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Clustering problem: formulation and examples

Clustering problem. Formulation

Unsupervised machine learning

Input: data set V = {x1, . . . xN} with no labels and number of
partitions K

Output: set of clusters C1, . . .CK such that ∀1 ≤ i ≤ N ∃1 ≤ l ≤ K
such that xi ∈ Cl based on similarity

Data dimensionality: xi ∈ Rd , i = 1, . . . , n. d varies from O(1) to
O(105) or even higher

Number of clusters K is set a priori here

Types of clustering:

Soft assignment: l is non-unique, i.e. different degrees (e.g.,
probability) of cluster membership

Hard assignment: l is unique, i.e. each element belongs to only one
cluster
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Clustering problem: formulation and examples

Clustering problem. Applications

Finances Geophysics

Bioinformatics Organizational structure
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Graph-based clustering

Graph-based formulation

Let G = (V ;E ;W) be undirected weighted graph with vertices (data)
V and edges E , with assigned positive weights W to them.

Adjacency matrix W = (wij) is a similarity measure between dataset
elements.

di =
∑

j wij is i-th vertex degree. D = diag(d1, . . . , dN) is degree
matrix

for A ⊆ V let vol(A) = sumi :xi∈Adi



Graph-based clustering

Clustering via graph cuts: case of 2 clusters

Idea: remove some edges to split V into 2 groups with minimum
similarities between them

Normalized cut:

NCut(A,B) =

(
1

vol(A)
+

1

vol(B)

) ∑
xi∈A,xj∈B

wij

Integer optimization problem: find 2 normalized indicator functions
Z = (z1, z2) on V such that tr(ZT (D−W)Z)→ min and ZTDZ = I
Highly non-convex, especially for noisy data
Global minimization is combinatorial and NP-hard: cost of exact
solution is O(NKd+1)
Different robust relaxations are still expensive: Semi-Definite
Programming (SDP) can handle the problems of size about 200 at
reasonable time
How to overcome this prohibitive cost? Below we shall attack the
problems of reducing both d and N
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Graph-based clustering

Relaxation: spectral clustering. Case of 2 clusters

[von Luxburg, 2007]

minZ∈RN×2,ZTDZ=I tr(ZT (D−W)Z)

Graph Laplacian L = D−W ≥ 0 mimics Laplace operator with
Neumann boundary conditions

Solution are the first two eigenvectors of Lu = λDu. Real-valued and
the first one is constant, so we split into clusters according to
components sign of the second eigenvector
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Graph-based clustering

Spectral clustering. Algorithm for K clusters

[von Luxburg, 2007]

min
Z∈RN×K ,ZTDZ=I

tr(ZTLZ)

1 Compute K − 1 eigenvectors {zi}K−1i=1 of Lu = λDu for smallest
eigenvalues such that zi ⊥ e

2 Perform K-means on spectral data Z = (z1, z2, . . . , zK−1) ∈ RN×K−1

Provides embedding into (K − 1)-dimensional manifold

Physical meaning: late-time asymptotics of diffusion process on
graphs

Spectral gap can provide some intuition on how to choose the number
of clusters

Cost=Linear algebra to construct embedding + K-means on
embedded data

However, size of dataset N is still large

How can we reduce it?
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Two-level divide-and-conquer algorithm

Sketch of the algorithm [Druskin, Mamonov, Z., 2019]

Replace clustering of full dataset of size N by N
m clusterings of subsets

of size O(m) each and one clustering of subset of size at most K N
m

Need to cluster the data subset Vm = {xi1 , xi2 , . . . , xim}
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Brute-force approach doesn’t work

Need to be aware of the FULL data manifold for diffusion on graph
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Two-level divide-and-conquer algorithm

Reduced-order model for data subset clustering

Action of the subset complement onto the subset is governed by
multi-input-multi-output transfer function

Can be compressed with exponential accuracy via well-developed
theory of model-order reduction: employ Krylov subspace
Km((D−1/2LD−1/2)†,D1/2B) for projection (Moore-Penrose inverse
powers of symmetric normalized graph-Laplcian):
T̃ = UTD−1/2LD−1/2U

Can be diagonally transformed to sparse reduced-order graph
Laplacian L̃ = D̃1/2T̃D̃1/2

Advantages:

Full dataset is replaced by ROM of size from 3m to 6m

Typically even lower, especially with multiple connected components

Allows to employ more efficient relaxations, like SDP



Two-level divide-and-conquer algorithm

Random walks on graph and associated distances

LRW = I−D−1W

P = D−1W is Markov matrix. It is
transition matrix of random walk on
graph: pij = P(xk+1 = xj |xk = xi )

Diffusion distance: distance between probability clouds originated at
nodes i and j and measured after step l :(
D l
jk(G )

)2
= ‖P l

j (G )− P l
k(G )‖2D

Commute-time (or resistance) distance: Cij = Hij + Hji where
Hij = pij +

∑
k 6=j pik(1 + Hkj). It can be computed as

C 2
jk(G ) = (ej − ek)T L† (ej − ek) where L† is Moore-Penrose

pseudo-inverse of L.

For elements i and j from target set Vm commute-time distance Cij is
preserved and diffusion distance D l

ij is approximated with exponential
accuracy



Two-level divide-and-conquer algorithm

Geometrical interpretation of the reduced graph G̃
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Numerical examples

EMail communication network from SNAP repository

Goal: identify people from the same organizations

N=1005. 42 ground-truth communities (European organizations).
Not enough data to resolve some of them

Statistics of reproducing random
elements from 10 random
ground-truth communities

Semi-definite programming
shows the best results. Can be
applied to ROGL only due to
harsh computational cost



Numerical examples

Sonic data



Numerical examples

Spectral embedding



Numerical examples

Clustering results

SOM Spectral Two-level

Computational time on desktop: 15sec for SC and 50min for SOM
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Conclusions and future work

Conclusions

We developed two-level clustering algorithm based on reduced-order
model of graph-Laplacian for clustering of data subsets

ROGL preserves with exponential accuracy such important physical
features of the problem as transfer function and late-time diffusion
distances for given data subset

Significantly reduced size of the problem enables not only to speed up
the computations but also to obtain qualitatively better results by
exploiting NP-hard-type algorithms

ROGL-based data subset clustering can be used as stand-alone when
remaining data is not interesting

Can be implemented in partial data-driven way via Loewner matrices
framework (crucial for truly big data when entire graph is not directly
accessible)



Conclusions and future work

Future work

Feasibility study on truly large datasets

Multi-level approach

Distance learning (in progress). Can be done in supervised and
unsupervised manner
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