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I am going to talk about our joint work (put in arXiv

recently)

Conic singularities, generalized scattering matrix, and

inverse scattering on asymptotically hyperbolic surfaces,

H. Isozaki, Y. Kurylev and M. Lassas.

First let us recall the following theorem, which,

although not used directly, will help understanding the

basic idea.
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.

Theorem (S. Helgason)

.

.

.

. ..

.

.

Any solution of the Helmholtz equation −∆gu = λu

on the Poincaré disc is written by the Poisson integral

u =
1

2π

∫ 2π

0

(
1 − |z|2

|e
√

−1θ − z|

)s

f(θ)dθ,

where f(θ) is Sato’s hyperfunction on the boundary.

This theorem is extended by

Kashiwara, Kowata, Minemura, Okamoto,

Oshima and Tanaka,

Ann. of Math. 107 (1978), 1-39

to the general symmetric space.
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§1 Scattering theory on the hyperbolic
spaces

We recall basic facts from scattring theory and 2-dim.

hyperbolic manifolds.
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Euclidean case

The soultion of the Schrödinger equation on Rn

Hu = (−∆ + V (x))u = λu, λ > 0

in a suitable class can be written as follows

u = F0(λ)
∗ϕ−R(λ+ i0)V F0(λ)

∗ϕ,

ϕ ∈ L2(Sn−1),

F0(λ)
∗ϕ = (2π)−n/2

∫
Sn−1

ei
√

λω·xϕ(ω)dω.

This is called the Herglotz or Poisson integral. Here

R(λ± i0) = lim
ϵ→0

(H − λ∓ iϵ)−1
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and this limit is known to exist between suitable

Banach spaces (rigged Hilbert space)

R(λ± i0) : B → B∗,

B ⊂ L2(Rn) ⊂ B∗.

What we learn from this formula?

There is a space at infinity, i.e. Sn−1.

There is an integral formula at infinity by which all

solutions of the Schrödinger equation in a suitable

class can be represented.

What is S-matrix?
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By applying the stationary phase method on the

sphere, one can see that

∀ϕin ∈ L2(Sn−1), ∃1u, ∃1ϕout ∈ L2(Sn−1), s.t.

(−∆ + V − λ)u = 0,

u ≃ C−(λ)
e−i

√
λr

r(n−1)/2
ϕin(ω) + C+(λ)

ei
√

λr

r(n−1)/2
ϕout(ω)

as r = |x| → ∞.

The mapping

S(λ) : L2(Sn−1) ∋ ϕin → ϕout ∈ L2(Sn−1)

is unitary, and is called the (geometric) S-matrix.

General belief
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In a suitable setting,

S-matrix determines the original physical

system.

This will be true not only for potentials but also

perturbations by metrics.

Besov type spaces

There is a long history for the rigged Hilbert space, but

the following Besov type space introduced by

Agmon-Hörmander (1976) is now regarded as the most

appropriate one

B ⊂ L2(Rn) ⊂ B∗,
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u ∈ B∗ ⇐⇒ sup
R>1

1

R

∫
|x|<R

|u(x)|2dx < ∞.

Note that
e±i

√
λr

r(n−1)/2
∈ B∗.

Hyperbolic space case

The action of γ =

(
a b

c d

)
∈ SL(2,R) on C+ :

SL(2,R) × C+ ∋ (γ, z) → γ · z =
az + b

cz + d
∈ C+.

For a discrete subgroup (Fuchsian group)

Γ ⊂ SL(2,R), consider the fundamental domain

MΓ = Γ\H2
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Example Γ corresponds to the horizontal translation

z → γ · z = z + 1.

The resulting space is the cylinder

MΓ =
(
−

1

2
,
1

2

]
× (0,∞).

It has two infinities :

Around y = 0, the infinity of infinite volume, which

we call the regular infinity.

Around y = ∞, the infinity of finite volume, which

we call the cusp.
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Classification of the 2-dim. hyperbolic spaces

Γ (or MΓ) is said to be geomerically finite

⇐⇒ MΓ is a finite sided convex domain.

⇐⇒ Γ is finitely generated.

=⇒ ∃ a compact set K ⊂ MΓ s.t. MΓ ⊂ K consists

of a finite number of cusps and the funnel.
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A Fuchsian group Γ is of the 1st kind (we omit its

definition)

⇐⇒ MΓ is of finite volume.

=⇒ MΓ is geometrically finite.

If Γ is of the 1st kind, the ends of MΓ consists only of

cusps.

Usually, one compactifies MΓ, and regard it as a

Riemann surface. Then the field of meromorphic

functions on MΓ is an algebraic function field.

There is a one to one correspondence

algebraic function fields

⇐⇒ compact Riemann surfaces

What does it mean?
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The surface is determined by the set of
functions on it.

Question How to generalize this?

Answer The solution space to the Helmholtz

equation.

More precisely, the behavior at infinity of solutions at

infinity.

This leads us to the S-matrix.

Singular points

We need one more classification of action.

An element γ ∈ Γ is said to be elliptic ⇐⇒ ∃1 fixed

point ∈ C+
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⇐⇒ |tr γ| < 2.

For the fixed point p, the isotropy group is defined by

I(p) = {γ ∈ Γ ; γ · p = p} .

What we want to say next is

Around elliptic fixed points, MΓ looks like a

cone, whose vertex is therefore a singular

point.

One must be careful about the meaning of singular.

MΓ is a Riemann surface without singular point as

a 1-dim. complex manifold.
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MΓ can be regarded as a Riemannian manifold

equipped with the hyperbolic metric.

However, at the elliptic fixed points, this metric

becomes singular.

In fact, around ellptic fixed points, MΓ has the

following

Orbifold structure
By a suitable choice of local coordinates around

p ∈ Msing = the set of all elliptic singular points ,

the isotropy group I(p) turns out to be a finite

rotation group.

Then one can take a neighborhood of p ∈ Msing,

which is like a sector with vertex at p.



Scattering theory on the hyperbolic spaces Surfaces with conical singularities Inverse scattering from cusp

Hence M admits a local covering space around p,

which is isometric to the hyperbolic space.

Around elliptic singular points, by a suitable change of

variables, (the resulting local coordinates are no longer

analytic at p),

ds2 = (dr)2 +
1

m2
(sinhr)2(dθ)2, m = ♯I(p).
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§2 Surfaces with conical singularties

We introduce a surface which generalizes the

fundamental domain of geometrically finite Fuchsian

group.
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§2.1 Assumptions

We consider a 2-dim. connected C∞ manifold M
which is written as a union of open sets,

M = K ∪ M1 ∪ · · · ∪ MN

satisfying the following 4 assumptions:

(A-1) There exists 1 ≤ µ ≤ N such that for

1 ≤ i ≤ µ, Mi is isometric to S1 × (1,∞) equipped

with the metric

ds2 =
(dx)2 + (dy)2

y2
.

(So, M1, · · · ,Mµ have cusps at infinity.)
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(A-2) For µ+ 1 ≤ i ≤ N , Mi is diffeomorphic to

S1 × (0, 1), and the metric on it has the following form

ds2 =
(dy)2 + (dx)2 +A(x, y, dx, dy)

y2
,

A = a(x, y)(dx)2 + 2b(x, y)dxdy + c(x, y)(dy)2,

where a, b, c satisfy

|∂α
x

(
y∂y

)n
d(x, y)| ≤ Cαn(1 + | log y|)−m(α,n)−1−ϵ,

for some ϵ > 0,

m(α, n) = min (|α| + n, 1).

(Therefore, for µ+ 1 ≤ i ≤ N , Mi have the

(perturbed) regular infinity at y = 0.)
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(A-3) K is compact.

(A-4) There exists a finite subset Msing ⊂ K such that

M has a C∞ Riemannian metric g on M \ Msing. To

each p ∈ Msing, there exists an open set Ũp ⊂ R2

such that 0 ∈ Ũp and Ũp has the metric g̃p with the

following conical structure : By the geodesic polar

coordinates

g̃p = (dr)2 + Cpr
2(1 + hp(r, θ))(dθ)

2,

0 < r < ϵ, 0 ≤ θ < 2π,

hp(r, θ) → 0 (r → 0),

Cp > 0, Cp ̸= 1.

The non-compact parts Mj are called ”ends”.
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§2.2 Basic spectral properties

Let ∆g be the Laplace-Beltrami operator on M, and

put

H = −∆g −
1

4
.

Its self-adjoint realization is defined through the

quadratic form.

.

Lemma

.

.

.

. ..

.

.

σess(H) = [0,∞).

§2.3 Helmholtz equation and the ”geometric” S-matrix

As in the case of Rn, to solve the Helmholtz equation

on M, we introduce the Besov space B∗. You can
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imagine it easily, if you see the case of

M = S1 × (0,∞) :

u ∈ B∗ ⇐⇒ sup
R>e

1

logR

∫
1
R
<y<R

∥u(·, y)∥2
L2(S1)

dy

y2
< ∞.

We write

u ≃ v (u and v are similar at infinity)

if u− v satisfies on each end

lim
R→∞

1

logR

∫
1
R
<y<R

∥u(·, y) − v(·, y)∥2
L2(S1)

dy

y2
= 0.

Then the space of physical solutions of the Helmholtz

equation is

H(k) =
{
u ∈ B∗ ; (H − k2)u = 0

}
, k2 ∈ (0,∞)\σp(H).
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The L2-space at infinity is{
C for the cusp,

L2(S1) for the regular infinity.

Therefore, the space of scattering data at infinity is

h∞ =

µ∑
j=1

C ⊕
N∑

j=µ+1

L2(S1).

Here, let us recall that the counter part of the

Euclidean spherical wave

eikr

r(n−1)/2
, in Rn

is, in hyperbolic space,

y(n−1)/2∓ik, in Hn.
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Letting {χj} be the partition of unity on M, where χj

localizes on Mj, we see that any u ∈ H(k2) admits

the following asymptotic expansion :

u ≃ ω−(k)

µ∑
j=1

χjy
1/2+ikψ

(−)
j

+ ω
(c)
− (k)

N∑
j=µ+1

χjy
1/2−ikψ

(−)
j

− ω+(k)

µ∑
j=1

χjy
1/2+ikψ

(+)
j

− ω
(c)
+ (k)

N∑
j=µ+1

χjy
1/2+ikψ

(+)
j ,
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ψ(±) = (ψ
(±)
1 , · · · , ψ(±)

N ) ∈ h∞.

The ”geometric” S-matrix is then defined by

S(k) : h∞ ∋ ψ(−) → ψ(+) ∈ h∞,

which is unitary on h∞. It is a N ×N matrix

S(k) =
(
Sij(k)

)
whose ij entry is a bounded operator

Sij(k) : hi → hj,

where

hi =

{
C if Mi is cusp,

L2(S1) if Mi is regular infinity.
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§2.4 Inverse scattering from regular ends

Suppose we are given 2 such manifolds M(1),M(2),

and the associated geometric S-matrices

S(1)(k), S(2)(k). Suppose for some n1, n2, the ends

M(1)
n1

and M(2)
n2

have regular infinity, and they are

isometric. We assume, furthermore

S(1)
n1n1

(k) = S(2)
n2n2

(k), ∀k2 > 0.

Then M(1) and M(2) are isometric, and the conical

structure around singular points coincide.

Therefore, the knowledge of the ”geometric” S-matrix

at regular infinity determines the manifolds.
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§3 Inverse scattering from cusp

We are interested in the inverse scattering from cusp,

since in some cases (e.g. Fuchsian groups of 1st kind),

the infinity consists only of cusp.
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§3.1 Generalized S-matrix

The cusp gives only 1-dimensional contribution to the

continuous spectrum of H. Therefore, the component

of the S-matrix corresponding to cusp, being merely a

complex number, is not sufficient to determine the

whole manifold.

The remedy consists in enlarging the solution space of

the Helmholtz equation.

On th end M1, having a cusp, the Helmholtz equation

takes the form

−y2(∂2
y + ∂2

x)u−
1

4
u = k2u.
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Expand u into a Fourier series

u(x, y) =
∑
n∈Z

e2πinxun(y),

Then

y2(−∂2
y + (2ny)2)un −

1

4
un = k2un,

un(y) =

{
ãny

1
2I−ik(2π|n|y) + b̃ny

1
2Kik(2π|n|y), n ̸= 0,

a0y
1
2
−ik + b0y

1
2
+ik, n = 0.

Here Iν and Kν are modified Bessel functions behaving

like

Iν(z) ∼
1

√
2πz

ez, z → ∞,

Kν(z) ∼
√
π

2z
e−z, z → ∞,
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One can construct a solution of the Helmholtz

equation, which is exponentially growing as above in

the cusp, and behaves like y1/2∓ik in the regular

infinity. Moreover at the cusp, it behaves like

u(x, y) ∼ a0y
1/2−ik +

∑
n ̸=0

ane
inx+|n|y

+ b0y
1/2+ik +

∑
n ̸=0

bne
inx−|n|y.

We call the map

S11(k) : {an}n∈Z → {bn}n∈Z

the ((11)-entry of) generalized S-matrix.
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Remark 1 This is now a standard idea, in the study of

inverse problems, of employing exponentially growing

solutions for the Helmholtz equation.

Remark 2 The generalized S-matrix is an infinte

matrix, and the usual S-matrix is its 00-entry.

Remark 3 We have an associated Poisson type integral

formula for the Helmholtz equation. However, at the

cusp, identifying the sequence with the Fourier series,

we are dealing with a class of analytic functional bigger

than Sato’s hyperfunction.

§3.2 Main Theorem

Suppose we are given 2 such manifolds M(1),M(2),

and the associated generalized S-matrices
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S(1)(k),S(2)(k). Suppose both of them have a cusp for

the end M(1)
1 , M(2)

1 , and assume, furthermore

S(1)
11 (k) = S(2)

11 (k), ∀k2 ∈ (0,∞)\
(
σp(H

(1))∪σp(H
(2))
)
.

Then M(1) and M(2) are isometric, and the conical

structure around singular points coincide.

In particular, the geometrically finite Fuchsuan groups,

(e.g. Fuchsian groups of the 1st kind), are determined

by their generalized S-matrices.

§3.3 Forward problem

To study the forward problem, one needs to investigate

the resolvent. The crucial steps are
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Limiting absorption principle

i.e. the existence of the boundary values of the

resolvent

R(k2 ± i0) ∈ B(B;B∗),

Spectral representation

i.e. the construction of the partial isometry

F (±) : L2(M) → L2((0,∞); h∞; dk),

whcih diagonalizes H(
F (±)Hf

)
(k) = k2

(
F (±)f

)
(k).

Asymptotic expansion of the resolvent at infinity

R(k2 ± i0)f ≃ C±(k)y
1
2
∓ik(F (±)f)(k).
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They are carried out by rather elementary tools of

integration by parts and asymptotic expansion of Bessel

functions.

§3.4 Boundary control method

In the inverse procedure, we use

Boundary control method

invented by

M. Belishev, An approach to multidimensional inverse

problems for the wave equation, Dokl. Akad. Nauk

SSSR, 297, (1987), 524-527 (Engl. transl. Soviet

Math. Dokl. 36 (1988), 481-484.
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M. Belishev and V. Kurylev, To the reconstruction of a

Riemannian manifold via its spectral data

(BC-method), Comm. in P. D. E. 17 (1992), 767-804.

A. Katchalov, Y. Kurylev and M. Lassas, Inverse

Boundary Spectral Problems, Chapman and Hall/CRC,

Monographs and Surveys in Pure and Applied

Mathematics, 123 (2001).
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§3.5 Works in progress

We are trying to extend our results in higher

dimensions. In 3-dimensions, you can let SL(2,C) act

on R3
+ by using quartenions. By choosing discrete

subgroups of SL(2,C), one can construct interesting

examples of 3-dim. hyperbolic orbifolds. For example,

the one constructed by the Picard group

SL(2,Z + iZ)\H3

is a 3-dim. analogue of the modular surface

SL(2,Z)\H2.
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I feel very much honored to give a talk
in this conference dedicated to Prof.

Helgason.

Thank you for your attention and the
warm hospitality!
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