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The bounded spherical functions

G/K = Riemannian symmetric space of the noncompact type

G = connected noncompact semisimple Lie group with finite center
K = maximal compact subgroup of G

Spherical functions = (normalized) K -invariant joint eigenfunctions of the commutative
algebra of G-invariant differential operators on G/K

 building blocks of the K -invariant harmonic analysis on G/K

g = k⊕ p Cartan decomposition of the Lia algebra of G
a ⊂ p maximal abelian subspace (Cartan subspace)
Σ = (restricted) roots of (g, a)
W = Weyl group of Σ

 spherical functions are parametrized by a∗C (modulo W )

Σ+ = choice of positive roots in Σ
mα = multiplicity of the root α ∈ Σ
ρ = 1/2

∑
α∈Σ+ mαα

Harish-Chandra’s integral formula: ϕλ(gK ) =
∫

K e(λ−ρ)(H(gk)) dk , g ∈ G ,
where H(x) ∈ a is the Iwasawa component of x ∈ G = KAN
Then: ϕwλ = ϕλ for all λ ∈ a∗C and w ∈ W .

Jan 6–7, 2012 (AMS, Boston) Bounded hypergeometric functions 2 / 14



Recall ρ = 1/2
∑
α∈Σ+ mαα

C(ρ) = convex hull in a∗ of {wρ : w ∈ W}

Theorem (Helgason & Johnson, 1969)
The spherical function ϕλ (with λ ∈ a∗C) is bounded if and only if λ ∈ C(ρ) + ia∗.

In this talk:
1 Extend the Helgason-Johnson’s theorem to the hypergeometric functions

associated with root systems (theory of Heckman and Opdam)
2 Applications to Lp-theory of the hypergeometric Fourier transform (1 ≤ p < 2).
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Heckman-Opdam’s hypergeometric functions
• The symmetric space G/K is replaced by a triple (a,Σ,m) where:

a = finite dim. Euclidean R-vector space, inner product 〈·, ·〉
Σ = root system in a∗, with Weyl group W
m = positive multiplicity function on Σ

i.e. m : Σ→ [0,+∞[, W -invariant: mwα = mα for all α ∈ Σ, w ∈ W
(a,Σ,m) is geometric if associated with a Riemannian symmetric space of the
noncompact type

• Commutative family D of differential operators associated with (a,Σ,m):
For x ∈ a the Cherednik operator Tx is the difference-reflection operator on a (or aC)
defined for f ∈ C∞(a) and H ∈ a by

Tx f (H) = ∂x f (H) +
∑
α∈Σ+

mαα(x)
f (H)− f (rαH)

1− e−2α(H)
− ρ(x)f (H)

where rα = reflection across kerα.

{x ∈ a 7→ Tx} commutative⇒ extends as algebra homomorphism {p ∈ S(aC) 7→ Tp}
If p ∈ S(aC)W , then Dp := Tp|C∞(a)W is a differential operator on a (or aC).
D = D(a,Σ,m) := {Dp : p ∈ S(aC)W}
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• Hypergeometric function of spectral parameter λ ∈ a∗C:
unique W -invariant analytic function Fλ on a which satisfies the system of diff eqs

DpFλ = p(λ)Fλ , p ∈ S(aC)W ,

Fλ(0) = 1

Then: Fwλ = Fλ for all w ∈ W .
Examples:
(1) (a,Σ,m) geometric: a ≡ exp a · o ⊂ G/K

D ≡ radial components on a+ of the G-invariant differential operators on G/K
Fλ ≡ ϕλ Harish-Chandra’s spherical function of spectral parameter λ ∈ a∗C

(2) rank-one (i.e. dimR a = 1): Jacobi function of 2nd kind
Fλ(x) = 2 F1

(
mα/2+m2α+λ

2 , mα/2+m2α−λ
2 ; mα/2+m2α+1

2 ;− sinh2 x
)

• Nonsymmetric hypergeometric function of spectral param λ ∈ a∗C (Opdam, 1995):
unique analytic function Gλ on a which satisfies the system of diff-difference equations

Tx Gλ = λ(x)Gλ , x ∈ a ,

Gλ(0) = 1

• Relation: Fλ(x) = 1
|W |

∑
w∈W Gλ(wx) .

• Basic estimate (Schapira, 2008):
(1) Fλ real and positive if λ ∈ a∗

(2) |Fλ| ≤ FReλ for all λ ∈ a∗C
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The Harish-Chandra series Φλ
Solution of the hypergeometric system of differential equations:

DpΦ = p(λ)Φ , p ∈ S(aC)W

of the form:
Φλ(x) = e(λ−ρ)(x)

∑
µ∈Λ

Γµ(λ)e−µ(x) , x ∈ a+

where:
Λ =

{∑
j=1 njαj : nj ∈ N0

}
and {α1, . . . , αl} basis simple roots associated with Σ+ ,

Γµ(λ) = rational functions determined by the recursion relations

Γ0(λ) = 1
〈µ, µ− 2λ〉Γµ(λ) = 2

∑
α∈Σ+

mα

∑
k∈N

µ−2kα∈Λ

Γµ−2kα(λ)〈µ+ ρ− 2kα− λ, α〉

Then Γµ(λ) = 0 for µ ∈ Λ \ 2Λ. Many singularities are in fact removable.

Notation: Hα,r = {λ ∈ a∗C : λα = r} where λα = 〈λ,α〉
〈α,α〉

Σ+
0 = {α ∈ Σ+ : α/2 /∈ Σ}

Theorem (Opdam 1989, Heckman 1994)
1 Γµ(λ) has at most simple poles along Hα,n with α ∈ Σ+

0 , n ∈ N and 2nα ≤ µ.
2 There is a tubular nbd U+ of a+ in aC so that Φλ(x) is a meromorphic function of

(λ, x) ∈ a∗C × U+ with at most simple poles along Hα,n with α ∈ Σ+
0 and n ∈ N.
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Recall: For α ∈ Σ and λ ∈ a∗C, set λα = 〈λ,α〉
〈α,α〉

Harish-Chandra’s c-function is the meromorphic function on a∗C defined by

c(λ) = cHC

∏
α∈Σ+

0

2−λα Γ(λα)

Γ
(
λα
2 + mα

4 + 1
2

)
Γ
(
λα
2 + mα

4 + m2α
2

) ,
where Γ is the gamma function and cHC is a constant so that c(ρ) = 1.

Definition: λ ∈ a∗C is generic if λα /∈ Z for all α ∈ Σ0.

Theorem (Heckman & Opdam, 1989; Opdam, 1995)
Let λ ∈ a∗C be generic. Then:

1 {Φwλ(x) : w ∈ W} is a basis of the C∞ solution space of the hypergeometric
system of spectral parameter λ on a+.

2 For x ∈ a+

Fλ(x) =
∑
w∈W

c(wλ)Φwλ(x) .
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Asymptotic expansion of Fλ

• If λ ∈ a∗C is generic and x ∈ a+, then

Fλ(x) =
∑
w∈W

c(wλ)Φwλ(x)

Φλ(x) = e(λ−ρ)(x)
∑
µ∈2Λ

Γµ(λ)e−µ(x) .

Hence
Fλ(x) =

∑
µ∈2Λ

∑
w∈W

c(wλ)Γµ(wλ)e(wλ−ρ−µ)(x) .

• If λ = λ0 ∈ a∗C is arbitrary (and WLOG 〈Reλ0, α〉 ≥ 0 for all α ∈ Σ+
0 ),

define:

nα = (λ0)α, Σ0
λ0 = {α ∈ Σ+

0 : nα = 0} , Σ+
λ0

= {α ∈ Σ+
0 : nα ∈ N} ,

π0(λ) =
∏
α∈Σ0

λ0
〈λ, α〉

pw,±(λ) =
∏
α∈Σ+

λ0
∩w(±Σ+

0 )(〈λ, α〉 − nα〈α, α〉)

}
products of linear factors, all vanishing at λ0

p(λ) = π0(λ)pw,+(λ)pw,−(λ)
π(λ) = π0(λ)

∏
α∈Σ+

λ0
〈λ, α〉

independent of w !

highest order term of p(λ)
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p(λ) = π0(λ)pw,+(λ)pw,−(λ), product of linear factors, all vanishing at λ0

π(λ) = highest order term of p(λ)

Lemma
1 There is a nbd U of λ0 so that, for all w ∈ W and µ ∈ 2Λ \ {0}, the functions
π0(λ)pw,−(λ)c(wλ) and pw,+(λ)Γµ(wλ) are holomorphic in U.

2 For all x ∈ a, we have

c0Fλ0 (x) = ∂(π)
(

p(λ)Fλ(x)
)∣∣∣
λ=λ0

where c0 = ∂(π)(p) = ∂(π)(π) > 0.
3 Let x0 ∈ a+ be fixed. Then

c0Fλ0 (x) =
∑
µ∈2Λ

∑
w∈W

∂(π)
(

p(λ)c(wλ)Γµ(wλ)e(wλ−ρ−µ)(x)
)∣∣∣
λ=λ0

where the series on the right-hand side converges uniformly in x ∈ x0 + a+.

Remark/example: For λ0 = 0 we have

Σ0
λ0 = Σ+

0 , Σ+
λ0

= ∅ , p(λ) = π(λ) =
∏

α∈Σ+
0

〈λ, α〉 .
Then

c0F0(λ) = ∂(π)
(
π(λ)Fλ

)
|λ=0 where c0 = ∂(π)(π) > 0.

(Harish-Chandra, Anker, Schapira)
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Wλ0 := {w ∈ W : wλ0 = λ0}.
b0(λ) := π0(λ)c(λ)  b0(wλ0) = b0(λ0) 6= 0 for all w ∈ Wλ0

ρ0 :=
∑
α∈Σ0

λ0
α  π0(ρ0) > 0

Theorem
Let x0 ∈ a+ be fixed. Then for x ∈ x0 + a+ we have

c0Fλ0 (x) =
( c0

π0(ρ0)
b0(λ0)π0(x) + fλ0 (x)

)
e(λ0−ρ)(x)

+
∑

w∈W\Wλ0

(
bw (λ0)πw,λ0 (x) + fw,λ0 (x)

)
e(wλ0−ρ)(x)

+
∑

µ∈2Λ\{0}

∑
w∈W

fw,µ,λ0 (x)e(wλ0−ρ−µ)(x)

where:
c0 = ∂(p)(π) = ∂(π)(π) > 0 ,
the constants bw (λ0) and the polynomials πw,λ0 (x) are explicit,
fλ0 (x) is a polynomial function of x of degree < degπ0(x) ,
fw,λ0 (x) is a polynomial function of x of degree < degπw,λ0 (x) = degπ0(x).

The series converges uniformly in x ∈ x0 + a+.
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The bounded hypergeometric functions

Theorem
The hypergeometric function Fλ is bounded if and only if λ ∈ C(ρ) + ia∗.
Moreover, |Fλ(x)| ≤ 1 for all λ ∈ C(ρ) + ia∗ and x ∈ a.

Proof (sketch).
⇐: (Argument due to E. M. Stein)
Apply the maximum modulus principle to λ 7→ Fλ(x) with x ∈ a fixed.
Since |Fλ| ≤ FReλ, the max of this function in C(ρ) + ia∗ is attained at wρ, w ∈ W .
To compute Fwρ(x) = Fρ(x):
G−ρ ≡ 1 (from differential-difference equations)
w0 = longest element in W . Then for all x ∈ a:

Fρ(x) = Fw0ρ(x) = F−ρ(x) = |W |−1
∑
w∈W

G−ρ(wx) = 1 .

⇒: (use asymptotic expansion of Fλ)
If Reλ0 ∈ (a∗)+ \ C(ρ), then there is x1 ∈ a+ so that (Reλ0 − ρ)(x1) > 0.
If Fλ0 bounded, then limt→+∞ Fλ0 (tx1)e−t(Reλ0−ρ)(x1)t−d = 0.
Here d := degπ0.
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limt→+∞ Fλ0 (tx1)e−t(Reλ0−ρ)(x1)t−d = 0 and π0(x1) 6= 0 as x1 ∈ a+.
Asymptotic expansion gives:

∣∣∣Fλ0 (tx1)e−t(Reλ0−ρ)(x1)

tdπ0(x1)
−
(b0(λ0)

π0(ρ0)
eit Imλ0(x1)

+
∑

w∈WRe λ0
\Wλ0

bw (λ0)πw,λ0 (x1)

c0π0(x1)
eitw Imλ0(x1)

)∣∣∣ = o(t) as t → +∞ .

It follows that

lim
t→+∞

(b0(λ0)

π0(ρ0)
eit Imλ0(x1) +

∑
w∈WRe λ0

\Wλ0

bw (λ0)πw,λ0 (x1)

c0π0(x1)
eitw Imλ0(x1)

)
= 0 .

Since x1 ∈ a+ we have w Imλ0(x1) 6= Imλ0(x1) for all w ∈ WReλ0 \Wλ0 ⊂ W \WImλ0 .
The limit 0 is possible only if b0(λ0)

π0(ρ0)
= 0. Contradiction.
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Applications: Lp-harmonic analysis
Hypergeometric Fourier transform of a (suff regular) W -invariant f : a→ C:

f̂ (λ) :=

∫
a

f (x)Fλ(x)dµ(x) , λ ∈ a∗C ,

where

dµ(x) =
∏
α∈Σ+

∣∣eα(x) − e−α(x)
∣∣mα dx .

Plancherel measure (Opdam, 1995): dν(λ) = |c(λ)|−2 dλ .

For 1 ≤ p < 2, set: εp = 2
p − 1

C(εpρ) = convex hull in a∗ of the set {εpwρ : w ∈ W}
a∗εp = C(εpρ) + ia∗

Corollary
Let f ∈ L1(a, dµ)W . Then:

1 f̂ (λ) is well def and continuous on a∗ε1 = C(ρ) + ia∗, holomorphic in its interior.

2 |̂f (λ)| ≤ ‖f‖1 for λ ∈ a∗ε1 .

3 (Riemann-Lebesgue) We have limλ∈a∗ε1
,| Imλ|→∞ |̂f (λ)| = 0 .
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Corollary
Let f ∈ Lp(a, dµ)W with 1 < p < 2. Then:

1 f̂ (λ) is well def and holomorphic in the interior of on a∗εp = C(εpρ) + ia∗.

2 (Hausdorff-Young) Let 1/p + 1/q = 1. Then ∃Cp ≥ 0 so that

‖̂f (λ)‖q =
(∫

ia∗
|̂f (λ)|q dν(λ)

)1/q
≤ Cp‖f‖p .

3 (Riemann-Lebesgue) We have limλ∈a∗,|λ|→∞ |̂f (iλ)| = 0 .

Rem: Hausdorff-Young is an application of Riesz-Thorin interpolation thm to f 7→ f̂ . This operator
is of type (2, 2) by Plancherel (Opdam, 95) and of type (1,∞) by previous corollary.

Lemma (Flensted-Jensen & Koornwinder, 1973)
For f ∈ Lp(a, dµ)W , 1 ≤ p < 2, and g ∈ C∞c (a)W :

∫
ia∗ f̂ (λ)ĝ(λ)dν(λ) =

∫
a f (x)g(x)dµ(x)

Rem: Consequence of Paley-Wiener and Plancherel (Opdam, 95), ‖̂f‖∞ ≤ ‖f‖1 and
Hausdorff-Young.

Corollary
1 The hypergeometric Fourier transform is injective on Lp(a, dµ)W .

2 If f ∈ Lp(a, dµ)W and f̂ ∈ L1(ia∗, dν)W , then f (x) =
∫

ia∗ f̂ (λ)F−λ(x)dν(λ) a.e. x
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