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Ultrasound Reflection Tomography

The pulse radiates isotropically

Sound speed c is constant

The medium is weakly reflecting

The transducer is focused to receive signals only from a plane.
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Mono-static setup

The emitter coincides with the receiver.

At any given moment of time t echoes are simultaneously
produced along the sphere of radius r = tc

2 .
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Circular Radon Transform

Definition

The circular Radon transform of f is defined as

Rf (p, r) =

∫
|x−p|=r

f (x)dl(x),

where dl(x) is the arc length measure on the circle |x − p| = r .
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Bi-static setup

The emitter and the receiver are a fixed distance apart.

At any given moment of time t echoes are simultaneously
produced along confocal ellipses defined by r1 + r2 = tc .
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Elliptical Radon Transform

Definition

The elliptical Radon transform of a function f (x) is defined as

R̃f (pe , pr , r) =

∫
|x−pe |+|x−pr |=r

f (x)dσ(x),

where dσ(x) is the arc length measure on the ellipse
|x − pe |+ |x − pr | = r .
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Rotating the transducer around the object
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Intravascular Ultrasound (exterior support)
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Radio Detection and Ranging (RADAR)

Synthetic Aperture Radar
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Sound Navigation and Ranging (SONAR)

SONAR and Geophysical Exploration
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Uniqueness of Reconstruction

For which values of p and r does the knowledge of Rf (p, r) allow
unique recovery of f (x)?
Similarly, for which values of pe , pr , and r does the knowledge of
R̃f (pe , pr , r) allow unique recovery of f (x)?

Example

If Rf (p, r) is known for p restricted to a line and all values of r ,
then f can not be uniquely recovered.

Definition

The transform Rf is called injective on a set S ×T and functional
class C if for any f ∈ C the equality Rf (p, r) = 0 for all p ∈ S and
all r ∈ T implies f ≡ 0. In case of the elliptical transform we take
pe , pr ∈ S , and the rest of the definition is the same.
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The Spherical Transform with Full Radial Data

In the case of T = R
M. Agranovsky and E. T. Quinto (1996) gave a complete
characterization of injectivity sets S ⊂ R2 when C = Cc(R2).

In dimensions higher than n = 2 or when the functions are not
compactly supported a similar complete description of
non-injectivity sets is not known. However, various necessary
conditions for a set S to be a non-injectivity set for Rf have
been provided by several groups ( M. Agranovsky,
C. Berenstein, and P. Kuchment (1996), D. Finch, Rakesh,
and S. Patch (2004), G. A. and P. Kuchment (2005), ...).
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Rf in Spherical Geometry with Radially Partial Data

If S is a sphere, then one can get unique reconstruction of f using
data with limited radii.

M. Lavrentiev, M. Romanov, and M. Vasiliev (1970)

V. Volchkov (2003)

D. Finch, Rakesh, and S. Patch (2004):

M. Anastasio et al. (2005)

E. T. Quinto (2006), and M. Agranovsky, E.T. Quinto (1996)

P. Stefanov, and G. Uhlmann (2011)
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Reconstruction formulas

Theorem (D. Finch, M. Haltmeier, and Rakesh (2007))

Let D ⊂ R2 be the disk of radius R centered at the origin, and let
f ∈ C∞(R2) with supp f ⊂ D̄. Then, for x ∈ D,

f (x) =
1

2πR
4x

∫ 2π

0

∫ 2R

0
ρ g(ρ, φ) log

∣∣ρ2 − |x − p|2
∣∣ dρ dφ

Notice, that the knowledge of the Radon transform for all
ρ > 0 is required.

The formula does not hold if supp f is not a subset of D̄.
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Reconstruction formulas

Fourier expansion methods

g(ρ, φ) =
∞∑

n=−∞
gn(ρ)e−inφ gn(ρ) =

1

2π

∫ 2π

0
g(ρ, φ)e−inφ dφ

f (r , θ) =
∞∑

n=−∞
fn(r)e−inθ fn(r) =

1

2π

∫ 2π

0
f (r , θ)e−inθ dθ
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Reconstruction formulas

Theorem (S. J. Norton (1979))

If f (r , θ) is supported inside the disc of radius R, then one can
recover its Fourier coefficients fn(r) from Fourier coefficients gn(ρ)
of its circular Radon transform g(ρ, φ) = Rf (ρ, φ) as follows:

fn(r) = Hn

{
1

Jn(Rz)
H0

{
gn(ρ)

2πρ

}
z

}
r

,

where Hn is the nth order Hankel transform defined by

(Hnh)(σ) =

∫ ∞
0

Jn(σr) h(r) r dr .

Notice, the knowledge of the Radon transform for all ρ > 0 is
required.
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Reconstruction from Partial Data - Interior Problem

Theorem (G. A., R. Gouia, and M. Lewis (2010))

Let f (r , θ) be an unknown continuous function supported inside
the annulus A(ε,R) = {(r , θ) : r ∈ (ε,R), θ ∈ [0, 2π]}, where
0 < ε < R. If Rf (ρ, φ) is known for φ ∈ [0, 2π] and ρ ∈ [0,R − ε],
then f (r , θ) can be uniquely recovered in A(ε,R).
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Reconstruction Formulas - Exterior Problem

Define

Fn(u) := fn(R − u) (1)

Kn(ρ, u) :=
4ρ (R − u) T|n|

[
(R−u)2+R2−ρ2

2R(R−u)

]
√

(u + ρ)(2R + ρ− u)(2R − ρ− u)
(2)

Gn(t) :=
1

πKn(t, t)

d

dt

∫ t

0

gn(ρ)√
t − ρ

dρ (3)

Ln(t, u) :=
1

πKn(t, t)

∂

∂t

∫ t

u

Kn(ρ, u)√
ρ− u

√
t − ρ

dρ (4)
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Theorem (G. A., R. Gouia, and M. Lewis (2010))

An exact formula expressing the Fourier coefficients of the function
f by those of Rf is given by

Fn(t) = Gn(t) +

∫ t

0
Hn(t, u) Gn(u) du, (5)

where Hn(t, u) is given by the series of iterated kernels

Hn(t, u) =
∞∑
i=1

(−1)iLn,i (t, u), (6)

defined by
Ln,1(t, u) = Ln(t, u), (7)

Ln,i (t, u) =

∫ t

u
Ln,1(t, x) Ln,i−1(x , u) dx , ∀ i ≥ 2. (8)
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Reconstruction from Partial Data - Exterior Problem

Theorem (G. A., R. Gouia, and M. Lewis (2010))

Let f (r , θ) be an unknown continuous function supported inside
the annulus A(R, 3R) = {(r , θ) : r ∈ (R, 3R), θ ∈ [0, 2π]}. If
Rf (ρ, φ) is known for φ ∈ [0, 2π] and ρ ∈ [0,R1], where
0 < R1 < 2R then f (r , θ) can be uniquely recovered in A(R, R1).
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Support Both Inside and Outside

Theorem (G. A. and V. Krishnan (2011))

Let f (r , θ) be an unknown continuous function supported inside
the disc D(0,R2), where R2 > 2R. If Rf (ρ, φ) is known for
φ ∈ [0, 2π] and ρ ∈ [R2 − R,R2 + R], then f (r , θ) can be uniquely
recovered in A(R1, R2), where R1 = R2 − 2R.
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Reconstruction from Partial Data - Interior Problem

Theorem (G. A. and V. Krishnan (2011))

Let f (r , θ) be an unknown continuous function supported inside
the annulus A(ε,R) = {(r , θ) : r ∈ (ε,R), θ ∈ [0, 2π]}, where
0 < ε < R. If R̃f (B, φ) is known for φ ∈ [0, 2π] and
B ∈ [0,R − ε], then f (r , θ) can be uniquely recovered in A(ε,R).
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Theorem (G. A. and V. Krishnan (2011))

Let f (r , θ) be an unknown continuous function supported inside
the disc D(0,R2), where R2 > 2R. If R̃f (B, φ) is known for
φ ∈ [0, 2π] and B ∈ [R2 − R,R2 + R], then f (r , θ) can be uniquely
recovered in A(R1, R2), where R1 = R2 − 2R.
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Thank you for your attention!
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