The bounded hypergeometric functions associated with root systems

Angela Pasquale

Université de Lorraine

Joint work with E. K. Narayanan and S. Pusti

2012 Joint Mathematics Meetings, Boston AMS Special Session on Radon Transforms and Geometric Analysis (in honor of Sigurdur Helgason)

January 6-7, 2012

Jan 6-7, 2012 (AMS, Boston)

Bounded hypergeometric functions

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The bounded spherical functions

G/K = Riemannian symmetric space of the noncompact type

- G = connected noncompact semisimple Lie group with finite center
- K = maximal compact subgroup of G

Spherical functions = (normalized) K-invariant joint eigenfunctions of the commutative algebra of G-invariant differential operators on G/K

 \rightsquigarrow building blocks of the K-invariant harmonic analysis on G/K

- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition of the Lia algebra of G
- $\mathfrak{a} \subset \mathfrak{p}$ maximal abelian subspace (Cartan subspace)
- $\boldsymbol{\Sigma} = (\text{restricted}) \text{ roots of } (\mathfrak{g}, \mathfrak{a})$
- $\textit{W} = \textit{Weyl group of } \Sigma$

 \rightsquigarrow spherical functions are parametrized by $\mathfrak{a}_{\mathbb{C}}^{*}$ (modulo W)

- $\Sigma^+ =$ choice of positive roots in Σ
- m_{α} = multiplicity of the root $\alpha \in \Sigma$

$$\rho = 1/2 \sum_{\alpha \in \Sigma^+} m_{\alpha} \alpha$$

Harish-Chandra's integral formula: $\varphi_{\lambda}(gK) = \int_{K} e^{(\lambda - \rho)(H(gk))} dk$, $g \in G$, where $H(x) \in \mathfrak{a}$ is the Iwasawa component of $x \in G = KAN$ Then: $\varphi_{w\lambda} = \varphi_{\lambda}$ for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ and $w \in W$.

3

・ロト ・四ト ・ヨト ・ヨト

Recall $\rho = 1/2 \sum_{\alpha \in \Sigma^+} m_\alpha \alpha$ $C(\rho) = \text{convex hull in } \mathfrak{a}^* \text{ of } \{ w\rho : w \in W \}$

Theorem (Helgason & Johnson, 1969)

The spherical function φ_{λ} (with $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$) is bounded if and only if $\lambda \in C(\rho) + i\mathfrak{a}^{*}$.

In this talk:

- Extend the Helgason-Johnson's theorem to the hypergeometric functions associated with root systems (theory of Heckman and Opdam)
- 2 Applications to L^{p} -theory of the hypergeometric Fourier transform (1 $\leq p < 2$).

・ロト ・ 四ト ・ ヨト ・ ヨト …

Heckman-Opdam's hypergeometric functions

- The symmetric space G/K is replaced by a triple $(\mathfrak{a}, \Sigma, m)$ where:
 - $\mathfrak{a}=$ finite dim. Euclidean $\mathbb{R}\text{-vector}$ space, inner product $\langle\cdot,\cdot\rangle$
 - Σ = root system in \mathfrak{a}^* , with Weyl group *W*
 - $m = positive multiplicity function on \Sigma$

i.e. $m : \Sigma \rightarrow [0, +\infty[, W\text{-invariant: } m_{w\alpha} = m_{\alpha} \text{ for all } \alpha \in \Sigma, w \in W$

 $(\mathfrak{a}, \Sigma, m)$ is *geometric* if associated with a Riemannian symmetric space of the noncompact type

Commutative family D of differential operators associated with (a, Σ, m):
 For x ∈ a the Cherednik operator T_x is the difference-reflection operator on a (or a_C) defined for f ∈ C[∞](a) and H ∈ a by

$$T_{x}f(H) = \partial_{x}f(H) + \sum_{\alpha \in \Sigma^{+}} m_{\alpha}\alpha(x)\frac{f(H) - f(r_{\alpha}H)}{1 - e^{-2\alpha(H)}} - \rho(x)f(H)$$

where r_{α} = reflection across ker α .

 $\{x \in \mathfrak{a} \mapsto T_x\} \text{ commutative } \Rightarrow \text{ extends as algebra homomorphism } \{p \in S(\mathfrak{a}_{\mathbb{C}}) \mapsto T_p\}$ If $p \in S(\mathfrak{a}_{\mathbb{C}})^W$, then $D_p := T_p|_{C^{\infty}(\mathfrak{a})^W}$ is a differential operator on \mathfrak{a} (or $\mathfrak{a}_{\mathbb{C}}$). $\mathbb{D} = \mathbb{D}(\mathfrak{a}, \Sigma, m) := \{D_p : p \in S(\mathfrak{a}_{\mathbb{C}})^W\}$ • *Hypergeometric function* of spectral parameter $\lambda \in \mathfrak{a}^*_{\mathbb{C}}$:

unique W-invariant analytic function F_{λ} on a which satisfies the system of diff eqs

$$D_p F_{\lambda} = p(\lambda) F_{\lambda}, \qquad p \in S(\mathfrak{a}_{\mathbb{C}})^W,$$

 $F_{\lambda}(0) = 1$

Then: $F_{w\lambda} = F_{\lambda}$ for all $w \in W$. Examples:

(1)
$$(\mathfrak{a}, \Sigma, m)$$
 geometric: $\mathfrak{a} \equiv \exp \mathfrak{a} \cdot o \subset G/K$

 $\mathbb{D} \equiv$ radial components on \mathfrak{a}^+ of the *G*-invariant differential operators on G/K $F_{\lambda} \equiv \varphi_{\lambda}$ Harish-Chandra's spherical function of spectral parameter $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$

(2) rank-one (i.e. dim_{\mathbb{R}} $\mathfrak{a} = 1$): Jacobi function of 2nd kind

$$F_{\lambda}(x) = \frac{1}{2}F_{1}\left(\frac{m_{\alpha}/2 + m_{2\alpha} + \lambda}{2}, \frac{m_{\alpha}/2 + m_{2\alpha} - \lambda}{2}; \frac{m_{\alpha}/2 + m_{2\alpha} + 1}{2}; -\sinh^{2}x\right)$$

• Nonsymmetric hypergeometric function of spectral param $\lambda \in \mathfrak{a}^*_{\mathbb{C}}$ (Opdam, 1995): unique analytic function G_{λ} on \mathfrak{a} which satisfies the system of diff-difference equations

$$T_x G_\lambda = \lambda(x) G_\lambda, \qquad x \in \mathfrak{a}, \ G_\lambda(0) = 1$$

- Relation: $F_{\lambda}(x) = \frac{1}{|W|} \sum_{w \in W} G_{\lambda}(wx)$.
- Basic estimate (Schapira, 2008):
 - (1) F_{λ} real and positive if $\lambda \in \mathfrak{a}^*$
 - (2) $|F_{\lambda}| \leq F_{\operatorname{Re}\lambda}$ for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$

The Harish-Chandra series Φ_{λ}

Solution of the hypergeometric system of differential equations:

$$D_{
ho} \Phi = oldsymbol{
ho}(\lambda) \Phi\,, \qquad oldsymbol{
ho} \in oldsymbol{S}(\mathfrak{a}_{\mathbb{C}})^W$$

of the form:

$$\Phi_{\lambda}(x) = e^{(\lambda-
ho)(x)} \sum_{\mu\in\Lambda} \Gamma_{\mu}(\lambda) e^{-\mu(x)}, \qquad x\in\mathfrak{a}^+$$

where:

 $\Lambda = \left\{ \sum_{j=1} n_j \alpha_j : n_j \in \mathbb{N}_0 \right\}$ and $\{\alpha_1, \dots, \alpha_l\}$ basis simple roots associated with Σ^+ , $\Gamma_{\mu}(\lambda) =$ rational functions determined by the recursion relations

$$\Gamma_{0}(\lambda) = 1 \langle \mu, \mu - 2\lambda \rangle \Gamma_{\mu}(\lambda) = 2 \sum_{\alpha \in \Sigma^{+}} m_{\alpha} \sum_{\substack{k \in \mathbb{N} \\ \mu - 2k\alpha \in \Lambda}} \Gamma_{\mu - 2k\alpha}(\lambda) \langle \mu + \rho - 2k\alpha - \lambda, \alpha \rangle$$

Then $\Gamma_{\mu}(\lambda) = 0$ for $\mu \in \Lambda \setminus 2\Lambda$. Many singularities are in fact removable.

Notation:
$$\mathcal{H}_{\alpha,r} = \{\lambda \in \mathfrak{a}^*_{\mathbb{C}} : \lambda_{\alpha} = r\}$$
 where $\lambda_{\alpha} = \frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle}$
 $\Sigma_0^+ = \{\alpha \in \Sigma^+ : \alpha/2 \notin \Sigma\}$

Theorem (Opdam 1989, Heckman 1994)

(1) $\Gamma_{\mu}(\lambda)$ has at most simple poles along $\mathcal{H}_{\alpha,n}$ with $\alpha \in \Sigma_{0}^{+}$, $n \in \mathbb{N}$ and $2n\alpha \leq \mu$.

There is a tubular nbd U^+ of \mathfrak{a}^+ in $\mathfrak{a}_{\mathbb{C}}$ so that $\Phi_{\lambda}(x)$ is a meromorphic function of $(\lambda, x) \in \mathfrak{a}_{\mathbb{C}}^* \times U^+$ with at most simple poles along $\mathcal{H}_{\alpha,n}$ with $\alpha \in \Sigma_0^+$ and $n \in \mathbb{N}$.

Recall: For $\alpha \in \Sigma$ and $\lambda \in \mathfrak{a}^*_{\mathbb{C}}$, set $\lambda_{\alpha} = \frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle}$

Harish-Chandra's c-function is the meromorphic function on $\mathfrak{a}_{\mathbb{C}}^*$ defined by

$$\boldsymbol{c}(\lambda) = \boldsymbol{c}_{\mathsf{HC}} \prod_{\alpha \in \Sigma_0^+} \frac{2^{-\lambda_\alpha} \, \Gamma(\lambda_\alpha)}{\Gamma\left(\frac{\lambda_\alpha}{2} + \frac{m_\alpha}{4} + \frac{1}{2}\right) \Gamma\left(\frac{\lambda_\alpha}{2} + \frac{m_\alpha}{4} + \frac{m_{2\alpha}}{2}\right)},$$

where Γ is the gamma function and c_{HC} is a constant so that $c(\rho) = 1$.

Definition: $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ is *generic* if $\lambda_{\alpha} \notin \mathbb{Z}$ for all $\alpha \in \Sigma_0$.

Theorem (Heckman & Opdam, 1989; Opdam, 1995)

Let $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ be generic. Then:

• $\{\Phi_{w\lambda}(x) : w \in W\}$ is a basis of the C^{∞} solution space of the hypergeometric system of spectral parameter λ on \mathfrak{a}^+ .

2 For
$$x \in \mathfrak{a}^+$$

$$F_{\lambda}(x) = \sum_{w \in W} c(w\lambda) \Phi_{w\lambda}(x).$$

< 日 > < 同 > < 回 > < 回 > < □ > <

Asymptotic expansion of F_{λ}

• If $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ is generic and $x \in \mathfrak{a}^+$, then

$$F_{\lambda}(x) = \sum_{w \in W} c(w\lambda) \Phi_{w\lambda}(x)$$
$$\Phi_{\lambda}(x) = e^{(\lambda - \rho)(x)} \sum_{\mu \in 2\Lambda} \Gamma_{\mu}(\lambda) e^{-\mu(x)}$$

Hence

$$F_{\lambda}(x) = \sum_{\mu \in 2\Lambda} \sum_{w \in W} c(w\lambda) \Gamma_{\mu}(w\lambda) e^{(w\lambda - \rho - \mu)(x)}.$$

• If $\lambda = \lambda_0 \in \mathfrak{a}^*_{\mathbb{C}}$ is arbitrary (and WLOG $\langle \operatorname{Re} \lambda_0, \alpha \rangle \ge 0$ for all $\alpha \in \Sigma_0^+$), define:

$$\begin{split} & n_{\alpha} = (\lambda_{0})_{\alpha}, \qquad \sum_{\lambda_{0}}^{0} = \{\alpha \in \Sigma_{0}^{+} : n_{\alpha} = 0\}, \qquad \sum_{\lambda_{0}}^{+} = \{\alpha \in \Sigma_{0}^{+} : n_{\alpha} \in \mathbb{N}\}, \\ & \pi_{0}(\lambda) = \prod_{\alpha \in \Sigma_{\lambda_{0}}^{+} \cap W(\pm \Sigma_{0}^{+})} (\langle \lambda, \alpha \rangle - n_{\alpha} \langle \alpha, \alpha \rangle) \end{cases} \right\} \text{ products of linear factors, all vanishing at } \lambda_{0} \\ & p_{(\lambda)} = \pi_{0}(\lambda) p_{(\lambda)} + (\lambda) p_{(\lambda)} - (\lambda) & \text{independent of } w! \\ & \pi(\lambda) = \pi_{0}(\lambda) \prod_{\alpha \in \Sigma_{\lambda_{0}}^{+}} \langle \lambda, \alpha \rangle & \text{highest order term of } p(\lambda) \end{split}$$

く 同 ト く ヨ ト く ヨ ト

 $p(\lambda) = \pi_0(\lambda)p_{w,+}(\lambda)p_{w,-}(\lambda)$, product of linear factors, all vanishing at λ_0 $\pi(\lambda) =$ highest order term of $p(\lambda)$

Lemma

• There is a nbd U of λ_0 so that, for all $w \in W$ and $\mu \in 2\Lambda \setminus \{0\}$, the functions $\pi_0(\lambda)p_{w,-}(\lambda)c(w\lambda)$ and $p_{w,+}(\lambda)\Gamma_{\mu}(w\lambda)$ are holomorphic in U.

2 For all $x \in \mathfrak{a}$, we have

$$c_0 F_{\lambda_0}(x) = \partial(\pi) \Big(p(\lambda) F_{\lambda}(x) \Big) \Big|_{\lambda=\lambda_0}$$

where $c_0 = \partial(\pi)(p) = \partial(\pi)(\pi) > 0$.

$$\textcircled{3}$$
 Let $x_0 \in \mathfrak{a}^+$ be fixed. Then

$$c_0 F_{\lambda_0}(x) = \sum_{\mu \in 2\Lambda} \sum_{w \in W} \partial(\pi) \Big(\rho(\lambda) c(w\lambda) \Gamma_{\mu}(w\lambda) e^{(w\lambda - \rho - \mu)(x)} \Big) \Big|_{\lambda = \lambda_0}$$

where the series on the right-hand side converges uniformly in $x \in x_0 + \overline{\mathfrak{a}^+}$.

Remark/example: For $\lambda_0 = 0$ we have

$$\Sigma_{\lambda_0}^0 = \Sigma_0^+, \qquad \Sigma_{\lambda_0}^+ = \emptyset, \qquad p(\lambda) = \pi(\lambda) = \prod_{\alpha \in \Sigma_0^+} \langle \lambda, \alpha \rangle.$$

Then

$$c_0F_0(\lambda)=\partial(\pi)(\pi(\lambda)F_\lambda)|_{\lambda=0}$$
 where $c_0=\partial(\pi)(\pi)>0.$

(Harish-Chandra, Anker, Schapira)

Jan 6-7, 2012 (AMS, Boston)

$$\begin{array}{ll} \textbf{\textit{W}}_{\lambda_0} := \{ \textbf{\textit{w}} \in \textbf{\textit{W}} : \textbf{\textit{w}} \lambda_0 = \lambda_0 \}. \\ \textbf{\textit{b}}_0(\lambda) := \pi_0(\lambda) \textbf{\textit{c}}(\lambda) & \rightsquigarrow \textbf{\textit{b}}_0(\textbf{\textit{w}} \lambda_0) = \textbf{\textit{b}}_0(\lambda_0) \neq \textbf{0} \text{ for all } \textbf{\textit{w}} \in \textbf{\textit{W}}_{\lambda_0} \\ \rho_0 := \sum_{\alpha \in \Sigma_{\lambda_0}^0} \alpha & \rightsquigarrow \pi_0(\rho_0) > \textbf{0} \end{array}$$

Theorem

W

Let $x_0 \in \mathfrak{a}^+$ be fixed. Then for $x \in x_0 + \overline{\mathfrak{a}^+}$ we have

$$c_{0}F_{\lambda_{0}}(x) = \left(\frac{c_{0}}{\pi_{0}(\rho_{0})}b_{0}(\lambda_{0})\pi_{0}(x) + f_{\lambda_{0}}(x)\right)e^{(\lambda_{0}-\rho)(x)}$$

$$+ \sum_{w \in W \setminus W_{\lambda_{0}}} \left(b_{w}(\lambda_{0})\pi_{w,\lambda_{0}}(x) + f_{w,\lambda_{0}}(x)\right)e^{(w\lambda_{0}-\rho)(x)}$$

$$+ \sum_{\mu \in 2\Lambda \setminus \{0\}} \sum_{w \in W} f_{w,\mu,\lambda_{0}}(x)e^{(w\lambda_{0}-\rho-\mu)(x)}$$
where:

$$b_{\mu} = \partial(p)(\pi) = \partial(\pi)(\pi) > 0,$$

$$b_{\mu} = accordinate b_{\mu}(\lambda_{0}) = 0,$$

$$b_{\mu} = accordinate b_{\mu}$$

the constants $b_w(\lambda_0)$ and the polynomials $\pi_{w,\lambda_0}(x)$ are explicit, $f_{\lambda_0}(x)$ is a polynomial function of x of degree $< \deg \pi_0(x)$, $f_{w,\lambda_0}(x)$ is a polynomial function of x of degree $< \deg \pi_{w,\lambda_0}(x) = \deg \pi_0(x)$. The series converges uniformly in $x \in x_0 + \overline{\mathfrak{a}^+}$.

< ロ > < 同 > < 回 > < 回 >

The bounded hypergeometric functions

Theorem

The hypergeometric function F_{λ} is bounded if and only if $\lambda \in C(\rho) + i\mathfrak{a}^*$. Moreover, $|F_{\lambda}(x)| \leq 1$ for all $\lambda \in C(\rho) + i\mathfrak{a}^*$ and $x \in \mathfrak{a}$.

Proof (sketch).

 $\begin{array}{l} \leftarrow: (\text{Argument due to E. M. Stein}) \\ \text{Apply the maximum modulus principle to } \lambda \mapsto F_{\lambda}(x) \text{ with } x \in \mathfrak{a} \text{ fixed.} \\ \text{Since } |F_{\lambda}| \leq F_{\text{Re }\lambda}, \text{ the max of this function in } C(\rho) + i\mathfrak{a}^* \text{ is attained at } w\rho, w \in W. \\ \text{To compute } F_{w\rho}(x) = F_{\rho}(x): \\ G_{-\rho} \equiv 1 \text{ (from differential-difference equations)} \end{array}$

 w_0 = longest element in W. Then for all $x \in \mathfrak{a}$:

$$F_{\rho}(x) = F_{w_0\rho}(x) = F_{-\rho}(x) = |W|^{-1} \sum_{w \in W} G_{-\rho}(wx) = 1.$$

 $\Rightarrow: (\text{use asymptotic expansion of } F_{\lambda}) \\ \text{If } \operatorname{Re} \lambda_0 \in \overline{(\mathfrak{a}^*)^+} \setminus C(\rho), \text{ then there is } x_1 \in \mathfrak{a}^+ \text{ so that } (\operatorname{Re} \lambda_0 - \rho)(x_1) > 0. \\ \text{If } F_{\lambda_0} \text{ bounded, then } \lim_{t \to +\infty} F_{\lambda_0}(tx_1) e^{-t(\operatorname{Re} \lambda_0 - \rho)(x_1)} t^{-d} = 0. \\ \text{Here } d := \deg \pi_0. \\ \end{array}$

 $\lim_{t\to+\infty} F_{\lambda_0}(tx_1)e^{-t(\operatorname{Re}\lambda_0-\rho)(x_1)}t^{-d} = 0 \text{ and } \pi_0(x_1) \neq 0 \text{ as } x_1 \in \mathfrak{a}^+.$ Asymptotic expansion gives:

$$\begin{aligned} \left| \frac{F_{\lambda_0}(tx_1)e^{-t(\operatorname{Re}\lambda_0-\rho)(x_1)}}{t^d\pi_0(x_1)} - \left(\frac{b_0(\lambda_0)}{\pi_0(\rho_0)}e^{it\operatorname{Im}\lambda_0(x_1)}\right. \\ &+ \sum_{w \in W_{\operatorname{Re}\lambda_0} \setminus W_{\lambda_0}} \frac{b_w(\lambda_0)\pi_{w,\lambda_0}(x_1)}{c_0\pi_0(x_1)}e^{itw\operatorname{Im}\lambda_0(x_1)}\right) \right| = o(t) \qquad \text{as } t \to +\infty \,. \end{aligned}$$

It follows that

$$\lim_{\to +\infty} \left(\frac{b_0(\lambda_0)}{\pi_0(\rho_0)} e^{it \operatorname{Im} \lambda_0(x_1)} + \sum_{w \in W_{\operatorname{Re} \lambda_0} \setminus W_{\lambda_0}} \frac{b_w(\lambda_0) \pi_{w,\lambda_0}(x_1)}{c_0 \pi_0(x_1)} e^{itw \operatorname{Im} \lambda_0(x_1)} \right) = 0.$$

Since $x_1 \in \mathfrak{a}^+$ we have $w \operatorname{Im} \lambda_0(x_1) \neq \operatorname{Im} \lambda_0(x_1)$ for all $w \in W_{\operatorname{Re} \lambda_0} \setminus W_{\lambda_0} \subset W \setminus W_{\operatorname{Im} \lambda_0}$. The limit 0 is possible only if $\frac{b_0(\lambda_0)}{\pi_0(\rho_0)} = 0$. Contradiction.

Applications: L^p-harmonic analysis

Hypergeometric Fourier transform of a (suff regular) *W*-invariant $f : \mathfrak{a} \to \mathbb{C}$:

$$\widehat{f}(\lambda) := \int_{\mathfrak{a}} f(x) F_{\lambda}(x) d\mu(x), \qquad \lambda \in \mathfrak{a}_{\mathbb{C}}^{*},$$

where

$$d\mu(x) = \prod_{\alpha \in \Sigma^+} \left| e^{lpha(x)} - e^{-lpha(x)} \right|^{m_{lpha}} dx.$$

Plancherel measure (Opdam, 1995): $d\nu(\lambda) = |c(\lambda)|^{-2} d\lambda$.

For
$$1 \le p < 2$$
, set: $\epsilon_p = \frac{2}{p} - 1$
 $C(\epsilon_p \rho) = \text{convex hull in } \mathfrak{a}^* \text{ of the set } \{\epsilon_p w \rho : w \in W\}$
 $\mathfrak{a}^*_{\epsilon_p} = C(\epsilon_p \rho) + i\mathfrak{a}^*$

Corollary

Let $f \in L^1(\mathfrak{a}, d\mu)^W$. Then:

(1) $\widehat{f}(\lambda)$ is well def and continuous on $\mathfrak{a}_{\epsilon_1}^* = C(\rho) + i\mathfrak{a}^*$, holomorphic in its interior.

2
$$|\widehat{f}(\lambda)| \leq \|f\|_1$$
 for $\lambda \in \mathfrak{a}_{\epsilon_1}^*$.

(Riemann-Lebesgue) We have $\lim_{\lambda \in \mathfrak{a}_{\epsilon_{1}}^{*}, | \operatorname{Im} \lambda| \to \infty} |\widehat{f}(\lambda)| = 0$.

イロン 人間 とくほ とくほう

Corollary

Let $f \in L^{p}(\mathfrak{a}, d\mu)^{W}$ with 1 . Then:

(1) $\widehat{f}(\lambda)$ is well def and holomorphic in the interior of on $\mathfrak{a}_{\epsilon_p}^* = C(\epsilon_p \rho) + i\mathfrak{a}^*$.

(Hausdorff-Young) Let 1/p + 1/q = 1. Then $\exists C_p \ge 0$ so that

$$\|\widehat{f}(\lambda)\|_q = \Big(\int_{j\mathfrak{a}^*} |\widehat{f}(\lambda)|^q \, d\nu(\lambda)\Big)^{1/q} \leq C_p \|f\|_p.$$

(Riemann-Lebesgue) We have $\lim_{\lambda \in \mathfrak{a}^*, |\lambda| \to \infty} |\widehat{f}(i\lambda)| = 0$.

Rem: Hausdorff-Young is an application of Riesz-Thorin interpolation thm to $f \mapsto \hat{f}$. This operator is of type (2, 2) by Plancherel (Opdam, 95) and of type $(1, \infty)$ by previous corollary.

Lemma (Flensted-Jensen & Koornwinder, 1973)

For $f \in L^p(\mathfrak{a}, d\mu)^W$, $1 \le p < 2$, and $g \in C^{\infty}_c(\mathfrak{a})^W$: $\int_{i\mathfrak{a}^*} \widehat{f}(\lambda)\overline{\widehat{g}(\lambda)}d\nu(\lambda) = \int_{\mathfrak{a}} f(x)\overline{g(x)}d\mu(x)$

Rem: Consequence of Paley-Wiener and Plancherel (Opdam, 95), $\|\hat{f}\|_{\infty} \leq \|f\|_1$ and Hausdorff-Young.

Corollary

(1) The hypergeometric Fourier transform is injective on $L^{p}(\mathfrak{a}, d\mu)^{W}$.

2 If
$$f \in L^p(\mathfrak{a}, d\mu)^W$$
 and $\hat{f} \in L^1(i\mathfrak{a}^*, d\nu)^W$, then $f(x) = \int_{i\mathfrak{a}^*} \hat{f}(\lambda) F_{-\lambda}(x) d\nu(\lambda)$ a.e. x

Jan 6-7, 2012 (AMS, Boston)