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What is SAR imaging?

Region of interest illuminated by
electromagnetic (EM) waves from a moving
airborne platform.

For each fixed antenna position, EM waves are
sent for a time interval and the scattered
waves measured.

Region imaged based on the measurement of
scattered waves.

In monostatic SAR, one airborne platform has
the transmitter and receiver.

In bistatic SAR, the transmitter and receiver
are on independently moving airborne
platforms.
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Common midpoint acquisition geometry

Focus of this talk: Common midpoint acquisition geometry – transmitter
and receiver used in imaging move at equal speeds away from a common
midpoint along a straight line.

Geometry arises in bistatic imaging.

Geometry also arises in certain multiple scattering scenarios.
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Some earlier work on microlocal analysis of bistatic imaging

Quinto and I in an earlier work considered a common offset acquisition
geometry in the context of SAR:

The adjoint operator F ∗ introduces artifacts.

We analyzed the normal operator F ∗F . We showed that F ∗F belongs to
the class of cleanly intersecting Lagrangians introduced by
Melrose-Uhlmann and Guillemin-Uhlmann.

An important consequence: The strength of the artifacts is the same as
that of the true singularities.

Ambartsoumian, Quinto and I considered 2-dimensional bistatic imaging
problem in ultrasound imaging, where the emitter and receiver move in a
circular trajectory at a constant distance apart.

Here again, the adjoint operator introduces artifacts.

The analysis of F ∗F in general is a difficult problem. However, we showed
that F ∗F restricted to support inside the circular trajectory is an elliptic
pseudodifferential operator.

Quinto will talk about this as well show image reconstructions.
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Goal of the talk

First analyze the linearized forward scattering operator F . This a Fourier
integral operator.

Next analyze the composition of F with its L2 adjoint F ∗.

One of the main goals: Understand the distribution class of F ∗F .
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Composition of two FIOs

Well known that composition of two FIOs is not an FIO.

Two geometric conditions where the composition is an FIO: Transverse
intersection of Hörmander and clean intersection of Duistermaat -
Guillemin, and Weinstein.

In general, when these geometric conditions do not hold, we analyze the
mapping properties of the canonical relation of F . Let F : E ′(X)→ D′(Y )
be an FIO and let C ⊂ (T ∗Y × T ∗X) \ {0} be the canonical relation
associated to F . Analyze the mapping properties of the projection maps:

C

T ∗Y
�

πL

T ∗X

π
R

-
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Linearized scattering operator

Assume the transmitter (T) and receiver (R) are at the same height h
above the ground and move in opposite directions at equal speeds. Let
γT (s) = (s, 0, h) and γR(s) = (−s, 0, h) for s ∈ (0,∞).

The linearized scattering operator we use in this talk is

FV (s, t) =

∫
e
−iω(t− 1

c0
R(s,x))

a(s, x, ω)V (x)dxdω for (s, t) ∈ (0,∞)×(0,∞).

Here
R(s, x) = |x− γT (s)|+ |x− γR(s)|

is the bistatic distance. We assume a satisfies an amplitude estimate.
That is a ∈ Sm+(1/2)) with ω as the frequency variable.

Denote the {(s, t)} space as Y and the plane {(x1, x2)} as X from now
on.
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Preliminary modifications

For the composition of F with its adjoint to be well-defined, we multiply a
by a smooth cut-off function identically 1 and supported in a compact
subset of Y .

Our imaging method cannot image a neighborhood of the common
midpoint (that is the origin). Modify a further by multiplying by a smooth
cut-off function such that it is 0 in a neighborhood of
(s, t) : |t− 2

√
s2 + h2| < ε.

We have

FV (s, t) =

∫
e−iω(t−

√
(x1−s)2+x22+h2−

√
(x1+s)2+x22+h2)a(s, t, x, ω)V (x)dxdω.
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Main Results

Theorem

F is an FIO of order m
The canonical relation C associated to F is given by

C =

{(
s, t,−ω

( x1 − s√
(x1 − s)2 + x2

2 + h2
−

x1 + s√
(x1 + s)2 + x2

2 + h2

)
,−ω;

x1, x2,−ω
( x1 − s√

(x1 − s)2 + x2
2 + h2

+
x1 + s√

(x1 + s)2 + x2
2 + h2

)
,

− ω
( x2√

(x1 − s)2 + x2
2 + h2

+
x2√

(x1 + s)2 + x2
2 + h2

))
where

s > 0, t =
√

(x1 − s)2 + x2
2 + h2 +

√
(x1 + s)2 + x2

2 + h2, x 6= 0, and ω 6= 0

}
,

and C has global parameterization
(0,∞)×

(
R2 \ 0

)
× (R \ 0) 3 (s, x1, x2, ω)→ C.

Let πL : C → T ∗Y and πR : C → T ∗X be the left and right projections
respectively. Then πL and πR drop rank simply by one on a set
Σ = Σ1 ∪ Σ2 where in the coordinates (s, x, ω),
Σ1 = {(s, x1, 0, ω)|s > 0, |x1| > ε′, ω 6= 0} and
Σ2 = {(s, 0, x2, ω)|s > 0, |x2| > ε′, ω 6= 0} for 0 < ε′ small enough.

πL (πR) has a fold (blowdown) singularity along Σ.
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Main results

We consider the normal operator F ∗F and show that it can be decomposed as
of sum of distributions each belonging to an Ip,l class associated to two cleanly
intersecting Lagrangians.

Theorem

Then F ∗F can be decomposed into a sum belonging to
I2m,0(∆, C1) + I2m,0(∆, C2) + I2m,0(C1, C3) + I2m,0(C2, C3).

The Lagrangians ∆ and Ci for i = 1, 2 and 3 will be defined later.
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Sketch of proof of the first theorem

We have

det((πL)∗) =
4x1x2sω

A2B2
(1 +

(x2
1 − s2 + x2

2 + h2

AB
),

where A =
√

(x1 − s)2 + x2
2 + h2 and B =

√
(x1 + s)2 + x2

2 + h2. The
projection drops ranks along Σ1 = {(s, x1, 0, ω), x1 6= 0} and
Σ2 = {(s, 0, x2, ω), x2 6= 0} and that the determinant vanishes exactly to
first order.

Easy to show that the left projection πL is a fold along the union of the
axes and that the right projection is a blowdown along the union of the
axes.

Locally πL is of the form πL(z1, z2, z3, z4) = (z1, z2, z3, z
2
4/2), and locally

πR is of the form, πR(z1, z2, z3, z4) = (z1, z2, z3z4, z4).

Note that C is even with respect to both x1 and x2. In other words C is a
4-1 relation. This suggests that πL (respectively πR) has two fold
(respectively blowdown) sets.
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Sketch of proof of the second theorem

We have

F ∗FV (x) =

∫
eiω(t−(|x−γT (s)|+|x−γR(s)|))−ω̃(t−(|y−γT (s)|+|y−γR(s)|))

× a(s, t, x, ω)a(s, t, y, ω̃)V (y)dsdtdωdω̃dy.

After applications of stationary phase method, the Schwartz kernel of this
operator is

K(x, y) =

∫
eiΦ(x,y,s,ω)ã(x, y, s, ω)dsdω,

where

Φ = ω (|y − γT (s)|+ |y − γR(s)| − (|x− γT (s)|+ |x− γR(s)|)) .
Using Hörmander-Sato Lemma, we have

WF (K)′ ⊂ ∆ ∪ C1 ∪ C2 ∪ C3,

where ∆ is the diagonal in T ∗X × T ∗X and the Lagrangians Ci for
i = 1, 2, 3 are the graphs of the following functions χi for i = 1, 2, 3 on
T ∗X:

χ1(x, ξ) = (x1,−x2, ξ1,−ξ2), χ2(x, ξ) = (−x1, x2,−ξ1, ξ2) and χ3 = χ1◦χ2.

Also it is easy to see that
∆ and C1, ∆ and C2, C1 and C3, C2 and C3 intersect cleanly in
codimension 2, ∆ ∩ C3 = C1 ∩ C2 = ∅
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Proof sketch

Since the projection maps drop rank along Σ1 ∪Σ2, we decompose F such
that the canonical relation of F is supported either near these sets or away
from it.

ǫ

2ǫ

ǫ

2ǫ

x1

x2

ψ1 = 1

supp(ψ1)

ψ2 = 1

supp(ψ2)

Figure: Support of the cutoff functions ψ1 and ψ2.
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Proof sketch

Then we write F = F0 + F1 + F2 + F3 where Fi are given in terms of
their kernels

KF0 =

∫
e−iϕaψ1ψ2dω, KF1 =

∫
e−iϕaψ1(1− ψ2)dω,

KF2 =

∫
e−iϕa(1− ψ1)ψ2dω, KF3 =

∫
e−iϕa(1− ψ1)(1− ψ2)dω,

where ϕ is the phase function of F :

ϕ = ω(t−
√

(x1 − s)2 + x2
2 + h2 −

√
(x1 + s)2 + x2

2 + h2).

Using the decomposition of F , F ∗F can be written as

F ∗F = F ∗0 F+(F1+F2)∗F0+F ∗1 F1+F ∗2 F2+F ∗1 F2+F ∗2 F1+F ∗1 F3+F ∗2 F3+F ∗3 F

We analyze each of these terms.
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Proof sketch

F0, F
∗
1 F2 and F ∗2 F1 are smoothing.

F ∗1 F3, F ∗2 F3 and F ∗3 F can be decomposed as a sum of operators
belonging to the space
I2m(∆) + I2m(C1 \∆) + I2m(C2 \∆) + I2m(C3 \ (C1 ∪ C2)). This is
because each of these compositions is covered by the transverse
intersection calculus

Now we are left with the terms F ∗1 F1 and F ∗2 F2.
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Proof sketch

Theorem

1 F ∗1 F1 ∈ I2m,0(∆, C1) + I2m,0(C2, C3).

2 F ∗2 F2 ∈ I2m,0(∆, C2) + I2m,0(C1, C3).

Decompose F1 as
F1 = F+

1 + F−1 ,

Now

F ∗1 F1 = (F+
1 )∗F+

1 + (F−1 )∗F+
1 + (F+

1 )∗F−1 + (F−1 )∗F−1 .

We now use the iterated regularity theorem of Greenleaf-Uhlmann: If
u ∈ D′(X × Y ) then u ∈ Ip,l(Λ0,Λ1) if there is an s0 ∈ R such that for
all first order pseudodifferential operators Pi with principal symbols
vanishing on Λ0 ∪ Λ1, we have P1P2 . . . Pru ∈ Hs0

loc.
Using this result we can show that,

(F+
1 )∗F+

1 , F
−
1 )∗F−1 ∈ I

2m,0(∆, C1).

and
(F−1 )∗F+

1 , (F
+
1 )∗F−1 ∈ I

2m,0(C2, C3).
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Final remarks

Using the properties of the Ip,l classes, F ∗F ∈ I2m,0(∆, C1) implies that
F ∗F ∈ I2m(∆ \ C1) and F ∗F ∈ I2m(C1 \∆). This means that F ∗F has
the same order on both ∆ and C1 which implies that the artifact C1 has
the same strength as the initial singularities given by ∆. Similarly for C2

and C3.

Note that C1 gives an artifact that is a reflection in the x1 axis, C2 gives
an artifact that is a reflection in the x2 axis, and C3 gives an artifact that
is a reflection in the origin.

To deal with distributions associated to more than two cleanly intersecting
Lagrangians, perhaps we require an extension of Ip,l classes to, say,
Ip,l,m,n classes. Once these classes are well defined and the properties
established, the distribution encountered in this SAR problem could fit
into that framework.
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