Local injectivity for weighted Radon transforms

Jan Boman, Stockholm University

Jan 6, 2012

Let $m(x, \xi, \eta)$ be a smooth, positive function defined in a neighborhood of $(0, 0, 0) \in \mathbf{R}^3$. For f(x, y) supported in $y \ge x^2$ set

$$R_m f(\xi,\eta) = \int f(x,\xi x + \eta) m(x,\xi,\eta) dx, \quad (\xi,\eta) \approx (0,0).$$

Jan Boman, Stockholm University

Let $m(x, \xi, \eta)$ be a smooth, positive function defined in a neighborhood of $(0, 0, 0) \in \mathbf{R}^3$. For f(x, y) supported in $y \ge x^2$ set

$$R_m f(\xi,\eta) = \int f(x,\xi x + \eta) m(x,\xi,\eta) dx, \quad (\xi,\eta) \approx (0,0).$$

Question. For which $m(x, \xi, \eta)$ is it true that

$$R_m f(\xi,\eta) = 0$$
 for $(\xi,\eta) \approx (0,0)$

implies

$$f(x,y) = 0$$
 for $(x,y) \approx (0,0)$.

Jan Boman, Stockholm University

Case $m(x, \xi, \eta) = 1$: classical Radon transform.

Theorem (Strichartz 1982). Assume f(x, y) = 0 for $y < x^2$ and

$$Rf(\xi,\eta) = \int f(x,\xi x+\eta) dx = 0, \quad (\xi,\eta) \approx (0,0)$$

Then f(x, y) = 0 for $(x, y) \approx (0, 0)$.

Case $m(x, \xi, \eta) = 1$: classical Radon transform.

Theorem (Strichartz 1982). Assume f(x, y) = 0 for $y < x^2$ and

$$Rf(\xi,\eta) = \int f(x,\xi x+\eta) dx = 0, \quad (\xi,\eta) \approx (0,0)$$

Then f(x, y) = 0 for $(x, y) \approx (0, 0)$.

This implies a special case of Helgason's support theorem from 1965:

Let *K* be compact, convex $\subset \mathbf{R}^n$. Assume $Rf(L) := \int_L f \, ds = 0$ for all hyperplanes *L* not intersecting *K*. Then f = 0 outside *K*.

Proof of Strichartz' theorem. Set

$$G_k(\xi,\eta) = \int x^k f(x,\xi x+\eta) dx, \quad k=0,1,\ldots.$$

The assumption means that $G_0(\xi, \eta) = 0$. Hence

$$\partial_{\xi}G_0(\xi,\eta) = \int x f'_y(x,\xi x + \eta) dx = 0.$$

Jan Boman, Stockholm University

Proof of Strichartz' theorem. Set

$$G_k(\xi,\eta) = \int x^k f(x,\xi x+\eta) dx, \quad k=0,1,\ldots.$$

The assumption means that $G_0(\xi, \eta) = 0$. Hence

$$\partial_{\xi}G_0(\xi,\eta) = \int x f'_y(x,\xi x+\eta) dx = 0.$$

The last expression is equal to $\partial_{\eta} G_1(\xi, \eta)$, so we have also

$$\partial_{\eta}G_1(\xi,\eta) = \partial_{\xi}G_0(\xi,\eta) = 0, \quad (\xi,\eta) \approx (0,0).$$

But $G_1(\xi, \eta) = 0$ if the line $y = \xi x + \eta$ does not meet the support of *f*, that is, if $\eta < -\xi^2/4$. Hence $G_1(\xi, \eta) = 0$ in a nbh of (0,0).

Proof of Strichartz' theorem. Set

$$G_k(\xi,\eta) = \int x^k f(x,\xi x+\eta) dx, \quad k=0,1,\ldots.$$

The assumption means that $G_0(\xi, \eta) = 0$. Hence

$$\partial_{\xi}G_0(\xi,\eta) = \int x f'_y(x,\xi x+\eta) dx = 0.$$

The last expression is equal to $\partial_{\eta} G_1(\xi, \eta)$, so we have also

$$\partial_{\eta}G_1(\xi,\eta) = \partial_{\xi}G_0(\xi,\eta) = 0, \quad (\xi,\eta) \approx (0,0).$$

But $G_1(\xi, \eta) = 0$ if the line $y = \xi x + \eta$ does not meet the support of *f*, that is, if $\eta < -\xi^2/4$. Hence $G_1(\xi, \eta) = 0$ in a nbh of (0,0). This process can be continued, because the same argument shows that

$$\partial_{\xi} G_k(\xi, \eta) = \partial_{\eta} G_{k+1}(\xi, \eta)$$
 for all k .

So we obtain $G_k(\xi, \eta) = 0$ for all *k* in a fixed neighborhood of the origin, which means in particular that

$$G_k(0,\eta) = \int x^k f(x,\eta) dx = 0$$
 for all $k, \eta < \delta$,

hence $f(x, \eta) = 0$ for all x and all η in a nbh of 0, which completes the proof.

Theorem. R_m is locally injective if $m(x, \xi, \eta)$ is real analytic and positive (JB and Quinto, 1987).

Theorem (JB 1993). There exists a compactly supported function *f* in the plane, not identically zero, and a positive, smooth weight function $m_L(x, y)$ such that

 $\int_{L} fm_{L} ds = 0 \quad \text{for all lines } L \text{ in the plane.}$

Theorem (JB 1993). There exists a compactly supported function *f* in the plane, not identically zero, and a positive, smooth weight function $m_L(x, y)$ such that

$$\int_{L} fm_{L} ds = 0 \quad \text{for all lines } L \text{ in the plane.}$$

Theorem (JB 2010). The set of $m(x, \xi, \eta)$ for which R_m is not *locally injective* is dense in the set of smooth, positive weight functions.

On the other hand, it is well known that the set of weight functions *m* for which R_m is *globally* injective is open in the C^1 topology.

Proposition. There exists $m(x, \xi, \eta) \in C^{\infty}$, positive, and $f \in C^{\infty}$ such that supp $f \subset \{|x| \le y\}, (0, 0) \in \text{supp } f$, and

$$\int f(x,\xi x+\eta)m(x,\xi,\eta)dx=0 \quad \text{for } |\xi|<1/2, \eta<1.$$

Jan Boman, Stockholm University

Proposition. There exists $m(x, \xi, \eta) \in C^{\infty}$, positive, and $f \in C^{\infty}$ such that supp $f \subset \{|x| \le y\}, (0, 0) \in \text{supp } f$, and

$$\int f(x,\xi x+\eta)m(x,\xi,\eta)dx=0$$
 for $|\xi|<1/2, \eta<1.$

Proposition. There exists $m(x, \xi, \eta) \in C^{\infty}$, positive, and $f \in C^{\infty}$ such that supp $f \subset \{|x| \le y\}, (0, 0) \in \text{supp } f$, and

0

$$\int f(x,\xi x+\eta)m(x,\xi,\eta)dx=0 \quad \text{for } |\xi|<1/2, \eta<1.$$

Assume f(t) is a continuous function that changes sign on [a, b]. Then there exists a smooth, positive function m(t) such that $\int_{a}^{b} f(t)m(t)dt = 0$.

Proof idea. Choose f(x, y) first, then define $m(x, \xi, \eta)$ by

$$m(x,y,L) = 1 - c(L)f(x,y), \quad (x,y) \in L.$$

Then

$$R_m f(L) = \int_L f(1-c_L f) dx = \int_L f dx - c(L) \int_L f^2 dx,$$

so $R_m f = 0$ iff $c(L) = \int_L f \, dx \Big/ \int_L f^2 dx.$

If $\int_L f \, dx$ is sufficiently small, then m > 0.

Choose $f_k(x, y) = \phi(2^k x, 2^k y) \cos 4^k x$,

where $\phi \in C^{\infty}$, is supported in the rectangle

$$|x| \le 1, \quad 1 \le y \le 3,$$

 $\phi = 1$ in a slighly smaller rectangle, and

$$f(x,y) = \sum_{k=1}^{\infty} f_k(x,y)/k!.$$

Jan Boman, Stockholm University

The following is obvious:

$$f \in C^{\infty}$$
, $\operatorname{supp} f \subset \{|x| \leq y\}$
 $\int_{L(\xi,\eta)} f^2 dx > 0 \quad \text{if } \eta > 0.$

Hence

$$c(L) = C(L(\xi,\eta)) = \int_L f dx \Big/ \int_L f^2 dx \in C^{\infty}, \quad \eta > 0.$$

Jan Boman, Stockholm University Local injectivity

Lemma. For every *p* there exists C_p such that

$$\left|\partial^{\alpha}_{(\xi,\eta)}\int_{\mathcal{L}(\xi,\eta)}f_{k}dx\right|\leq C_{p}2^{-kp}, \quad |\alpha|\leq p.$$

Note: if *L* intersects supp f_k and $|\xi| < 1/2$, then $\eta \sim 2^{-k}$.

We can make the c(L) smaller by introducing a parameter λ in the definition of f_k ,

$$f_k(x, y) = \phi(2^k x, 2^k y) \cos 4^k \lambda x,$$

and choosing λ sufficiently large. This will make

$$m(x,\xi,\eta)=1-c(L)f(x,y)$$

as close to 1 as we like.

We can make the c(L) smaller by introducing a parameter λ in the definition of f_k ,

$$f_k(x, y) = \phi(2^k x, 2^k y) \cos 4^k \lambda x,$$

and choosing λ sufficiently large. This will make

$$m(x,\xi,\eta)=1-c(L)f(x,y)$$

as close to 1 as we like. Moreover, starting with an arbitrary $m_0(x, y, L)$ and choosing

$$egin{aligned} m(x,y,L) &= m_0(x,y,L) - c(L)f(x,y), \ c(L) &= \int_L fm_0 dx \Big/ \int f^2 dx \end{aligned}$$

we can make m(x, y, L) as close as we wish to an arbitrary given $m_0(x, y, L)$.

The attenuated Radon transform

Denote for a moment points in the plane by $\mathbf{x} = (x_1, x_2)$ instead of (x, y). The attenuation weights can then be written

$$m(\mathbf{x}, L) = \exp\left(-\int_{L_{\mathbf{x}}} a(\cdot) ds\right), \quad \mathbf{x} \in L,$$

for some compactly supported function $a(\mathbf{x})$ on the plane. Here $L_{\mathbf{x}}$ is one of the segments of the line L, divided at the point \mathbf{x} . In the familiar coordinates (ω, p) , where $L(\omega, p)$ is the line $\mathbf{x} \cdot \omega = \omega_1 x_1 + \omega_2 x_2 = p$, the attenuation weight can be written

$$m(\mathbf{x},\omega) = \exp\bigg(-\int_0^\infty a(\mathbf{x}+t\omega^{\perp})dt\bigg). \tag{1}$$

Jan Boman, Stockholm University

Inversion formulas for this class of $m(\mathbf{x}, p)$ were proved by:

Arbuzov, Bukhgeim, and Kazantsev 1998 Novikov 2002 Natterer 2001 Boman and Strömberg 2004 Bal 2004 Fokas and Sung 2005

JB and Strömberg proved an inversion formula under the more general condition that $m(\mathbf{x}, \omega)$ is a product of a function of type (1) and one of the type

$$m(\mathbf{x},\omega) = \exp\bigg(\int_0^\infty \langle \omega^\perp, b(\mathbf{x} + t\omega^\perp) \rangle dt\bigg),$$

where $b(\mathbf{x}) = (b_1(\mathbf{x}), b_2(\mathbf{x}))$ is a vector field on the plane. Equivalently

$$\langle \omega^{\perp}, \partial_{\mathbf{x}} \rangle \log m(\mathbf{x}, \omega) = a(\mathbf{x}) + \omega_1 b_1(\mathbf{x}) + \omega_2 b_2(\mathbf{x}).$$

JB and Strömberg proved an inversion formula under the more general condition that $m(\mathbf{x}, \omega)$ is a product of a function of type (1) and one of the type

$$m(\mathbf{x},\omega) = \exp\bigg(\int_0^\infty \langle \omega^\perp, b(\mathbf{x} + t\omega^\perp) \rangle dt\bigg),$$

where $b(\mathbf{x}) = (b_1(\mathbf{x}), b_2(\mathbf{x}))$ is a vector field on the plane. Equivalently

$$\langle \omega^{\perp}, \partial_{\mathbf{x}} \rangle \log m(\mathbf{x}, \omega) = a(\mathbf{x}) + \omega_1 b_1(\mathbf{x}) + \omega_2 b_2(\mathbf{x}).$$

If $a(\mathbf{x}) = 0$, then $m(\mathbf{x}, \omega)$ is ω -even, $m(\mathbf{x}, -\omega) = m(\mathbf{x}, \omega)$, up to a trivial factor, and if $b_1(\mathbf{x}) = b_2(\mathbf{x}) = 0$, then log $m(\mathbf{x}, \omega)$ is odd up to a trivial term.

By a trivial factor I mean a factor $q(\mathbf{x}, L) = c(L)$ that depends only on the line *L*.

For instance, if $b_1(\mathbf{x}) = b_2(\mathbf{x}) = 0$ we can write

$$\log m(\mathbf{x}, L) = \int_{L_{\mathbf{x}}} a(\cdot) ds - \int_{L} a(\cdot) ds = -\int_{L'_{\mathbf{x}}} a(\cdot) ds,$$

where $L_{\mathbf{x}} \cup L'_{\mathbf{x}} = L$.

Jan Boman, Stockholm University Local injectiv

For instance, if $b_1(\mathbf{x}) = b_2(\mathbf{x}) = 0$ we can write

$$\log m(\mathbf{x}, L) = \int_{L_{\mathbf{x}}} a(\cdot) ds - \int_{L} a(\cdot) ds = -\int_{L'_{\mathbf{x}}} a(\cdot) ds,$$

where $L_{\mathbf{x}} \cup L'_{\mathbf{x}} = L$.

Jan Boman, Stockholm University

With affine coordinates, $y = \xi x + \eta$, we have $\omega = (\xi, -1)$, $\omega^{\perp} = (1, \xi)$, and the condition on $m(x, y, \xi)$ in the case a = 0 can be written

$$(\partial_x + \xi \partial_y) \log m(x, y, \xi) = b_1(x, y) + \xi b_2(x, y).$$
(2)

This condition is invariant under projective transformations.

With affine coordinates, $y = \xi x + \eta$, we have $\omega = (\xi, -1)$, $\omega^{\perp} = (1, \xi)$, and the condition on $m(x, y, \xi)$ in the case a = 0 can be written

$$(\partial_x + \xi \partial_y) \log m(x, y, \xi) = b_1(x, y) + \xi b_2(x, y).$$
(2)

This condition is invariant under projective transformations.

Projective transformations have the property

$$rac{ds_{\widetilde{L}}}{ds_L} = lpha(\mathbf{x})eta(L).$$

Theorem (Gindikin 2009). Assume that $m(x, \xi, \eta)$ satisfies

$$\left(\partial_{\xi} - x \,\partial_{\eta}\right) \log m(x,\xi,\eta) = x \,a(\xi,\eta) + b(\xi,\eta). \tag{3}$$

for some functions $a(\xi, \eta)$ and $b(\xi, \eta)$. Then

$$f(0,0) = c \int \int \frac{(\partial_{\eta} + \boldsymbol{a}(\xi,\eta)) \boldsymbol{R}_{m}(\xi,\eta)}{m(0,\xi,\eta)} \frac{d\eta}{\eta} d\xi.$$

Jan Boman, Stockholm University

Theorem (Gindikin 2009). Assume that $m(x, \xi, \eta)$ satisfies

$$\left(\partial_{\xi} - x \,\partial_{\eta}\right) \log m(x,\xi,\eta) = x \,a(\xi,\eta) + b(\xi,\eta). \tag{3}$$

for some functions $a(\xi, \eta)$ and $b(\xi, \eta)$. Then

$$f(0,0) = c \int \int \frac{(\partial_{\eta} + \boldsymbol{a}(\xi,\eta)) \boldsymbol{R}_{m}(\xi,\eta)}{m(0,\xi,\eta)} \frac{d\eta}{\eta} d\xi.$$

Note that (2) and (3) are related by the replacement of variables according to the scheme $(x, y) \leftrightarrow (\xi, \eta)$. Moreover, R_m satisfies (2) if and only if R_m^* satisfies (3), and vice versa.

Theorem (Gindikin 2009). Assume that $m(x, \xi, \eta)$ satisfies

$$\left(\partial_{\xi} - x \,\partial_{\eta}\right) \log m(x,\xi,\eta) = x \,a(\xi,\eta) + b(\xi,\eta). \tag{3}$$

for some functions $a(\xi, \eta)$ and $b(\xi, \eta)$. Then

$$f(0,0) = c \int \int \frac{(\partial_{\eta} + \boldsymbol{a}(\xi,\eta)) \boldsymbol{R}_{m}(\xi,\eta)}{m(0,\xi,\eta)} \frac{d\eta}{\eta} d\xi.$$

Note that (2) and (3) are related by the replacement of variables according to the scheme $(x, y) \leftrightarrow (\xi, \eta)$. Moreover, R_m satisfies (2) if and only if R_m^* satisfies (3), and vice versa.

The operator $\partial_{\xi} - x \partial_{\eta}$ appearing in Gindikin's condition is the directional derivative in the direction of rotating the line through a fixed point (*x*, *y*). Because

$$\partial_{\xi}\big(m(x,\xi,y-\xi x)\big)=m'_{\xi}(x,\xi,y-\xi x)-x\,m'_{\eta}(x,\xi,y-\xi x).$$

Jan Boman, Stockholm University

Sketch of proof. Set

$$G_k(\xi,\eta) = \int x^k f(x,\xi x + \eta) m(x,\xi,\eta) dx.$$

We saw above that if $m(x, \xi, \eta) = 1$, then

$$\partial_{\xi} G_k = \partial_{\eta} G_{k+1}$$
 for all k .

In this case we have instead

$$(\partial_{\xi} - b(\xi, \eta))G_k = (\partial_{\eta} - a(\xi, \eta))G_{k+1}$$

Sketch of proof. Set

$$G_k(\xi,\eta) = \int x^k f(x,\xi x+\eta) m(x,\xi,\eta) dx.$$

We saw above that if $m(x, \xi, \eta) = 1$, then

$$\partial_{\xi} G_k = \partial_{\eta} G_{k+1}$$
 for all k .

In this case we have instead

$$\left(\partial_{\xi} - b(\xi, \eta)\right)G_k = \left(\partial_{\eta} - a(\xi, \eta)\right)G_{k+1}.$$

In fact $\partial_{\xi}G_k = \int x^{k+1}f'_y \, m \, dx + \int x^k fm'_{\xi} \, dx$, and

Jan Boman, Stockholm University

Sketch of proof. Set

$$G_k(\xi,\eta) = \int x^k f(x,\xi x+\eta) m(x,\xi,\eta) dx.$$

We saw above that if $m(x, \xi, \eta) = 1$, then

$$\partial_{\xi} G_k = \partial_{\eta} G_{k+1}$$
 for all k .

In this case we have instead

$$(\partial_{\xi} - b(\xi, \eta))G_{k} = (\partial_{\eta} - a(\xi, \eta))G_{k+1}.$$

In fact $\partial_{\xi}G_{k} = \int x^{k+1}f'_{y} m dx + \int x^{k}fm'_{\xi} dx$, and
 $\partial_{\eta}G_{k+1} = \int x^{k+1}f'_{y} m dx + \int x^{k+1}fm'_{\eta} dx.$

Jan Boman, Stockholm University

Theorem (JB 2009). Assume $m(x, \xi, \eta)$ satisfies Gindikin's condition (3). Then local injectivity holds for R_m .

Sketch of proof. Set

$$G_k(\xi,\eta) = \int x^k f(x,\xi x+\eta) m(x,\xi,\eta) dx.$$

We saw above that if $m(x, \xi, \eta) = 1$, then

$$\partial_{\xi} G_k = \partial_{\eta} G_{k+1}$$
 for all k .

In this case we have instead

$$(\partial_{\xi} - b(\xi, \eta))G_{k} = (\partial_{\eta} - a(\xi, \eta))G_{k+1}.$$

In fact $\partial_{\xi}G_{k} = \int x^{k+1}f'_{y}mdx + \int x^{k}fm'_{\xi}dx$, and
 $\partial_{\eta}G_{k+1} = \int x^{k+1}f'_{y}mdx + \int x^{k+1}fm'_{\eta}dx.$

Arguing as before we can use this fact to prove that $G_k(\xi, \eta) = 0$ for all *k* in a fixed nbh of the origin, which implies the assertion.

Jan Boman, Stockholm University

Given a 2-parametric curve family

$$y = u(x, \xi, \eta) \approx \eta + \xi x + \mathcal{O}(x^2)$$

and a weight function $m(x, \xi, \eta)$, set

$$Rf(\xi,\eta) = R_{u,m}f(\xi,\eta) = \int f(x,u(x,\xi,\eta))m(x,\xi,\eta)dx, \quad (4)$$

and ask the same question as before.

To define *R* invariantly, denote (x, y)-space by *X* and the space of curves by Γ . Then the equation $y = u(x, \xi, \eta)$ defines a hypersurface *Z* in the product space $X \times \Gamma$. The hypersurface *Z* is the incidence relation:

$$\{(\mathbf{X},\gamma); \mathbf{X}\in\gamma\}.$$

Using the projections

we can define two kinds of fibers on Z:

$$\pi_{\Gamma}^{-1}(\gamma)$$
 and $\pi_{X}^{-1}(\mathbf{x})$.

and projecting those down to X and Γ we obtain

$$\pi_X(\pi_{\Gamma}^{-1}(\gamma))$$
 and $\pi_{\Gamma}(\pi_X^{-1}(\mathbf{x})).$

If μ is a measure on Z and $f \in C(X)$, $\varphi \in C_c(\Gamma)$ we can form

$$\langle \mu, (f \circ \pi_X)(\varphi \circ \pi_{\Gamma}) \rangle = \langle Rf, \varphi \rangle = \langle f, R^* \varphi \rangle.$$

If $\mu = m(x, \xi, \eta) dx d\xi d\eta$ we get back the expression (4) for *Rf*. This is the double fibration setup introduced by Helgason and Gelfand.

If μ is a measure on Z and $f \in C(X)$, $\varphi \in C_c(\Gamma)$ we can form

$$\langle \mu, (f \circ \pi_{X})(\varphi \circ \pi_{\Gamma}) \rangle = \langle Rf, \varphi \rangle = \langle f, R^{*}\varphi \rangle.$$

If $\mu = m(x, \xi, \eta) dx d\xi d\eta$ we get back the expression (4) for *Rf*.

This is the double fibration setup introduced by Helgason and Gelfand.

Question. For which curve families and densities is it true that unique continuation across γ_0 holds near \mathbf{x}_0 for solutions of Rf = 0 in the sense that

 $\sup f \subset \gamma_0^+ \cup \{\mathbf{x}_0\} \quad \text{and} \quad Rf = 0 \text{ near } \mathbf{x}_0$ $\implies f = 0 \quad \text{near } \mathbf{x}_0.$ $\bigvee_0^+ \quad \bigvee_{\mathbf{x}_0}^{\mathbf{x}_0} \quad \bigvee_0^{\mathbf{x}_0}$

Jan Boman, Stockholm University

The condition on $\mu = m(x, \xi, \eta) dx d\xi d\eta$ can be invariantly expressed as follows:

there exists a 1-form σ on Γ such that $V(\mu) = (\pi_{\Gamma}^*(\sigma) \sqcup V)\mu$ for all vector fields V (5) that are tangent to the fibers $\pi_X^{-1}(\mathbf{x})$.

The operation of a vector field on a density is defined by $\langle V(\mu), \varphi \rangle = -\langle \mu, V(\varphi) \rangle$.

The symbol $\hfill denotes contraction between a 1-form and a vector field.$

The condition on $\mu = m(x, \xi, \eta) dx d\xi d\eta$ can be invariantly expressed as follows:

there exists a 1-form σ on Γ such that $V(\mu) = (\pi_{\Gamma}^*(\sigma) \sqcup V)\mu$ for all vector fields V (5) that are tangent to the fibers $\pi_X^{-1}(\mathbf{x})$.

The operation of a vector field on a density is defined by $\langle V(\mu), \varphi \rangle = -\langle \mu, V(\varphi) \rangle$.

The symbol $\hfill denotes contraction between a 1-form and a vector field.$

In the special case when Γ is the manifold of lines $y = \xi x + \eta$, condition (5) means the same as (3), that is

$$(\partial_{\xi} - x\partial_{\eta})m(\xi,\eta,x) = (a(\xi,\eta) + x b(\xi,\eta))m(\xi,\eta,x).$$

To see this, choose $\sigma = a(\xi, \eta)d\xi + b(\xi, \eta)d\eta$. The fiber $\pi_X^{-1}(\mathbf{x}) = \pi_X^{-1}(x, y)$ is

$$\{(\xi,\eta,\mathbf{X});\,\xi\mathbf{X}+\eta=\mathbf{y}\}$$

The vector field $V = \partial_{\xi} - x\partial_{\eta}$ is tangent to those fibers. By definition $V(\mu) = (\partial_{\xi} - x\partial_{\eta})m(\xi, \eta, x)dxd\xi d\eta$. Moreover $\pi^*_{\Gamma}(\sigma) \sqcup V = a(\xi, \eta) - x b(\xi, \eta)$, which proves the claim.

To formulate the condition on *Z* we solve η from the equation $y = u(\xi, \eta, x)$, obtaining $\eta = \rho(\xi, x, y)$. The condition on *Z* is as follows: the functions $\xi \mapsto \eta = \rho(\xi, x, y)$ are solutions of an ODE (with *x*, *y* as parameters)

$$\eta'' = \Psi(\xi, \eta, \eta'), \tag{6}$$

where $\Psi(\xi, \eta, p)$ is a polynomial in *p* of degree at most 3.

Theorem. *R* is locally injective if (5) and (6) are satisfied.

A 2-parametric family of curves in the plane can be defined by a second order differential equation

$$y'' = \Phi(x, y, p), \quad p = dy/dx.$$
 (7)

Proposition. The class of differential equations (7) for which $p \mapsto \Phi(x, y, p)$ is a polynomial of degree ≤ 3 is invariant under smooth coordinate transformations in the plane.

See Arnold, Geometric aspects of the theory of ODE, chapter 1, $\S6$.

The condition used in the proof is

$$ho_{\xi\xi}'' = a_0 (
ho_{\xi}')^2 + a_1
ho_{\xi}' + a_2$$

for some functions a_i that are constant on fibers $\pi_{\Gamma}^{-1}(\gamma)$, that is

$$a_j(x,y,\xi) = A_j(\xi,y-\xi x)$$

for some functions $A_j(\xi, \eta)$.

The condition used in the proof is

$$ho_{\xi\xi}'' = a_0 (
ho_{\xi}')^2 + a_1
ho_{\xi}' + a_2$$

for some functions a_i that are constant on fibers $\pi_{\Gamma}^{-1}(\gamma)$, that is

$$a_j(x,y,\xi) = A_j(\xi,y-\xi x)$$

for some functions $A_j(\xi, \eta)$.

Note: the set of curves γ passing through (x, y) forms a curve in (ξ, η) -space, defined by $\eta = \rho(\xi, x, y)$.

- V. I. Arnold, Geometric methods in the theory of ordinary differential equations, Second edition, Springer-Verlag 1988.
- J. Boman, A local uniqueness theorem for weighted Radon transforms, Inverse Probl. Imaging **4** (2010), 631-637.
- J. Boman, *Local non-injectivity for weighted Radon transforms*, to appear in Contemp. Math. **559**, (2012).
- J. Boman and J.-O. Strömberg, *Novikov's inversion formula for the attenuated Radon transform a new approach*, J. Geom. Anal. **14** (2004), 185-198.
- I. M. Gelfand, M. I. Graev, Z. Ya. Shapiro, *Differential forms and integral geometry*, Funct. Anal. Appl. 3 (1969), 101-114.
- I. M. Gelfand, S. G. Gindikin, and Z. Ya. Shapiro, A local problem in integral geometry in a space of curves, Funct. Anal. Appl. 13 (1979), 87-102.