Local injectivity for weighted Radon transforms

Jan Boman, Stockholm University

Jan 6, 2012

Let $m(x, \xi, \eta)$ be a smooth, positive function defined in a neighborhood of $(0,0,0) \in \mathbf{R}^{3}$. For $f(x, y)$ supported in $y \geq x^{2}$ set

$$
R_{m} f(\xi, \eta)=\int f(x, \xi x+\eta) m(x, \xi, \eta) d x, \quad(\xi, \eta) \approx(0,0)
$$

Let $m(x, \xi, \eta)$ be a smooth, positive function defined in a neighborhood of $(0,0,0) \in \mathbf{R}^{3}$. For $f(x, y)$ supported in $y \geq x^{2}$ set

$$
R_{m} f(\xi, \eta)=\int f(x, \xi x+\eta) m(x, \xi, \eta) d x, \quad(\xi, \eta) \approx(0,0)
$$

Question. For which $m(x, \xi, \eta)$ is it true that

$$
R_{m} f(\xi, \eta)=0 \quad \text { for }(\xi, \eta) \approx(0,0)
$$

implies

$$
f(x, y)=0 \quad \text { for }(x, y) \approx(0,0) .
$$

Case $m(x, \xi, \eta)=1$: classical Radon transform.
Theorem (Strichartz 1982). Assume $f(x, y)=0$ for $y<x^{2}$ and

$$
R f(\xi, \eta)=\int f(x, \xi x+\eta) d x=0, \quad(\xi, \eta) \approx(0,0) .
$$

Then $f(x, y)=0$ for $(x, y) \approx(0,0)$.

Case $m(x, \xi, \eta)=1$: classical Radon transform.
Theorem (Strichartz 1982). Assume $f(x, y)=0$ for $y<x^{2}$ and

$$
R f(\xi, \eta)=\int f(x, \xi x+\eta) d x=0, \quad(\xi, \eta) \approx(0,0) .
$$

Then $f(x, y)=0$ for $(x, y) \approx(0,0)$.
This implies a special case of Helgason's support theorem from 1965:

Let K be compact, convex $\subset \mathbf{R}^{n}$. Assume $R f(L):=\int_{L} f d s=0$ for all hyperplanes L not intersecting K. Then $f=0$ outside K.

Proof of Strichartz' theorem. Set

$$
G_{k}(\xi, \eta)=\int x^{k} f(x, \xi x+\eta) d x, \quad k=0,1, \ldots .
$$

The assumption means that $G_{0}(\xi, \eta)=0$. Hence

$$
\partial_{\xi} G_{0}(\xi, \eta)=\int x f_{y}^{\prime}(x, \xi x+\eta) d x=0 .
$$

Proof of Strichartz' theorem. Set

$$
G_{k}(\xi, \eta)=\int x^{k} f(x, \xi x+\eta) d x, \quad k=0,1, \ldots .
$$

The assumption means that $G_{0}(\xi, \eta)=0$. Hence

$$
\partial_{\xi} G_{0}(\xi, \eta)=\int x f_{y}^{\prime}(x, \xi x+\eta) d x=0
$$

The last expression is equal to $\partial_{\eta} G_{1}(\xi, \eta)$, so we have also

$$
\partial_{\eta} \mathcal{G}_{1}(\xi, \eta)=\partial_{\xi} G_{0}(\xi, \eta)=0, \quad(\xi, \eta) \approx(0,0) .
$$

But $G_{1}(\xi, \eta)=0$ if the line $y=\xi x+\eta$ does not meet the support of f, that is, if $\eta<-\xi^{2} / 4$. Hence $G_{1}(\xi, \eta)=0$ in a nbh of $(0,0)$.

Proof of Strichartz' theorem. Set

$$
G_{k}(\xi, \eta)=\int x^{k} f(x, \xi x+\eta) d x, \quad k=0,1, \ldots .
$$

The assumption means that $G_{0}(\xi, \eta)=0$. Hence

$$
\partial_{\xi} G_{0}(\xi, \eta)=\int x f_{y}^{\prime}(x, \xi x+\eta) d x=0
$$

The last expression is equal to $\partial_{\eta} G_{1}(\xi, \eta)$, so we have also

$$
\partial_{\eta} \mathcal{G}_{1}(\xi, \eta)=\partial_{\xi} G_{0}(\xi, \eta)=0, \quad(\xi, \eta) \approx(0,0) .
$$

But $G_{1}(\xi, \eta)=0$ if the line $y=\xi x+\eta$ does not meet the support of f, that is, if $\eta<-\xi^{2} / 4$. Hence $G_{1}(\xi, \eta)=0$ in a nbh of $(0,0)$. This process can be continued, because the same argument shows that

$$
\partial_{\xi} \boldsymbol{G}_{k}(\xi, \eta)=\partial_{\eta} \boldsymbol{G}_{k+1}(\xi, \eta) \quad \text { for all } k .
$$

So we obtain $G_{k}(\xi, \eta)=0$ for all k in a fixed neighborhood of the origin, which means in particular that

$$
G_{k}(0, \eta)=\int x^{k} f(x, \eta) d x=0 \quad \text { for all } k, \eta<\delta
$$

hence $f(x, \eta)=0$ for all x and all η in a nbh of 0 , which completes the proof.

Theorem. R_{m} is locally injective if $m(x, \xi, \eta)$ is real analytic and positive (JB and Quinto, 1987).

Theorem (JB 1993). There exists a compactly supported function f in the plane, not identically zero, and a positive, smooth weight function $m_{L}(x, y)$ such that

$$
\int_{L} f m_{L} d s=0 \quad \text { for all lines } L \text { in the plane. }
$$

Theorem (JB 1993). There exists a compactly supported function f in the plane, not identically zero, and a positive, smooth weight function $m_{L}(x, y)$ such that

$$
\int_{L} f m_{L} d s=0 \quad \text { for all lines } L \text { in the plane. }
$$

Theorem (JB 2010). The set of $m(x, \xi, \eta)$ for which R_{m} is not locally injective is dense in the set of smooth, positive weight functions.

On the other hand, it is well known that the set of weight functions m for which R_{m} is globally injective is open in the C^{1} topology.

Proposition. There exists $m(x, \xi, \eta) \in C^{\infty}$, positive, and $f \in C^{\infty}$ such that supp $f \subset\{|x| \leq y\},(0,0) \in \operatorname{supp} f$, and

$$
\int f(x, \xi x+\eta) m(x, \xi, \eta) d x=0 \quad \text { for }|\xi|<1 / 2, \eta<1 .
$$

Proposition. There exists $m(x, \xi, \eta) \in C^{\infty}$, positive, and $f \in C^{\infty}$ such that supp $f \subset\{|x| \leq y\},(0,0) \in \operatorname{supp} f$, and

$$
\int f(x, \xi x+\eta) m(x, \xi, \eta) d x=0 \quad \text { for }|\xi|<1 / 2, \eta<1 .
$$

Proposition. There exists $m(x, \xi, \eta) \in C^{\infty}$, positive, and $f \in C^{\infty}$ such that supp $f \subset\{|x| \leq y\},(0,0) \in \operatorname{supp} f$, and

$$
\int f(x, \xi x+\eta) m(x, \xi, \eta) d x=0 \quad \text { for }|\xi|<1 / 2, \eta<1 .
$$

Assume $f(t)$ is a continuous function that changes sign on $[a, b]$. Then there exists a smooth, positive function $m(t)$ such that $\int_{a}^{b} f(t) m(t) d t=0$.

Proof idea. Choose $f(x, y)$ first, then define $m(x, \xi, \eta)$ by

$$
m(x, y, L)=1-c(L) f(x, y), \quad(x, y) \in L .
$$

Then

$$
R_{m} f(L)=\int_{L} f\left(1-c_{L} f\right) d x=\int_{L} f d x-c(L) \int_{L} f^{2} d x,
$$

so $R_{m} f=0 \mathrm{iff}$

$$
c(L)=\int_{L} f d x / \int_{L} f^{2} d x .
$$

If $\int_{L} f d x$ is sufficiently small, then $m>0$.

Choose $\quad f_{k}(x, y)=\phi\left(2^{k} x, 2^{k} y\right) \cos 4^{k} x$,
where $\phi \in C^{\infty}$, is supported in the rectangle

$$
|x| \leq 1, \quad 1 \leq y \leq 3,
$$

$\phi=1$ in a slighly smaller rectangle, and

$$
f(x, y)=\sum_{k=1}^{\infty} f_{k}(x, y) / k!.
$$

The following is obvious:

$$
\begin{aligned}
& f \in C^{\infty}, \quad \text { supp } f \subset\{|x| \leq y\} \\
& \int_{L(\xi, \eta)} f^{2} d x>0 \quad \text { if } \eta>0
\end{aligned}
$$

Hence

$$
c(L)=C(L(\xi, \eta))=\int_{L} f d x / \int_{L} f^{2} d x \in C^{\infty}, \quad \eta>0
$$

Lemma. For every p there exists C_{p} such that

$$
\left|\partial_{(\xi, \eta)}^{\alpha} \int_{L(\xi, \eta)} f_{k} d x\right| \leq C_{p} 2^{-k p}, \quad|\alpha| \leq p
$$

Note: if L intersects $\operatorname{supp} f_{k}$ and $|\xi|<1 / 2$, then $\eta \sim 2^{-k}$.

We can make the $c(L)$ smaller by introducing a parameter λ in the definition of f_{k},

$$
f_{k}(x, y)=\phi\left(2^{k} x, 2^{k} y\right) \cos 4^{k} \lambda x,
$$

and choosing λ sufficiently large. This will make

$$
m(x, \xi, \eta)=1-c(L) f(x, y)
$$

as close to 1 as we like.

We can make the $c(L)$ smaller by introducing a parameter λ in the definition of f_{k},

$$
f_{k}(x, y)=\phi\left(2^{k} x, 2^{k} y\right) \cos 4^{k} \lambda x,
$$

and choosing λ sufficiently large. This will make

$$
m(x, \xi, \eta)=1-c(L) f(x, y)
$$

as close to 1 as we like. Moreover, starting with an arbitrary $m_{0}(x, y, L)$ and choosing

$$
\begin{aligned}
m(x, y, L) & =m_{0}(x, y, L)-c(L) f(x, y), \\
c(L) & =\int_{L} f m_{0} d x / \int f^{2} d x
\end{aligned}
$$

we can make $m(x, y, L)$ as close as we wish to an arbitrary given $m_{0}(x, y, L)$.

The attenuated Radon transform

Denote for a moment points in the plane by $\mathbf{x}=\left(x_{1}, x_{2}\right)$ instead of (x, y). The attenuation weights can then be written

$$
m(\mathbf{x}, L)=\exp \left(-\int_{L_{x}} a(\cdot) d s\right), \quad \mathbf{x} \in L
$$

for some compactly supported function $a(\mathbf{x})$ on the plane. Here $L_{\mathbf{x}}$ is one of the segments of the line L, divided at the point \mathbf{x}. In the familiar coordinates (ω, p), where $L(\omega, p)$ is the line $\mathbf{x} \cdot \omega=\omega_{1} x_{1}+\omega_{2} x_{2}=p$, the attenuation weight can be written

$$
\begin{equation*}
m(\mathbf{x}, \omega)=\exp \left(-\int_{0}^{\infty} a\left(\mathbf{x}+t \omega^{\perp}\right) d t\right) . \tag{1}
\end{equation*}
$$

Inversion formulas for this class of $m(\mathbf{x}, p)$ were proved by:
Arbuzov, Bukhgeim, and Kazantsev 1998
Novikov 2002
Natterer 2001
Boman and Strömberg 2004
Bal 2004
Fokas and Sung 2005

JB and Strömberg proved an inversion formula under the more general condition that $m(\mathbf{x}, \omega)$ is a product of a function of type (1) and one of the type

$$
m(\mathbf{x}, \omega)=\exp \left(\int_{0}^{\infty}\left\langle\omega^{\perp}, b\left(\mathbf{x}+t \omega^{\perp}\right)\right\rangle d t\right),
$$

where $b(\mathbf{x})=\left(b_{1}(\mathbf{x}), b_{2}(\mathbf{x})\right)$ is a vector field on the plane.
Equivalently

$$
\left\langle\omega^{\perp}, \partial_{\mathbf{x}}\right\rangle \log m(\mathbf{x}, \omega)=a(\mathbf{x})+\omega_{1} b_{1}(\mathbf{x})+\omega_{2} b_{2}(\mathbf{x}) .
$$

JB and Strömberg proved an inversion formula under the more general condition that $m(\mathbf{x}, \omega)$ is a product of a function of type (1) and one of the type

$$
m(\mathbf{x}, \omega)=\exp \left(\int_{0}^{\infty}\left\langle\omega^{\perp}, b\left(\mathbf{x}+t \omega^{\perp}\right)\right\rangle d t\right),
$$

where $b(\mathbf{x})=\left(b_{1}(\mathbf{x}), b_{2}(\mathbf{x})\right)$ is a vector field on the plane. Equivalently

$$
\left\langle\omega^{\perp}, \partial_{\mathbf{x}}\right\rangle \log m(\mathbf{x}, \omega)=a(\mathbf{x})+\omega_{1} b_{1}(\mathbf{x})+\omega_{2} b_{2}(\mathbf{x}) .
$$

If $a(\mathbf{x})=0$, then $m(\mathbf{x}, \omega)$ is ω-even, $m(\mathbf{x},-\omega)=m(\mathbf{x}, \omega)$, up to a trivial factor, and if $b_{1}(\mathbf{x})=b_{2}(\mathbf{x})=0$, then $\log m(\mathbf{x}, \omega)$ is odd up to a trivial term.

By a trivial factor I mean a factor $q(\mathbf{x}, L)=c(L)$ that depends only on the line L.

For instance, if $b_{1}(\mathbf{x})=b_{2}(\mathbf{x})=0$ we can write

$$
\log m(\mathbf{x}, L)=\int_{L_{\mathbf{x}}} a(\cdot) d s-\int_{L} a(\cdot) d s=-\int_{L_{\mathbf{x}}^{\prime}} a(\cdot) d s
$$

where $L_{\mathbf{x}} \cup L_{\mathbf{x}}^{\prime}=L$.

For instance, if $b_{1}(\mathbf{x})=b_{2}(\mathbf{x})=0$ we can write

$$
\log m(\mathbf{x}, L)=\int_{L_{\mathbf{x}}} a(\cdot) d s-\int_{L} a(\cdot) d s=-\int_{L_{\mathbf{x}}^{\prime}} a(\cdot) d s
$$

where $L_{\mathbf{x}} \cup L_{\mathbf{x}}^{\prime}=L$.

With affine coordinates, $y=\xi x+\eta$, we have $\omega=(\xi,-1)$, $\omega^{\perp}=(1, \xi)$, and the condition on $m(x, y, \xi)$ in the case $a=0$ can be written

$$
\begin{equation*}
\left(\partial_{x}+\xi \partial_{y}\right) \log m(x, y, \xi)=b_{1}(x, y)+\xi b_{2}(x, y) . \tag{2}
\end{equation*}
$$

This condition is invariant under projective transformations.

With affine coordinates, $y=\xi x+\eta$, we have $\omega=(\xi,-1)$, $\omega^{\perp}=(1, \xi)$, and the condition on $m(x, y, \xi)$ in the case $a=0$ can be written

$$
\begin{equation*}
\left(\partial_{x}+\xi \partial_{y}\right) \log m(x, y, \xi)=b_{1}(x, y)+\xi b_{2}(x, y) . \tag{2}
\end{equation*}
$$

This condition is invariant under projective transformations.
Projective transformations have the property

$$
\frac{d s_{\tilde{L}^{\prime}}}{d s_{L}}=\alpha(\mathbf{x}) \beta(L) .
$$

Theorem (Gindikin 2009). Assume that $m(x, \xi, \eta)$ satisfies

$$
\begin{equation*}
\left(\partial_{\xi}-x \partial_{\eta}\right) \log m(x, \xi, \eta)=x a(\xi, \eta)+b(\xi, \eta) \tag{3}
\end{equation*}
$$

for some functions $a(\xi, \eta)$ and $b(\xi, \eta)$. Then

$$
f(0,0)=c \iint \frac{\left(\partial_{\eta}+a(\xi, \eta)\right) R_{m}(\xi, \eta)}{m(0, \xi, \eta)} \frac{d \eta}{\eta} d \xi
$$

Theorem (Gindikin 2009). Assume that $m(x, \xi, \eta)$ satisfies

$$
\begin{equation*}
\left(\partial_{\xi}-x \partial_{\eta}\right) \log m(x, \xi, \eta)=x a(\xi, \eta)+b(\xi, \eta) \tag{3}
\end{equation*}
$$

for some functions $a(\xi, \eta)$ and $b(\xi, \eta)$. Then

$$
f(0,0)=c \iint \frac{\left(\partial_{\eta}+a(\xi, \eta)\right) R_{m}(\xi, \eta)}{m(0, \xi, \eta)} \frac{d \eta}{\eta} d \xi
$$

Note that (2) and (3) are related by the replacement of variables according to the scheme $(x, y) \leftrightarrow(\xi, \eta)$. Moreover, R_{m} satisfies (2) if and only if R_{m}^{*} satisfies (3), and vice versa.

Theorem (Gindikin 2009). Assume that $m(x, \xi, \eta)$ satisfies

$$
\begin{equation*}
\left(\partial_{\xi}-x \partial_{\eta}\right) \log m(x, \xi, \eta)=x a(\xi, \eta)+b(\xi, \eta) . \tag{3}
\end{equation*}
$$

for some functions $a(\xi, \eta)$ and $b(\xi, \eta)$. Then

$$
f(0,0)=c \iint \frac{\left(\partial_{\eta}+a(\xi, \eta)\right) R_{m}(\xi, \eta)}{m(0, \xi, \eta)} \frac{d \eta}{\eta} d \xi
$$

Note that (2) and (3) are related by the replacement of variables according to the scheme $(x, y) \leftrightarrow(\xi, \eta)$. Moreover, R_{m} satisfies (2) if and only if R_{m}^{*} satisfies (3), and vice versa.

The operator $\partial_{\xi}-x \partial_{\eta}$ appearing in Gindikin's condition is the directional derivative in the direction of rotating the line through a fixed point (x, y). Because

$$
\partial_{\xi}(m(x, \xi, y-\xi x))=m_{\xi}^{\prime}(x, \xi, y-\xi x)-x m_{\eta}^{\prime}(x, \xi, y-\xi x)
$$

Theorem (JB 2009). Assume $m(x, \xi, \eta)$ satisfies Gindikin's condition (3). Then local injectivity holds for R_{m}.

Theorem (JB 2009). Assume $m(x, \xi, \eta)$ satisfies Gindikin's condition (3). Then local injectivity holds for R_{m}.
Sketch of proof. Set

$$
G_{k}(\xi, \eta)=\int x^{k} f(x, \xi x+\eta) m(x, \xi, \eta) d x
$$

We saw above that if $m(x, \xi, \eta)=1$, then

$$
\partial_{\xi} G_{k}=\partial_{\eta} G_{k+1} \quad \text { for all } k
$$

In this case we have instead

$$
\left(\partial_{\xi}-b(\xi, \eta)\right) \boldsymbol{G}_{k}=\left(\partial_{\eta}-a(\xi, \eta)\right) \boldsymbol{G}_{k+1}
$$

Theorem (JB 2009). Assume $m(x, \xi, \eta)$ satisfies Gindikin's condition (3). Then local injectivity holds for R_{m}.
Sketch of proof. Set

$$
G_{k}(\xi, \eta)=\int x^{k} f(x, \xi x+\eta) m(x, \xi, \eta) d x
$$

We saw above that if $m(x, \xi, \eta)=1$, then

$$
\partial_{\xi} G_{k}=\partial_{\eta} G_{k+1} \quad \text { for all } k
$$

In this case we have instead

$$
\left(\partial_{\xi}-b(\xi, \eta)\right) \boldsymbol{G}_{k}=\left(\partial_{\eta}-a(\xi, \eta)\right) \boldsymbol{G}_{k+1}
$$

In fact $\partial_{\xi} G_{k}=\int x^{k+1} f_{y}^{\prime} m d x+\int x^{k} f m_{\xi}^{\prime} d x, \quad$ and

Theorem (JB 2009). Assume $m(x, \xi, \eta)$ satisfies Gindikin's condition (3). Then local injectivity holds for R_{m}.
Sketch of proof. Set

$$
G_{k}(\xi, \eta)=\int x^{k} f(x, \xi x+\eta) m(x, \xi, \eta) d x .
$$

We saw above that if $m(x, \xi, \eta)=1$, then

$$
\partial_{\xi} G_{k}=\partial_{\eta} G_{k+1} \quad \text { for all } k .
$$

In this case we have instead

$$
\begin{gathered}
\left(\partial_{\xi}-b(\xi, \eta)\right) G_{k}=\left(\partial_{\eta}-a(\xi, \eta)\right) G_{k+1} . \\
\partial_{\xi} G_{k}=\int x^{k+1} f_{y}^{\prime} m d x+\int x^{k} f m_{\xi}^{\prime} d x, \quad \text { and } \\
\partial_{\eta} G_{k+1}=\int x^{k+1} f_{y}^{\prime} m d x+\int x^{k+1} f m_{\eta}^{\prime} d x
\end{gathered}
$$

In fact

Theorem (JB 2009). Assume $m(x, \xi, \eta)$ satisfies Gindikin's condition (3). Then local injectivity holds for R_{m}.
Sketch of proof. Set

$$
G_{k}(\xi, \eta)=\int x^{k} f(x, \xi x+\eta) m(x, \xi, \eta) d x
$$

We saw above that if $m(x, \xi, \eta)=1$, then

$$
\partial_{\xi} G_{k}=\partial_{\eta} G_{k+1} \quad \text { for all } k
$$

In this case we have instead

$$
\left(\partial_{\xi}-b(\xi, \eta)\right) \boldsymbol{G}_{k}=\left(\partial_{\eta}-a(\xi, \eta)\right) \boldsymbol{G}_{k+1}
$$

In fact $\partial_{\xi} G_{k}=\int x^{k+1} f_{y}^{\prime} m d x+\int x^{k} f m_{\xi}^{\prime} d x$, and

$$
\partial_{\eta} G_{k+1}=\int x^{k+1} f_{y}^{\prime} m d x+\int x^{k+1} f m_{\eta}^{\prime} d x
$$

Arguing as before we can use this fact to prove that $G_{k}(\xi, \eta)=0$ for all k in a fixed nbh of the origin, which implies the assertion.

Given a 2-parametric curve family

$$
y=u(x, \xi, \eta) \approx \eta+\xi x+\mathcal{O}\left(x^{2}\right)
$$

and a weight function $m(x, \xi, \eta)$, set

$$
\begin{equation*}
R f(\xi, \eta)=R_{u, m} f(\xi, \eta)=\int f(x, u(x, \xi, \eta)) m(x, \xi, \eta) d x \tag{4}
\end{equation*}
$$

and ask the same question as before.

To define R invariantly, denote (x, y)-space by X and the space of curves by Γ. Then the equation $y=u(x, \xi, \eta)$ defines a hypersurface Z in the product space $X \times \Gamma$. The hypersurface Z is the incidence relation:

$$
\{(\mathbf{x}, \gamma) ; \mathbf{x} \in \gamma\}
$$

Using the projections

$$
\begin{array}{rll}
\pi_{X}:(\mathbf{x}, \gamma) \mapsto \mathbf{x}, & & \pi_{\Gamma}:(\mathbf{x}, \gamma) \mapsto \gamma, \\
& Z & \\
\pi_{X} \swarrow & \searrow_{\Gamma} \\
X & \Gamma
\end{array}
$$

we can define two kinds of fibers on Z :

$$
\pi_{\Gamma}^{-1}(\gamma) \quad \text { and } \quad \pi_{X}^{-1}(\mathbf{x})
$$

and projecting those down to X and Γ we obtain

$$
\pi_{X}\left(\pi_{\Gamma}^{-1}(\gamma)\right) \quad \text { and } \quad \pi_{\Gamma}\left(\pi_{X}^{-1}(\mathbf{x})\right)
$$

If μ is a measure on Z and $f \in C(X), \varphi \in C_{C}(\Gamma)$ we can form

$$
\left\langle\mu,\left(f \circ \pi_{X}\right)\left(\varphi \circ \pi_{\Gamma}\right)\right\rangle=\langle R f, \varphi\rangle=\left\langle f, R^{*} \varphi\right\rangle .
$$

If $\mu=m(x, \xi, \eta) d x d \xi d \eta$ we get back the expression (4) for $R f$.
This is the double fibration setup introduced by Helgason and Gelfand.

If μ is a measure on Z and $f \in C(X), \varphi \in C_{c}(\Gamma)$ we can form

$$
\left\langle\mu,\left(f \circ \pi_{X}\right)\left(\varphi \circ \pi_{\Gamma}\right)\right\rangle=\langle R f, \varphi\rangle=\left\langle f, R^{*} \varphi\right\rangle .
$$

If $\mu=m(x, \xi, \eta) d x d \xi d \eta$ we get back the expression (4) for $R f$.
This is the double fibration setup introduced by Helgason and Gelfand.

Question. For which curve families and densities is it true that unique continuation across γ_{0} holds near \mathbf{x}_{0} for solutions of $R f=0$ in the sense that

$$
\begin{aligned}
\begin{array}{ll}
\text { supp } f & \subset \gamma_{0}^{+} \cup\left\{\mathbf{x}_{0}\right\} \\
\text { and } \quad R f=0 \text { near } \mathbf{x}_{0} \\
& \Longrightarrow \quad f=0 \quad \text { near } \mathbf{x}_{0} .
\end{array} \\
\underbrace{\gamma_{0}^{+}}_{\mathbf{X}_{0}} \quad \text { supp } f
\end{aligned}
$$

The condition on $\mu=m(x, \xi, \eta) d x d \xi d \eta$ can be invariantly expressed as follows:
there exists a 1 -form σ on Γ such that

$$
\begin{equation*}
V(\mu)=\left(\pi_{\Gamma}^{*}(\sigma)\llcorner V) \mu \quad \text { for all vector fields } V\right. \tag{5}
\end{equation*}
$$ that are tangent to the fibers $\pi_{X}^{-1}(\mathbf{x})$.

The operation of a vector field on a density is defined by $\langle V(\mu), \varphi\rangle=-\langle\mu, V(\varphi)\rangle$.
The symbol \llcorner denotes contraction between a 1 -form and a vector field.

The condition on $\mu=m(x, \xi, \eta) d x d \xi d \eta$ can be invariantly expressed as follows:
there exists a 1 -form σ on Γ such that

$$
\begin{equation*}
V(\mu)=\left(\pi_{\Gamma}^{*}(\sigma)\llcorner V) \mu \quad \text { for all vector fields } V\right. \tag{5}
\end{equation*}
$$ that are tangent to the fibers $\pi_{X}^{-1}(\mathbf{x})$.

The operation of a vector field on a density is defined by $\langle V(\mu), \varphi\rangle=-\langle\mu, V(\varphi)\rangle$.
The symbol \llcorner denotes contraction between a 1 -form and a vector field.

In the special case when Γ is the manifold of lines $y=\xi x+\eta$, condition (5) means the same as (3), that is

$$
\left(\partial_{\xi}-x \partial_{\eta}\right) m(\xi, \eta, x)=(a(\xi, \eta)+x b(\xi, \eta)) m(\xi, \eta, x)
$$

To see this, choose $\sigma=a(\xi, \eta) d \xi+b(\xi, \eta) d \eta$.
The fiber $\pi_{X}^{-1}(\mathbf{x})=\pi_{X}^{-1}(x, y)$ is

$$
\{(\xi, \eta, x) ; \xi x+\eta=y\}
$$

The vector field $V=\partial_{\xi}-x \partial_{\eta}$ is tangent to those fibers. By definition $V(\mu)=\left(\partial_{\xi}-x \partial_{\eta}\right) m(\xi, \eta, x) d x d \xi d \eta$. Moreover $\quad \pi_{\Gamma}^{*}(\sigma)\llcorner V=a(\xi, \eta)-x b(\xi, \eta)$, which proves the claim.

To formulate the condition on Z we solve η from the equation $y=u(\xi, \eta, x)$, obtaining $\eta=\rho(\xi, x, y)$. The condition on Z is as follows: the functions $\xi \mapsto \eta=\rho(\xi, x, y)$ are solutions of an ODE (with x, y as parameters)

$$
\begin{equation*}
\eta^{\prime \prime}=\Psi\left(\xi, \eta, \eta^{\prime}\right) \tag{6}
\end{equation*}
$$

where $\Psi(\xi, \eta, p)$ is a polynomial in p of degree at most 3 .

Theorem. R is locally injective if (5) and (6) are satisfied.

A 2-parametric family of curves in the plane can be defined by a second order differential equation

$$
\begin{equation*}
y^{\prime \prime}=\Phi(x, y, p), \quad p=d y / d x \tag{7}
\end{equation*}
$$

Proposition. The class of differential equations (7) for which $p \mapsto \Phi(x, y, p)$ is a polynomial of degree ≤ 3 is invariant under smooth coordinate transformations in the plane.

See Arnold, Geometric aspects of the theory of ODE, chapter $1, \S 6$.

The condition used in the proof is

$$
\rho_{\xi \xi}^{\prime \prime}=a_{0}\left(\rho_{\xi}^{\prime}\right)^{2}+a_{1} \rho_{\xi}^{\prime}+a_{2}
$$

for some functions a_{j} that are constant on fibers $\pi_{\Gamma}^{-1}(\gamma)$, that is

$$
a_{j}(x, y, \xi)=A_{j}(\xi, y-\xi x)
$$

for some functions $\boldsymbol{A}_{j}(\xi, \eta)$.

The condition used in the proof is

$$
\rho_{\xi \xi}^{\prime \prime}=a_{0}\left(\rho_{\xi}^{\prime}\right)^{2}+a_{1} \rho_{\xi}^{\prime}+a_{2}
$$

for some functions a_{j} that are constant on fibers $\pi_{\Gamma}^{-1}(\gamma)$, that is

$$
a_{j}(x, y, \xi)=A_{j}(\xi, y-\xi x)
$$

for some functions $\boldsymbol{A}_{j}(\xi, \eta)$.
Note: the set of curves γ passing through (x, y) forms a curve in (ξ, η)-space, defined by $\eta=\rho(\xi, x, y)$.

国 V．I．Arnold，Geometric methods in the theory of ordinary differential equations，Second edition，Springer－Verlag 1988.

国 J．Boman，A local uniqueness theorem for weighted Radon transforms，Inverse Probl．Imaging 4 （2010），631－637．
囯 J．Boman，Local non－injectivity for weighted Radon transforms，to appear in Contemp．Math．559，（2012）．
固 J．Boman and J．－O．Strömberg，Novikov＇s inversion formula for the attenuated Radon transform－a new approach，J． Geom．Anal． 14 （2004），185－198．
固 I．M．Gelfand，M．I．Graev，Z．Ya．Shapiro，Differential forms and integral geometry，Funct．Anal．Appl． 3 （1969）， 101－114．
：I．M．Gelfand，S．G．Gindikin，and Z．Ya．Shapiro，A local problem in integral geometry in a space of curves，Funct． Anal．Appl． 13 （1979），87－102．

