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Objective of the talk

The objective of the talk is to introduce Radon transform on
compact Lie groups and to show how spline interpolation can
be used for approximate inversion of such transform on general
compact Lie groups.
In a particular case of the group of rotations SO(3) such
problem has important applications in crystallography.



The orientation probability density function (ODF)
representing the probability law of random orientations of
crystal grains by volume is a major issue.
One cannot measure ODE directly. Instead, the pole density
function (PDF) is measured.
In x-ray or neuron diffraction experiments spherical intensity
distributions are measured which can be interpreted in terms of
spherical probability distributions of distinguished
crystallographic axes.



The following people are greatly responsible for development of
the corresponding mathematical theory:
Roe R (1965),
Bunge H-J (1981-1982),
Matthies S (1979),
Bernstein S and Schaeben H (2005),
Meister L and Schaeben H (2005),
S. Bernstein, R. Hielscher, H. Schaeben (2009).



The practical measurement sends a beam through the
specimen coming from the direction h ∈ S2 and measures the
intensity, emitted from the specimen in the direction r ∈ S2.
One can interpret the result as the integral over all orientations
g ∈ SO(3) with g · h = r ; h, r ∈ S2.
The set Ch,r = {g ∈ SO(3) : g · h = r ; h, r ∈ S2} of those
orientations is called a great circle in SO(3).



Definition
The Radon transform of a continuous complex-valued function
f on SO(3) is a function on S2 × S2 which is defined by the
formula

Rf (x , y) =

∫
Cx,y

f (g)dg. (1)

This transform R can be extended to all functions in L2(SO(3)).



The mathematical formulation of the problem we consider is the
following: to reconstruct a function f on SO(3) from its
Radon transform Rf .
It is interesting to note that the original function f is defined on a
manifold SO(3) of dimension three, but the function Rf is
defined on S2 × S2 whose dimension is four.
In this sense the information which is inherited into Rf is
redundant.
This issue was recently discussed by
V.P. Palamodov in Reconstruction from a sampling of circle
integrals in SO(3), Inverse Problems 26 (2010), no. 9,
095-008, 10 pp.



Every irreducible representation of SO(3)is unitary equivalent
to a irreducible component of the quasi regular representation
in L2(S2), given by

T (g) : f (ξ) 7→ f (g−1 · x), (2)

where · denotes the canonical action of SO(3) on S2. The
irreducible invariant components of L2(S2) under T are
Hk = {Y i

k , i = 1, ...,2k + 1}- spanned by spherical harmonics of
degree k . T k shall denote the irreducible representation,
obtained by restriction of T to Hk . The matrix coefficients of T k

are the Wigner polynomials T k
ij of degree k :

Y j
k (g−1 · ξ) =

2k+1∑
i=1

T k
ij (g)Y i

k (ξ)T k
ij (g) = 〈Y j

k (g−1·),Y i
k (·)〉L2(S2).

(3)



We have

RT k
ij (ξ, η) = T k

i1(ξ)T k
j1(η) =

4π
2k + 1

Y i
k (ξ)Y j

k (η). (4)

This formula shows that range of R belongs to kernel of the
Darboux-type operator i.e.

∆xRf (x , y) = ∆yRf (x , y), f ∈ L2(SO(3)). (5)



Definition

The Sobolev space H∆
t (S2 × S2), t ∈ R, is defined as the

subspace of all functions f ∈ Ht (S2 × S2) such ∆x f = ∆y f .

Now we define Sobolev spaces on SO(3).

Definition
The Sobolev space Ht (SO(3)), t ∈ R, is defined as the domain

of the operator (1− 4∆SO(3))
t
2 with graph norm

|||f |||t = ||(1− 4∆SO(3))
t
2 f ||L2(SO(3)), f ∈ L2(SO(3)).



Theorem
(Range description) For any t ≥ 0 the Radon transform on
SO(3) is an invertible mapping

R : Ht (SO(3))→ H∆
t+ 1

2
(S2 × S2). (6)



Theorem
(Reconstruction formula) Let

f (x , y) =
∞∑

k=0

2k+1∑
i,j=1

f̂ (k , i , j)Y i
k (x)Y j

k (y) ∈ H∆
1
2

(S2 × S2) (7)

be the result of a Radon transform. Then the pre-image
g ∈ L2(SO(3)) is given by

g =
∞∑

k=0

2k+1∑
i,j=1

(2k + 1)

4π
̂f (k , i , j)T k

ij .



Definition
Let H be a closed subgroup of the compact Lie group G. The
Radon transform of a continuous function f ∈ C(G) is defined by

Rf (x , y) =

∫
H

f (xhy−1)dh, x , y ∈ G, (8)

where dh here is the normalized Haar measure on H.



Theorem
The following statements hold:
1) The Radon transform R maps functions over G to functions
over G/H× G/H.
2) If H is the subgroup of G, determining the Radon transform
on G and if Ĝ1 ⊂ Ĝ is the set of irreducible representations with
respect to H, then for f ∈ C∞(G) the following Parseval equality
holds

‖Rf‖2L2(G/H×G/H) =
∑
π∈cG1

rank(πH)‖f̂ (π)‖2HS. (9)



In our approach to approximate inversion of the Radon
transform we consider inversion as an interpolation problem.
Namely, if f is a function on a compact Riemannian manifold M
and a set of integrals of f over a finite familyM = {Mν}N1 of
submanifolds is given, we find a "smoothest" function which has
the same set of integrals as f over submanifolds from the family
M.



We consider a compact Riemannian manifold M without
boundary. Let L be a differential of order two elliptic operator
which is self-adjoint and negatively semi-definite in the space
L2(M) constructed using a Riemannian density dx . The
spectrum of such operator always contains λ0 = 0. In order to
have an invertible operator we will work with I − L, where I is
the identity operator in L2(M).



For a given finite family of pairwise different submanifolds
{Mν}N1 consider the following family of distributions

Fν(f ) =

∫
Mν

f (10)

which are well defined at least for functions in
Hε+d/2(M), ε > 0.
In particular, if Mν = xν ∈ M, then every Fν is a Dirac measure
δxν ν = 1, ...,N, xν ∈ M.
Note that distributions Fν belong to H−ε−d/2(M) for any ε > 0.



Variational Problem
Given a sequence of complex numbers v = {vν},
ν = 1,2, ...,N, and a t > d/2 we consider the following
variational problem:

Find a function u from the space Ht (M) which has the following
properties:

1 Fν(u) = vν , ν = 1,2, ...,N, v = {vν},
2 u minimizes functional u → ‖(1− L)t/2u‖.



Theorem

The Variational Problem has a unique solution for any
sequence of values (v1, v2, ...vN).

The solution to the Variational Problem will be called a spline
and will be denoted as st (v). The set of all solutions for a fixed
set of distributions F = {Fν} and a fixed t will be denoted as
S(F , t).

Definition

Given a function f ∈ Ht (M) we will say that the unique spline s
from S(F , t) interpolates f if

Fν(f ) = Fν(s).

Such spline will be denoted as st (f ).



The next Theorem gives the characteristic property of splines.

Theorem

A function st (v) ∈ Ht (M), t > d/2 is a solution of the Variational
Problem if and only if it satisfies the following equation in the
sense of distributions

(1− L)tst (v) =
N∑
ν=1

αν(st (v))Fν .



Definition

Generalized Green’s functions E t
ν , defined as solutions of the

following distributional equations

(1− L)tE t
ν = Fν .

The following important fact holds

Theorem

Every spline st (v) is a linear combination of the generalized
Green’s functions

st (v) =
N∑
ν=1

αν(st (v))E t
ν . (11)



Let {(x1, y1), ..., (xN , yN)} be a set of pairs of points from SO(3),
such that submanifolds
Mν = xνSO(2)y−1

ν ⊂ SO(3), ν = 1, ...,N, are pairwise
different.
For a continuous function f on G, t > 3/2, and a vector (of
measurements) v = (vν)N

1 where

vν =

∫
Mν

f ,

the interpolating spline is given by

st (f ) =
∞∑

k=0

2k+1∑
i,j=1

ck
ij (st (f ))T k

ij =
∞∑

k=0

trace
(

ck (st (f ))T k
)
, (12)

where T k
ij are the Wigner polynomials.



The Fourier coefficients ck (st (f )) of the solution are given by
their matrix entries

ck
ij (st (f )) =

4π
(2k + 1)(1 + k(k + 1))t

N∑
ν=1

αν(st (f )Y i
k (xν)Y j

k (yν),

(13)
where α(st (f )) = (αν(st (f )))N

1 ∈ RN is the solution of

Bα(st (f )) = f , (14)



with B = (βνµ) ∈ RN×N given by

βνµ =
∞∑

k=0

(1 + k(k + 1))−tC
1
2
k (xν · yν)C

1
2
k (xµ · yµ), (15)

where C
1
2
k are the Gegenbauer polynomials.



Theorem
The function st (f ) ∈ Ht (SO(3)) has the following properties:

1 st (f ) has the prescribed set of measurements v = (vν)N
1 at

points ((xν , yν))N
1 ;

2 it minimizes the functional

u → ‖(1−∆SO(3))t/2u‖;

3 the solution is optimal in the sense that for every
sufficiently large K > 0 it is the symmetry center of the
convex bounded closed set of all functions g in Ht (SO(3))
with ‖g‖t ≤ K which have the same set of measurements
v = (vν)N

1 at points {(xν , yν)}N1 .



A similar result holds in the case of a general compact group G
and its closed subgroup H.

Theorem
Let {(x1, y1), ..., (xN , yN)} be a set of pairs of points from G,
such that submanifoldsMν = xνHy−1

ν ⊂ G, ν = 1, ...,N, are
pairwise different.
Given a continuous function f on G and a t > 1

2dim G the
corresponding spline given by the formula

st =
∑
π∈bG

dπ∑
i,j=0

cπij πij , (16)

where πij are matrix entries of irreducible representations and

cπij = (1 + λ2
π)−t

N∑
ν=1

ανπij(xν , yν). (17)



Here the coefficients α1, ..., αN are solutions of the system

β1µα1 + ...+ βNµαN = vµ, µ = 1, ...,N,

where entries βνµ are given by

βνµ =
∑
π∈bG

(1 + λ2
π)−t

dπ∑
i,j=1

R(πij(xν , yν))R(πij(xµ, yµ)),

for all 1 ≤ ν, µ ≤ N.



Theorem
One also has the following. The function st (f ) ∈ Ht (G) has the
following properties:

1 st (f ) has the prescribed set of measurements v = (vν)N
1 at

points ((xν , yν))N
1 ;

2 it minimizes the functional

u → ‖(1−∆G)t/2u‖;

3 the solution is optimal in the sense that for every
sufficiently large K > 0 it is the symmetry center of the
convex bounded closed set of all functions g in Ht (G) with
‖g‖t ≤ K which have the same set of measurements
v = (vν)N

1 at points {(xν , yν)}N1 .



Let me describe our second method in the case of SO(3) and
its subgroup SO(2).
Remember, that in this case
if f ∈ Ht (SO(3)) then Rf ∈ H∆

t+1/2(S2 × S2).
Also, integral of f over the circle xνSO(2)y−1

ν is the value of Rf
at (xν , yν).
We pick a small positive ρ and assume that the set
Mρ = {(xν , yν)}N1 is a ρ-lattice on the manifold S2 × S2 in the
sense that there exist constants c1, c2 > 0 such that

c1ρ ≤ max
ν

min
ν 6=µ

dist ((xν , yν), (xµ, yµ)) ≤ c2ρ



Using values of Rf on the lattice Mρ and choosing τ > 0 we
construct interpolating spline sτ (Rf ).
Let us stress that function sτ (Rf ) interpolates Rf on the
manifold S2 × S2.
Our next goal is to return to SO(3).
For this reason we consider orthogonal projection of sτ (Rf )
onto

RangeR = H∆
1/2(S2 × S2),

which will be denoted as ŝτ (Rf ).



Note it means that one takes a Fourier series of ŝτ (Rf ) in
L2(S2 × S2) and leaves only terms of the following form

ŝτ (Rf )(ξ, η) =
∑

k

∑
ij

ck
ij (Rf ; τ)Y i

k (ξ)Y j
k (η),

where (ξ, η) ∈ S2 × S2.



Applying inverse R−1 we obtain that the following function
which is defined on SO(3)

Sτ (f )(ξ) = R−1 (ŝτ (Rf )
)

(ξ)

has a representation

Sτ (f )(ξ) =
∑

k

∑
ij

2k + 1
4π

ck
ij (Rf ; τ)T k

ij (ξ),

where T k
ij are Wigner functions.



Let us stress that functions Sτ (f ) do not interpolate f in any
sense. However, the following approximation results hold.

Theorem

If the set of points Mρ = {(xν , yν)} ⊂ S2 × S2

(which corresponds to the set of circles xνSO(2)y−1
ν ⊂ SO(3))

is a ρ-lattice then for τ > 2 for sufficiently smooth functions one
has the estimate

‖(Sτ (f )− f )‖L2(SO(3)) ≤ (Cρ)τ ‖Rf‖Hτ (S2×S2),

where the functions Sτ (f ) constructed using only the values of
Rf on Mρ.



Moreover, for a natural k one has uniform convergence

‖Sτ (f )− f‖Ck (SO(3)) ≤ (Cρ)τ ‖Rf‖Hτ+k+2(S2×S2)

for any τ > 2.



For an ω > 0 let us consider the space Eω(SO(3)) of
ω-bandlimited functions on SO(3) i.e. the span of all Wigner
functions T k

ij with k(k + 1) ≤ ω.
The Radon transform of such function is ω-bandlimited on
S2 × S2 in the sense its Fourier expansion involves only
functions Yk

i Yk
j which are eigenfunctions of ∆S2×S2 with

eigenvalue −k(k + 1).
Under our assumption about k the following Bernstein-type
inequality holds for any function in the span of Yk

i Yk
j

‖(1− 2∆S2×S2)τRf‖L2(S2×S2) ≤ (1 + 2ω)τ‖Rf‖L2(S2×S2)



Theorem
(Sampling Theorem for Radon Transform) If f ∈ Eω(SO(3)),
then for any τ > o and any natural k

‖Sτ (f )− f‖Ck (SO(3)) ≤ (Cρ(1 + 2w))τ (1 + 2w)k+2‖Rf‖.



Let us remind that the function Sτ (f ) was constructed by using
only the values of the Radon transform Rf on a lattice of points
on S2 × S2. This Sampling Theorem shows that if

ρ <
1√

C(1 + 2ω)

than one can have a complete reconstruction of ω-bandlimited f
when τ goes to infinity by using only the values of its Radon
transform Rf on any fixed ρ-lattice of S2 × S2.



THANK YOU FOR COMING!!!!!!!!!!


