument
|x − u(θ)|2 − |y − u(θ)|2 is algebraically easier to work with.



Note that K2(x , y ; ε) can be re-expressed as

K2(x , y ; ε) =

∫ 2π

0

1

ε2
h
(〈x − y

ε
, u(θ)− x + y

2

〉)dθ

2π

or

K2(x , y ; ε) =

∫ 2π

0

1

ε2
h
(〈x − y

ε
, u(θ)

〉
+
|y |2 − |x |2

2

)dθ

2π
.



Plots of K2(x , y ; ε) for fixed x and ε as a function of y with h(t) as
in (4).

x = (0, 0), ε = 0.0625. x = − 1
2
√

2
(1, 1), ε = 0.0625.

x = − 3
4
√

2
(1, 1), ε = 0.0625. x = − 7

8
√

2
(1, 1), ε = 0.0625.



Comparison of the plots of K1(x , y ; ε) and K2(x , y ; ε) for fixed x
and ε as a functions of y .

K1 at x = − 7
8
√

2
(1, 1),

ε = 0.0625.
K2 at x = − 7

8
√

2
(1, 1),

ε = 0.0625.



Theorem: If h is the function in example (4), that is

h(t) =
1

2π

1− t2

(1 + t2)2
,

then

lim
ε→0

∫
|y |<1

K2(x , y ; ε)f (y)dy = c(x) f (x)

where
c(x) =

π

1− |x |2

whenever f is bounded, vanishes outside the unit disk, and is
continuous at x .

This is a corollary of the following:

Lemma: If h is the function in example (4) then∣∣∣ 1

2π

∫ 2π

0
h(〈z , u(θ)− x〉)dθ

∣∣∣ ≤ C

1 + |z |3

for all z ∈ R2 where C is a constant that depends only on x when
|x | < 1.



Proof of Lemma:
Use residues to to evaluate the integral and get∫ 2π

0
h(〈z , u(θ)− x〉)dθ = c Re

〈z , x〉+ i(
(〈z , x〉+ i)2 − |z |2

)3/2
.

Follow this by several pages of algebraic manipulations together
with applications of appropriate inequalities to get the desired
result.

Note 1: The analytic nature of h(t) and the change to
|x − ξ|2 − |y − ξ|2 allowed us to do this.

Note 2: Want argument which depends only on the integrability of

K (x) =

∫ 2π

0
h(〈x , u(θ)〉)dθ

over R2.



Corollary 1 of Theorem: If x is in the unit disk B, and f is in
C 2(B) then

(6)
f (x)

(1− |x |2)

=
−1

π2

∫ 2π

0

{
1

2

∫ √
2a

0

{
M(r)+M

(√
2a2 − r2

)
−2M(a)

} r(
r2 − a2

)2
dr

+

∫ ∞

√
2a

M(r)
r(

r2 − a2
)2

dr − M(a)

a2

}
dθ

where M(r) = Mf (ξ, r) and a = |x − u(θ)|.

Remark: f in C 2(B) is overkill. I suspect that f in Lp(B) for
p ≥ p0 is sufficient.



Corollary 2 of Theorem: If Ω is the unit disk, x is in Ω, and f is in
C 2(Ω) then f (x) =

1− |x |2

2π

∫ 2π

0

{∫ 2

0
log

(∣∣r2 − |x − u(θ)|2
∣∣) d

dr

(
1

2r

dMf (u(θ), r)

dr

)
dr

}
dθ.

Remark 1: Analogues of the Theorem and Corollaries are valid
when the unit disk is replaced by a more general elliptical region
and the set of detectors Ξ, currently a circle, is replaced by a more
general ellipse. In this case dµ(ξ) is not the usual arclength.

Remark 2: The inversion formula of the Corollary should be
compared with the inversion formula in FHR.

f (x) =
1

2π

∫ 2π

0

∫ 2

0
log

(∣∣r2−|x−u(θ)|2
∣∣) d

dr

(
r

dMf (u(θ), r)

dr

)
dr dθ.



Analogous results are valid for spherical mean transforms in higher
dimensions n.

In fact, in the case n = 3 a stronger version of the Theorem is
valid. The function h need not be analytic. It suffices that

K (x) =
1

4π

∫
S2

h(〈x , u〉)dσ(u)

be integrable over R3.


