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The bounded spherical functions

G/K = Riemannian symmetric space of the noncompact type
G = connected noncompact semisimple Lie group with finite center
K = maximal compact subgroup of G
Spherical functions = (normalized) K-invariant joint eigenfunctions of the commutative
algebra of G-invariant differential operators on G/K
~ building blocks of the K-invariant harmonic analysis on G/K
g==t®p Cartan decomposition of the Lia algebra of G
a C p maximal abelian subspace (Cartan subspace)
Y. = (restricted) roots of (g, a)
W = Weyl group of X
~ spherical functions are parametrized by ag (modulo W)
¥+ = choice of positive roots in
m, = multiplicity of the root o € ©
p=1/2 Zae)?r Mac
Harish-Chandra’s integral formula: oa(gK) = [, eXPHEIN gk g e G,
where H(x) € ais the lwasawa component of x € G = KAN
Then: pux = px forall A e af and w € W.
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Recallp=1/2%" .5+ Mo
C(p) = convex hull'in a* of {wp : w € W}

Theorem (Helgason & Johnson, 1969)
The spherical function o (with X € af) is bounded if and only if A € C(p) + ia*. }

In this talk:

@ Extend the Helgason-Johnson’s theorem to the hypergeometric functions
associated with root systems (theory of Heckman and Opdam)

@ Applications to LP-theory of the hypergeometric Fourier transform (1 < p < 2).
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Heckman-Opdam’s hypergeometric functions

e The symmetric space G/K is replaced by a triple (a, >, m) where:
a = finite dim. Euclidean R-vector space, inner product (-, -)
¥ = root system in a*, with Weyl group W
m = positive multiplicity function on X
i.,e. m: X — [0,4o0[, W-invariant: my. = my foralla e X, we W

(a, X, m) is geometric if associated with a Riemannian symmetric space of the
noncompact type

e Commutative family D of differential operators associated with (a, X, m):
For x € a the Cherednik operator T, is the difference-reflection operator on a (or ac)
defined for f € C*°(a) and H € a by

Tof(H) = 0uf(H) + Y maa(x)% — p(x)f(H)

aexrt
where r, = reflection across ker a.
{x € a — Ty} commutative = extends as algebra homomorphism {p € S(ac) — Tp}
If p € S(ac)”, then D, := Tpl goo (yw is @ differential operator on a (or ac).
D =D(a, %, m) :={Dp: p € S(ac)"}
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e Hypergeometric function of spectral parameter \ € ag:
unique W-invariant analytic function F on a which satisfies the system of diff eqs

DpFx = p(A)Fx,  pe€ S(ac)”,
FA(0) =1

Then: Fux = Fxforallw e W.
Examples:
(1) (a,%, m) geometric: a=expa-o0 C G/K
D = radial components on a* of the G-invariant differential operators on G/K
F\ = ¢ Harish-Chandra’s spherical function of spectral parameter A € ag
(2) rank-one (i.e. dimg a = 1): Jacobi function of 2nd kind
Fa(x) = ,F, (ma/2+2m2a+>\ Mo /24 M0 =X . Mo /24Mpa 1. _ ginh?2 X)

’ 2 1 2 [

e Nonsymmetric hypergeometric function of spectral param A € ag (Opdam, 1995):
unigue analytic function G, on a which satisfies the system of diff-difference equations

TxGr = A(X)Gx, X€Ea,
G (0) =1
e Relation: Fa(X) = 17 X pew Ga(wx).

e Basic estimate (Schapira, 2008):
(1) F) real and positive if A € a*
(2) |Fal < Freaforall X € af
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The Harish-Chandra series ¢,

Solution of the hypergeometric system of differential equations:
Dy® = p(\)®,  pe Sac)”
of the form:

Py (x) = e 7AW Z M.(A\)e x€at

where: HEN
A= {3, ma: n€No}and {a1,...,q} basis simple roots associated with =",
I.(X\) = rational functions determined by the recursion relations

Mo(A) =1

(o =20Tu(A) =2 ma Y Tuaka(M)(p+p—2ka—Xa)

aert keN
p—2kaeN

Then T, (\) =0for u € A\ 2A.  Many singularities are in fact removable.
Notation:  Ha.r = {\ € at : Ao = r} where \, = Eizg
Yi={aext a/2¢T}

Theorem (Opdam 1989, Heckman 1994)

@ T.()) has at most simple poles along Ha » witha € £, n € N and 2na < p.
@ There is a tubular nbd Ut of a* in ac so that ®,(x) is a meromorphic function

of

(A, x) € ag x U" with at most simple poles along Ha,n with . € ¢ and n € N.
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Recall: Fora € £ and A € af, set A, = ‘22

(a,a)

Harish-Chandra’s c-function is the meromorphic function on ag defined by

27 [(\a)
C()\)—CHC H r(kia_i_ﬂ-yl)r()‘—a-l—mfa"l‘mza)’
a620+ > 4 2 2 4 2

where T is the gamma function and ¢y is a constant so that c(p) = 1.

Definition: X\ € ag is genericif Ao ¢ Z for all a € .

Theorem (Heckman & Opdam, 1989; Opdam, 1995)

Let X € a¢ be generic. Then:

@ {(duwr(x): w e W} is a basis of the C> solution space of the hypergeometric
system of spectral parameter A on a™.
Q Forxea'
Fa(x) = > c(wA)Pua(x).

weWw
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Asymptotic expansion of F)

e If \ € afis generic and x € a™, then

Fa(x) = Z c(WA)dya(x)

weWw
ox(x) = e N, (e .
peE2N
Hence
= 33 (WA, (wa)el e
pe2NweW

e If A=) €atisarbitrary (and WLOG (Re o, ) > O for all « € ),
define:

No=(No)as  Ia ={a€Xy:na=0}, ¥ ={aeX]:n,eN},
mo(A) = Haezgo A @)
Pw.(A) = Haeiioﬁw(i):g)“)‘? @) = Na o, a

,0(/\) = 7"'0(>‘)pW7+(>‘):DW7—()‘) independent of w!
7(A) = mo(N) H"‘@:JXO (A ) highest order term of p(\)

>) } products of linear factors, all vanishing at Ao
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P(A) = mo(A)Ppw,+(A)pw,— (A), product of linear factors, all vanishing at Ao
m(\) = highest order term of p(\)

Lemma
@ Thereis anbd U of \y so that, for all w € W and 1. € 2A\ {0}, the functions
mo(A)pw,— (A)e(WA) and pw,+ (AT .(WA) are holomorphic in U.
@ Forallx € a, we have
6oFro(x) = 0(m) (PN Fa(x))|
where ¢y = 9(m)(p) = O(w)(w) > 0.
© Letxo € at be fixed. Then

CoFx(x) = Z Z () (p()\)c(W,\)ru(w)\)e(wkfpfu)()())’

pne2NhweW

A=Xg

A=Xg

where the series on the right-hand side converges uniformly in x € xo + a™.

Remark/example: For Ao = 0 we have

Do=%, IL=0, pN)=x)=[] _ (\a).

Then 0
coFo(A) = 9(m) (m(A)Fx)[a=0 Where ¢y = d(m)(m) > 0.

(Harish-Chandra, Anker, Schapira)
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W,\O = {W e W:wh = )\o}
bo(N) = mo(A)e(X)  ~ bo(Who) = bo(ho) % O for all w € Wi,
po = Zaezgo o ~ mo(po) > 0

Theorem

Let xo € a™ be fixed. Then for x € xo + a+ we have

GoFag(X) = (ﬁo?;)o) bo(Ao)o(x) + f(x) ) 601

Y (Bu0)Twrg(X) + (X)) €07

WGW\WAO
+ Z wa%Ao(X)e(Wko*P*u)(X)

c2A\ {0} weW
where: HEZN(DY

¢ = 0(p)(m) = o(r)(r) >0,

the constants bw(Xo) and the polynomials mw x,(X) are explicit,

o (X) is a polynomial function of x of degree < deg mo(x),

fw,xo (X) is @ polynomial function of x of degree < deg mw,x,(X) = deg mo(x).

The series converges uniformly in x € xo + a*.
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The bounded hypergeometric functions

Theorem

The hypergeometric function F is bounded if and only if x € C(p) + ia*.
Moreover, |Fx(x)| <1 forall X € C(p) + ia™ and x € a.

Proof (sketch).

<: (Argument due to E. M. Stein)

Apply the maximum modulus principle to A — Fy(x) with x € a fixed.

Since |Fx| < Fre x, the max of this function in C(p) + ia* is attained at wp, w € W.
To compute Fu,(x) = Fo(x):

G-, = 1 (from differential-difference equations)

W = longest element in W. Then for all x € a:

Fo(x) = FWOP(X) =F_,(x) = |W|71 Z G-p(wx)=1.

weW

= (use asymptotic expansion of F))

If Re Ao € (a*)* \ C(p), then there is x; € a™ so that (Re Ao — p)(x1) > 0.
If Fy, bounded, then lim;_, o Fa,(tx;)e"Rero=p)Ca)i=d — g

Here d := deg mo.
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My 400 Fag (tx1)e ™R 0= =4 — 0 and mo(x1) # 0 as x; € a™.
Asymptotic expansion gives:

FAO(tX1)e_t(RE Xo—p)(x1) 3 (bo(AO) e,‘tlm)\o()q)
tdmo(x1) o(po)
b (A0)Tw, 2 (X1) _itwim ag(xq)
+ ————e ot ’:ot ast— +oo.
Y e )| =0

WEWRe Ao \ Wi
0\"2o

It follows that

bo (o) it Im Ao(x)

t—+oo (ﬂo(po) +

WEWre xy \ Wi,
0 0

bW()\O)Ww,Ao(X1)eirw1m /\0(x1)) —0.
Como(X1)

Since x; € a* we have wIm Ao(X1) # Im Ao(x1) for all w € Whex, \ Way C W\ Wim x, -
The limit 0 is possible only if Z%((ig; = 0. Contradiction. O
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Applications: LP-harmonic analysis

Hypergeometric Fourier transform of a (suff regular) W-invariant f : a — C:

0= [ (0RMdu0), A,
where !
du(x) = [ |e*® — e W™ dx.

aexrt
Plancherel measure (Opdam, 1995): dv()\) = |c(A\)| "2 d\.
For1 < p< 2, set: ep:f—)—1
C(epp) = convex hull in a* of the set {e,wp : w € W}
al, = C(epp) + ia”
Corollary
Letf e L'(a,du)"”. Then:
@ 7()) is well def and continuous on a;, = C(p) + ia*, holomorphic in its interior.
Q [F(N)| < |Ifll+ for X € at, .

© (Riemann-Lebesgue) We have limyca: j1m | oo [f(\)] =0.
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Corollary
Letf € LP(a,du)" with1 < p < 2. Then:
Q ?(/\) is well def and holomorphic in the interior of on a;, = C(epp) + ia”.
@ (Hausdorff-Young) Let1/p+1/q =1. Then3C, > 0 so that
F0lla = ([ | Ty aw() " < Golllo-
© (Riemann-Lebesgue) We have limycq- 100 |F(IX)] = 0.

v

Rem: Hausdorff-Young is an application of Riesz-Thorin interpolation thm to f — 7. This operator
is of type (2,2) by Plancherel (Opdam, 95) and of type (1, co) by previous corollary.

Lemma (Flensted-densen & Koornwinder, 1973)
Forfe LP(a,du),1<p<2,andge CC(a)": [.fNINdv()) = J, f(x)g(x)d,u(x)J

Rem: Consequence of Paley-Wiener and Plancherel (Opdam, 95), |[fllso < ||f||1 and
Hausdorff-Young.

Corollary
@ The hypergeometric Fourier transform is injective on LP(a, dp)".
Q IffeLP(a,du)” andf e L' (ia*, dv)", then f(x) = [,.. (NF_r(x)dv(}) ae. x
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