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Introduction

Inverse problems with inexact forward operator

We consider an inverse problem

A(f) = g, A : D(A) ⊆ X → Y,

where the given data gδ are subject to noise with noise level

‖gδ − g‖ ≤ δ.

In addition, we assume that only an inexact version Aη of A is given with inexactness
η > 0, such that

‖Aη(f)−A(f)‖ ≤ η · ρ for all f ∈ Bρ(0) ⊆ D(A).

 include information on inexactness in reconstruction
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Introduction

Inexact forward operators: two examples

Dynamic Computerized Tomography → Talk by Bernadette Hahn, Tuesday 9:40
A slight motion Γ of the object during the scan affects the data:

gΓ(ϕ, s) = RΓf0(ϕ, s) =
∫
R2
f0(Γϕx)δ(s− xT θ(ϕ)) dx

We use the static model with inexactness:

gΓ(ϕ, s) = Rf0(ϕ, s) + η(ϕ, s) =
∫
R2
f0(x)δ(s− xT θ(ϕ)) dx+ η(ϕ, s)

Magnetic Particle Imaging
The high complexity of the physical model for the system function s suggests to use an
inexact model:

u(t) =
∫

Ω
c(x)

(
s(x, t) + ∆s(x, t)

)
dx =

∫
Ω
c(x)s(x, t) dx+ η(t)
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Sequential subspace optimization SESOP for linear inverse problems

Notation and definitions

Let X,Y be real Hilbert spaces and MA(f)=g := {f ∈ X : A(f) = g} the solution set.

Hyperplanes, halfspaces and stripes
Let u ∈ X \ {0} and α, ξ ∈ R, ξ ≥ 0. We define the (affine) hyperplane

H(u, α) := {f ∈ X : 〈u, f〉 = α} ,

the halfspace
H≤(u, α) := {f ∈ X : 〈u, f〉 ≤ α}

and the stripe
H(u, α, ξ) := {f ∈ X : |〈u, f〉 − α| ≤ ξ} .
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Sequential subspace optimization SESOP for linear inverse problems

Sequential subspace optimization (SESOP) for linear inverse problems in
Hilbert spaces

fn+1 := fn −
∑
i∈In

tn,iA
∗wn,i,

In a finite index set, wn,i ∈ Y for all i ∈ In, and the parameters tn = (tn,i)i∈In minimize

hn(t) := 1
2

∥∥∥∥∥fn −∑
i∈In

tiA
∗wn,i

∥∥∥∥∥
2

+
∑
i∈In

ti 〈wn,i, g〉 .

Lemma [Schöpfer, Schuster, Louis (2008)]
The minimization of hn(t) is equivalent to computing the metric projection

fn+1 = PHn(fn), Hn :=
⋂
i∈In

Hn,i,

onto the intersection of hyperplanes

Hn,i :=
{
f ∈ X : 〈A∗wn,i, f〉 = 〈wn,i, g〉

}
⊇MAf=g.
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Sequential subspace optimization SESOP for linear inverse problems

Adaptions of SESOP

Linear inverse problems with noisy data
Use stripes with width ξ = ξ(δ):

Hn,i :=
{
f ∈ X :

∣∣〈A∗wδn,i, f〉− 〈wδn,i, gδ〉∣∣ ≤ δ‖wδn,i‖} ⊇MAf=g.

Nonlinear inverse problems with noisy data

Hδ
n,i :=

{
f ∈ X :

∣∣〈A′(fδi )∗wδn,i, fδi − f
〉
−
〈
wδn,i, A(fδi )− gδ

〉∣∣
≤ ‖wδn,i‖

(
ctc
(
‖Rδi ‖+ δ

)
+ δ
)}
⊇MA(f)=g
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Sequential subspace optimization RESESOP for inexact forward operators

RESESOP for noisy data and inexact forward operator

Let
‖Aη(f)−A(f)‖ ≤ η · ρ for all f ∈ Bρ(0) ⊆ D(A)

for η > 0.

Linear inverse problems with noisy data and inexact forward operator

Hη,δ
n,i :=

{
f ∈ X :

∣∣〈(Aη)∗wη,δn,i , f
〉
−
〈
wη,δn,i , g

δ
〉∣∣ ≤ (δ + ηρ)‖wη,δn,i‖

}
⊇MAf=g.

Nonlinear inverse problems with noisy data and inexact forward operator

Hη,δ
n,i :=

{
f ∈ X :

∣∣〈(Aη)′(fη,δi )∗wη,δn,i , f
η,δ
i − f

〉
−
〈
wη,δn,i , A

η(fη,δi )− gδ
〉∣∣

≤ ‖wη,δn,i‖
(
ctc
(
‖wη,δn,i‖+ (δ + ηρ)

)
+ (δ + ηρ)

)}
⊇MA(f)=g
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Sequential subspace optimization RESESOP-Kaczmarz for linear inverse problems

Semi-discrete setting

Let Ak : X → Yk be linear bounded operators and

Akf = gk, ‖gδk − gk‖ ≤ δ, ‖Ak −A‖ ≤ ηk.

for all k = 1, ...,K as well as

n ∈ In for all n ∈ N, wη,δn,i := Aη[n]f
η,δ
i − gδ[n] for all i ∈ In, n ∈ N,

where [n] = n mod K.

Time-dependent inverse problems
The index k may refer to different time points tk ∈ [0, T ].
Changes in the physical setting may be incorporated in ηk = η(tk).
Examples:

Periodic motion in dynamic CT calls for a periodic function η(t);
Reference state at tk: η(tk) = 0
Rising temperature in MPI scanner during the scan: increasing η(t)
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Sequential subspace optimization RESESOP-Kaczmarz for linear inverse problems

RESESOP-Kaczmarz algorithm

Choose a starting value fη,δ0 = f0 ∈ Bρ(0) ⊆ X and constants τk > 1, k = 1, ...,K.

As long as the discrepancy principle is not yet fulfilled, i.e.,∥∥∥Aη[n]f
η,δ
n − gδ[n]

∥∥∥ > τ[n]
(
η[n]ρ+ δ[n]

)
,

calculate the new iterate as

fη,δn+1 := P
H
η,δ
n

(
fη,δn

)
, Hη,δ

n :=
⋂

i∈Iη,δn

H
(
uη,δn,i , α

η,δ
n,i , ξ

η,δ
n,i

)
.

Here, we choose Iη,δn ⊆ {0, 1, ..., n} such that n ∈ Iη,δn and

uη,δn,i :=
(
Aη[i]
)∗
wη,δn,i ,

αη,δn,i :=
〈
wη,δ,ln,i , g

δ
[i]
〉
,

ξη,δn,i :=
(
η[i]ρ+ δ[i]

)∥∥wη,δn,i∥∥.
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Sequential subspace optimization RESESOP-Kaczmarz for linear inverse problems

Convergence of the SESOP-Kaczmarz algorithm

Now let δ = 0 and ηk = 0 for all k = 1, ...,K.

Theorem [Blanke, Hahn, W. 2019]
Let {fn}n∈N be the sequence generated by the SESOP-Kaczmarz algorithm with initial
value f0 and

In ⊆ {n−N + 1, ..., n} ∩ N, N ∈ N \ {0} fixed,
n ∈ In,
wi := wn,i := A[i]fi − g[i] for all i ∈ In

for all n ∈ N. If there is an upper bound for the set of optimization parameters tn,i, i.e.,
|tn,i| < t for all i ∈ In, n ∈ N, then {fn}n∈N converges strongly to a solution f of
Akf = gk, k = 1, ...,K.
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Sequential subspace optimization RESESOP-Kaczmarz for linear inverse problems

The RESESOP-Kaczmarz algorithm as a regularization method

Let n ∈ Iη,δn ⊆ {n−N + 1, ..., n} ∩ N and wη,δn,i := Aη[i]f
η,δ
i − gδ[i] for all i ∈ Iη,δn in the

RESESOP-Kaczmarz algorithm.

Theorem [Blanke, Hahn, W. 2019]
(a) The RESESOP-Kaczmarz algorithm yields a finite stopping index n∗.
(b) We have fη,δn → fn for η → 0, δ → 0, where {fn}n∈N is the sequence of iterates

generated by the SESOP-Kaczmarz algorithm.
(c) If {fn}n∈N converges strongly, then

fη,δn∗(η,δ) → f ∈M sd
Af=g ∩Bρ(0).

Remark

The previous statements also hold for the sequences {frK}r∈N and {fη,δrK }r∈N of full
iterates.
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Application: Dynamic computerized tomography

Dynamic computerized tomography

Motion in computerized tomography
The object undergoes motion during the scan.
Typical examples from medical CT imaging:

Breathing: the entire body expands periodically (global motion)
Heartbeat: a local periodical motion

Problem: If the motion is not taken into account, this causes severe artefacts in the
reconstruction and details are no longer visible.

Motion compensation
In general, the motion is unknown or hard to estimate.
 interpret the motion of the object as a model inexactness
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Application: Dynamic computerized tomography

Dynamic CT

Consider the dynamic model

gΓ(ϕ, s) = RΓf0(ϕ, s) =
∫
R2
f0(Γϕx)δ(s− xT θ(ϕ)) dx.

For the inexactness η in ∥∥RΓ(ϕ, s)−R(ϕ, s)
∥∥ ≤ η(ϕ, s)

we have several options.

Inexactness η
η(ϕ, s) = η̄ with some constant η̄ > 0
η(ϕ, s) = η(ϕ): Inexactness depends on the position of the tomograph, i.e., on time
η(ϕ, s) = η(s): Inexactness depends on offset and is affected by local behavior of
the object
η(ϕ, s) = η(ϕ, s): local time-dependent inexactness

A. Wald (Saarland University) Fast iteration for inexact inverse problems August 8, 2019 16 / 24



Application: Dynamic computerized tomography

Dynamic CT

Consider the dynamic model

gΓ(ϕ, s) = RΓf0(ϕ, s) =
∫
R2
f0(Γϕx)δ(s− xT θ(ϕ)) dx.

For the inexactness η in ∥∥RΓ(ϕ, s)−R(ϕ, s)
∥∥ ≤ η(ϕ, s)

we have several options.

Inexactness η
η(ϕ, s) = η̄ with some constant η̄ > 0
η(ϕ, s) = η(ϕ): Inexactness depends on the position of the tomograph, i.e., on time
η(ϕ, s) = η(s): Inexactness depends on offset and is affected by local behavior of
the object
η(ϕ, s) = η(ϕ, s): local time-dependent inexactness

A. Wald (Saarland University) Fast iteration for inexact inverse problems August 8, 2019 16 / 24



Numerical results

Overview

1 Introduction

2 Sequential subspace optimization
SESOP for linear inverse problems
RESESOP for inexact forward operators
RESESOP-Kaczmarz for linear inverse problems

3 Application: Dynamic computerized tomography

4 Numerical results

5 Conclusion and outlook

A. Wald (Saarland University) Fast iteration for inexact inverse problems August 8, 2019 17 / 24



Numerical results

Numerical experiment: affine periodic motion

Reference/initial state:

Affine motion:
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Numerical results

Numerical experiment: affine periodic motion

Reconstructions from exact data using the static model:

Reconstruction with SESOP-Kaczmarz using exact inexactness (a) η = η(ϕ) (left) and
(b) η = η(ϕ, s) (right):
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Numerical results

Numerical experiment: affine periodic motion

Now we add some equally distributed noise to the data.

Reconstruction with RESESOP-Kaczmarz using exact inexactness (a) η = η(ϕ) (left) and
(b) η = η(ϕ, s) (right):
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Numerical results

Further numerical experiments

It is possible to use each time point as a reference state, which is then reconstructed
by the (RE)SESOP-Kaczmarz algorithm.
The method also works for non-affine motion.
An over-estimation of the inexactness η still yields good reconstructions.
Periodic motions are especially suited for our approach.
Using a global inexactness does usually not yield good reconstructions.
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Conclusion and outlook
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Thank you for your attention!
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