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Abstract

Cusp forms on a group G can be defined as the kernel of certain
Radon transforms on G . Cusp Forms on real reductive Lie groups
G were introduced by Harish-Chandra, who also showed that they
coincide precisely with the discrete part of the spectral
decomposition of the space of square integrable functions on G .

Flensted-Jensen recently proposed a new family of Radon
transforms and associated Cusp forms on Reductive Symmetric
Spaces, which in the group case reduces to the definition of
Harish-Chandra. We will in this talk discuss Cusp Forms on
Hyperbolic Spaces, in particular the existence of non-cuspidal
discrete series.
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History

Flensted-Jensen: Lectures at Oberwolfach, 2001.

Flensted-Jensen: Talk at 24th Nordic and 1st Franco-Nordic
Congress of Mathematicians, January 2005, Reykjavik, Iceland.

Andersen: Talk at International Conference on Integral Geometry,
Harmonic Analysis and Representation (in honor of Sigurdur
Helgason’s 80th birthday), August 2007, Reykjavik, Iceland.

Schlichtkrull: Oberwolfach report, 2007.

Work by van den Ban and Kuit; and by van den Ban, Kuit and
Schlichtkrull.

Article on arXiv: http://lanl.arxiv.org/abs/1111.4031
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Real Hyperbolic Spaces

G = SO(p, q + 1)e . (for talk assume q > 1)

H = SO(p, q)e : connected subgroup of G stabilizing (0, . . . , 0, 1).

The symmetric space G/H identified with real hyperbolic space:

X = {x ∈ Rp+q+1 : x21 + ...+ x2p − x2p+1 − ...− x2p+q+1 = −1}.

Projective space PX (antipodal points x and −x identified).

g, h: the Lie algebras of G , H.
θ: the classical Cartan involution on G , g.
σ: involution fixing H, h.
g = k⊕ p = h⊕ q decomposition of g into the ±1-eigenspaces of
θ, σ.
K = SO(p + 1)× SO(q + 1): maximal compact subgroup (fixed
by θ), with Lie algebra k.
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Polar decomposition

aq ⊂ p ∩ q maximal abelian subalgebra:

aq =

Xt =

 0 0 t
0 0 0
t 0 0

 : t ∈ R

 .

Corresponding abelian subgroup A = {at} ⊂ G :

at = exp(Xt) =

 cosh t 0 sinh t
0 Ip+q−1 0

sinh t 0 cosh t

 .

Cartan decomposition G = KAH gives polar coordinates on X :

K × R 3 (k , t) 7→ katH ∈ X .
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Discrete series: Parametrization

Let ρ = 1
2(p + q − 1), ρc = 1

2(q − 1) and µλ = λ+ ρ− 2ρc .

(µλ describes K -type)

Discrete series parametrized by λ > 0 such that µλ ∈ Z.

Exceptional discrete series: µλ < 0 (if and only if q > p + 3).

Descends to the projective space if and only if µλ is even.
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Discrete series: Generating functions

K ∩ H-invariant generating functions:

For µλ ≥ 0:

ψλ(kθat) = Rµλ
(cos θ) (cosh t)−λ−ρ.

For q > p + 3, µλ = −2m < 0:

ξλ(kθat) = Pλ(cosh2 t)(cosh t)−λ−ρ−2m.

For q > p + 3, µλ = −2m + 1 < 0:

ξλ(kθat) = cos θ Pλ(cosh2 t)(cosh t)−λ−ρ−2m.

(Pλ polynomial of degree m).
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Nilpotent subgroups

Sum of positive root spaces, with u ∈ Rp−1 and v ∈ Rq (row)
vectors:

n =


0 u v 0
−ut 0 0 ut

v t 0 0 −v t
0 u v 0

 .

N = exp(n) is too BIG!∫
N f (n) dn diverges for f (katH) = (cosh t)−ρ−ν ∈ C(X ) when

0 < ν ≤ 1
2(p + q − 3).

(spherical) Discrete series for q > p + 1 and ν = 1
2(q − p − 1).

Smaller nilpotent subgroup: N∗ = exp(n∗):

n∗ = ”{u ∈ Rp−1, v ∈ Rq, uj = vj for j = 1, . . . , l}”.
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Radon transform

Definition

Rf (g) =

∫
N∗

f (gn∗H) dn∗, (g ∈ G ).

Write: Rf (s) = Rf (as). Explicit expression for K -invariant f .

Let f ∈ C(X ). Then

Convergence. Rf (s) converges absolutely for all s ∈ R.

Support properties. Compact support is preserved only when
p > q. For p ≤ q ”ok for s < 0”.

Decay. Bound on eρ1s |Rf (s)|: for all s when p ≥ q; for s < 0
when p < q.

Limits. Let f be K -invariant, then lims→∞ esRf (s) exists for
p < q...
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Abel transform and differential operators

Define: Af (a) = aρ1Rf (a) (”Abel transform”), where

ρ1 =

{
1
2(p − q − 1) if p > q
1
2(q − p + 1) if p ≤ q

Then ((d/ds)2 − ρ2)Af = A(Lf ).

Discrete series:
Lf = (λ2 − ρ2)f ,

which implies:

Rf (s) = C1e
(−ρ1+λ)s + C2e

(−ρ1−λ)s .
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Cuspidal and non-cuspidal discrete series

Theorem

Let λ be a discrete series parameter, and let f be the generating
function.

1 If µλ > 0, then Rf = 0.

2 If µλ ≤ 0, then Rf (s) = Ce(−ρ1+λ)s (s ∈ R), for some C 6= 0.
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Cuspidal and non-cuspidal discrete series

The discrete series representation Tλ is cuspidal if and only if
µλ > 0.

All discrete series are cuspidal when q ≤ p + 1.

All spherical discrete series for G/H are non-cuspidal. These
representations exist if and only if q > p + 1.

There exist non-spherical non-cuspidal discrete series if and only if
q > p + 3. These representations do not descend to discrete series
of the real projective hyperbolic space.
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