DISTANCE PRESERVING MODEL ORDER REDUCTION OF GRAPH-LAPLACIANS AND CLUSTER IMAGING

Mikhail Zaslavsky

Vladimir Druskin (Worcester Polytechnic Institute) and Alexander Mamonov (University of Houston)

Outline

Clustering problem: formulation and examples

- 2 Graph-based clustering
- 3 Two-level divide-and-conquer algorithm
 - 4 Numerical examples
- 5 Conclusions and future work

Clustering problem. Formulation

- Unsupervised machine learning
- Input: data set $V = \{x_1, \dots, x_N\}$ with no labels and number of partitions K
- Output: set of clusters $C_1, \ldots C_K$ such that $\forall 1 \le i \le N$ $\exists 1 \le l \le K$ such that $x_i \in C_l$ based on similarity

Clustering problem. Formulation

- Unsupervised machine learning
- Input: data set $V = \{x_1, \dots, x_N\}$ with no labels and number of partitions K
- Output: set of clusters $C_1, \ldots C_K$ such that $\forall 1 \le i \le N$ $\exists 1 \le l \le K$ such that $x_i \in C_l$ based on similarity
- Data dimensionality: $x_i \in \mathbb{R}^d, i = 1, ..., n$. d varies from O(1) to $O(10^5)$ or even higher
- Number of clusters K is set a priori here

Clustering problem. Formulation

- Unsupervised machine learning
- Input: data set $V = \{x_1, \dots, x_N\}$ with no labels and number of partitions K
- Output: set of clusters $C_1, \ldots C_K$ such that $\forall 1 \le i \le N$ $\exists 1 \le l \le K$ such that $x_i \in C_l$ based on similarity
- Data dimensionality: $x_i \in \mathbb{R}^d, i = 1, ..., n$. d varies from O(1) to $O(10^5)$ or even higher
- Number of clusters K is set a priori here
- Types of clustering:
 - Soft assignment: *I* is non-unique, i.e. different degrees (e.g., probability) of cluster membership
 - Hard assignment: *I* is unique, i.e. each element belongs to only one cluster

Clustering problem. Applications

Finances

Bioinformatics

Geophysics

Organizational structure

Outline

Clustering problem: formulation and examples

2 Graph-based clustering

3 Two-level divide-and-conquer algorithm

Numerical examples

Graph-based formulation

- Let G = (V; E; W) be undirected weighted graph with vertices (data)
 V and edges E, with assigned positive weights W to them.
- Adjacency matrix $\mathbf{W} = (w_{ij})$ is a similarity measure between dataset elements.
- $d_i = \sum_j w_{ij}$ is *i*-th vertex degree. $\mathbf{D} = diag(d_1, \dots, d_N)$ is degree matrix
- for $A \subseteq V$ let $vol(A) = sum_{i:x_i \in A}d_i$

Clustering via graph cuts: case of 2 clusters

• Idea: remove some edges to split V into 2 groups with minimum similarities between them

Clustering via graph cuts: case of 2 clusters

- Idea: remove some edges to split V into 2 groups with minimum similarities between them
- Normalized cut:

$$NCut(A, B) = \left(\frac{1}{vol(A)} + \frac{1}{vol(B)}\right) \sum_{x_i \in A, x_j \in B} w_{ij}$$

- Integer optimization problem: find 2 normalized indicator functions $Z = (z_1, z_2)$ on V such that $tr(\mathbf{Z}^T(\mathbf{D} \mathbf{W})\mathbf{Z}) \rightarrow min$ and $\mathbf{Z}^T\mathbf{D}\mathbf{Z} = \mathbf{I}$
- Highly non-convex, especially for noisy data
- Global minimization is combinatorial and NP-hard: cost of exact solution is $O(N^{Kd+1})$
- Different robust relaxations are still expensive: Semi-Definite Programming (SDP) can handle the problems of size about 200 at reasonable time
- How to overcome this prohibitive cost? Below we shall attack the problems of reducing both *d* and *N*

Relaxation: spectral clustering. Case of 2 clusters

- $\min_{\mathbf{Z} \in \mathbb{R}^{N \times 2}, \mathbf{Z}^T \mathbf{D} \mathbf{Z} = \mathbf{I}} tr(\mathbf{Z}^T (\mathbf{D} \mathbf{W}) \mathbf{Z})$
- Graph Laplacian ${\bm L}={\bm D}-{\bm W}\geq 0$ mimics Laplace operator with Neumann boundary conditions

Relaxation: spectral clustering. Case of 2 clusters

- $\min_{\mathbf{Z} \in \mathbb{R}^{N \times 2}, \mathbf{Z}^T \mathbf{D} \mathbf{Z} = \mathbf{I}} tr(\mathbf{Z}^T (\mathbf{D} \mathbf{W}) \mathbf{Z})$
- Graph Laplacian ${\bm L}={\bm D}-{\bm W}\geq 0$ mimics Laplace operator with Neumann boundary conditions

Relaxation: spectral clustering. Case of 2 clusters

- $\min_{\mathbf{Z} \in \mathbb{R}^{N \times 2}, \mathbf{Z}^T \mathbf{D} \mathbf{Z} = \mathbf{I}} tr(\mathbf{Z}^T (\mathbf{D} \mathbf{W}) \mathbf{Z})$
- Graph Laplacian ${\bm L}={\bm D}-{\bm W}\geq 0$ mimics Laplace operator with Neumann boundary conditions
- Solution are the first two eigenvectors of $Lu = \lambda Du$. Real-valued and the first one is constant, so we split into clusters according to components sign of the second eigenvector

Spectral clustering. Algorithm for K clusters

$$\min_{\mathbf{Z} \in \mathbb{R}^{N \times K}, \mathbf{Z}^{\mathsf{T}} \mathbf{D} \mathbf{Z} = \mathbf{I}} tr(\mathbf{Z}^{\mathsf{T}} \mathbf{L} \mathbf{Z})$$

- Compute K 1 eigenvectors $\{\mathbf{z}_i\}_{i=1}^{K-1}$ of $\mathbf{L}u = \lambda \mathbf{D}u$ for smallest eigenvalues such that $\mathbf{z}_i \perp \mathbf{e}$
- **2** Perform K-means on spectral data $\mathbf{Z} = (\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{K-1}) \in \mathbb{R}^{N \times K-1}$
 - Provides embedding into (K-1)-dimensional manifold
 - Physical meaning: late-time asymptotics of diffusion process on graphs
 - Spectral gap can provide some intuition on how to choose the number of clusters
 - Cost=Linear algebra to construct embedding + K-means on embedded data
 - However, size of dataset *N* is still large
 - How can we reduce it?

Outline

Clustering problem: formulation and examples

2 Graph-based clustering

3 Two-level divide-and-conquer algorithm

4 Numerical examples

- Replace clustering of full dataset of size N by $\frac{N}{m}$ clusterings of subsets of size O(m) each and one clustering of subset of size at most $K\frac{N}{m}$
- Need to cluster the data subset $V_m = \{x_{i_1}, x_{i_2}, \dots, x_{i_m}\}$

Need to be aware of the FULL data manifold for diffusion on graph

Reduced-order model for data subset clustering

- Action of the subset complement onto the subset is governed by multi-input-multi-output transfer function
- Can be compressed with exponential accuracy via well-developed theory of model-order reduction: employ Krylov subspace $K_m((\mathbf{D}^{-1/2}\mathbf{L}\mathbf{D}^{-1/2})^{\dagger}, \mathbf{D}^{1/2}\mathbf{B})$ for projection (Moore-Penrose inverse powers of symmetric normalized graph-Laplcian): $\widetilde{\mathbf{T}} = \mathbf{U}^T \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} \mathbf{U}$
- Can be diagonally transformed to sparse reduced-order graph Laplacian $\widetilde{L}=\widetilde{D}^{1/2}\widetilde{T}\widetilde{D}^{1/2}$

Advantages:

- Full dataset is replaced by ROM of size from 3m to 6m
- Typically even lower, especially with multiple connected components
- Allows to employ more efficient relaxations, like SDP

Random walks on graph and associated distances

- $\mathbf{L}_{RW} = \mathbf{I} \mathbf{D}^{-1}\mathbf{W}$
- $\mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$ is Markov matrix. It is transition matrix of random walk on graph: $p_{ij} = P(\mathbf{x}^{k+1} = x_j | \mathbf{x}^k = x_i)$

- Diffusion distance: distance between probability clouds originated at nodes *i* and *j* and measured after step *l*: $\left(D_{jk}^{l}(G) \right)^{2} = \|P_{j}^{l}(G) - P_{k}^{l}(G)\|_{\mathbf{D}}^{2}$
- Commute-time (or resistance) distance: $C_{ij} = H_{ij} + H_{ji}$ where $H_{ij} = p_{ij} + \sum_{k \neq j} p_{ik}(1 + H_{kj})$. It can be computed as $C_{jk}^2(G) = (\mathbf{e}_j \mathbf{e}_k)^T \mathbf{L}^{\dagger} (\mathbf{e}_j \mathbf{e}_k)$ where \mathbf{L}^{\dagger} is Moore-Penrose pseudo-inverse of \mathbf{L} .
- For elements *i* and *j* from target set V_m commute-time distance C_{ij} is preserved and diffusion distance D_{ij}^l is approximated with exponential accuracy

Geometrical interpretation of the reduced graph G

Geometrical interpretation of the reduced graph G

Geometrical interpretation of the reduced graph G

Outline

Clustering problem: formulation and examples

2 Graph-based clustering

3 Two-level divide-and-conquer algorithm

4 Numerical examples

EMail communication network from SNAP repository

- Goal: identify people from the same organizations
- N=1005. 42 ground-truth communities (European organizations). Not enough data to resolve some of them
- Statistics of reproducing random elements from 10 random ground-truth communities
- Semi-definite programming shows the best results. Can be applied to ROGL only due to harsh computational cost

Sonic data

Spectral embedding

Clustering results

• Computational time on desktop: 15sec for SC and 50min for SOM

Outline

Clustering problem: formulation and examples

2 Graph-based clustering

3 Two-level divide-and-conquer algorithm

Numerical examples

Conclusions

- We developed two-level clustering algorithm based on reduced-order model of graph-Laplacian for clustering of data subsets
- ROGL preserves with exponential accuracy such important physical features of the problem as transfer function and late-time diffusion distances for given data subset
- Significantly reduced size of the problem enables not only to speed up the computations but also to obtain qualitatively better results by exploiting NP-hard-type algorithms
- ROGL-based data subset clustering can be used as stand-alone when remaining data is not interesting
- Can be implemented in partial data-driven way via Loewner matrices framework (crucial for truly big data when entire graph is not directly accessible)

Future work

- Feasibility study on truly large datasets
- Multi-level approach
- Distance learning (in progress). Can be done in supervised and unsupervised manner