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Notation and convention

I Ω = bounded open domain in R1+n with n ≥ 3 and for
z := (t, x) ∈ Ω, ∇z := (∂t,∇x) := (∂0, ∂1, ∂2, · · · , ∂n)

I For repeating indices, we assume the Einstein summation
notation, and also the convention that θ0 = 1.

I F = ((Fij))0≤i,j≤n is symmetric 2-tensor and

δF = (∂jF0j , ∂jF1j , ∂jF2j , · · · , ∂jFnj)T

I For a vector field v = (v0, v1, v2, · · · , vn); the symmetried
derivative d of v is given by the following matrix:

dv =

((
∂ivj + ∂jvi

2

))
0≤i,j≤n
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Light ray transform

Let f = ((fi1i2···im)){0≤ij≤n; 1≤j≤m} be an m-tensor field and

then its light ray transform Lf at (t, x) ∈ R1+n in the direction
of (1, θ) is defined by

Lf(t, x; θ) :=

∫
R

θi1θi2 · · · θimfi1i2···im(t+ s, x+ sθ)ds (1)

where θ ∈ Sn−1 and (t, x) ∈ R1+n.

I For m = 0 (function case) Light ray transform appear in
determining the time-dependent potential appearing in
hypebolic PDE from boundary or scattering data; see for
example: Stefanov (1989), Waters (2014), Ben Aı̈cha
(2015), Kian (2016), Oksanen-Kian (2016) and several
others..........
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Light ray transform

I For m = 1 (vector field case) these transform appears in
determination of first order time-dependent perturbation in
hyperbolic equations from boundary data; see for example
Salazar (2013), Montalto (2014), Stefanov-Yang (2018),
Krishnan-Vashisth (2018),
Feizmohammadi-Ilmavirta-Kian-Oksanen (2019) and many
more.........

I For m = 2 (2-tensor case) these trasform appears in
determining the time-dependent coefficients of quadratic
non-linearity in Non-linear hyperbolic PDE; see for
example Nakamura-Vashisth (2017)

Light ray transforms for symmetric m-tensor for m = 0, 1, 2 in
Euclidean and Lorentzian geometry have been studied:

Stefanov, Lassas, Oksanen, Uhlmann, Wang, RabieniaHaratbar,
Waters-Salazar and several others......
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Light ray 2-tensor

Let F (t, x) = ((Fij(t, x)))0≤i,j≤n be a symmetric 2-tensor field
defined on Ω and we extend it by zero outside Ω, then light ray
transform LF of F is defined by

Light Ray 2-tensor

LF (t, x; θ) :=

∫
R

θiθjFij(t+ s, x+ sθ), (t, x) ∈ R1+nand θ ∈ Sn−1.

Kernel of L

For λ ∈ C∞(Ω) function, g is the Minkowski metric with
(−1, 1, 1, · · · , 1) along the diagonal and a smooth vector-field v
satisfying v|∂Ω = 0, we have

L (λg + dv) (t, x, θ) = 0, for all (t, x) ∈ R1+n and θ ∈ Sn−1.

Manmohan Vashisth(CSRC) Light ray transform



Light ray 2-tensor

Problem of interest

If LF (t, x, θ) = 0, for all (t, x) ∈ R1+n and θ ∈ Sn−1 near some
fixed ±θ0 ∈ Sn−1, then can we characterize such symmetric
2-tensor fields?

In this talk, we show that only symmetric two tensor satisfying
LF (t, x, θ) = 0 are of λg + dv form. More precisely, we prove
the following:
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Main Theorem

Theorem (Krishnan-Senapati-V.)

Let F ∈ C∞(Ω) be a symmetric 2-tensor field. If for a fixed
θ0 ∈ Sn−1,

LF (t, x, θ) = 0, for all (t, x) ∈ R1+n and θ near ± θ0,

then F = λg+ dv, where λ is a C∞ function, g is the Minkowski
metric with (−1, 1, 1, · · · , 1) along the diagonal, v is a C∞

vector field with v|∂Ω = 0, and d is the symmetrized derivative.

Manmohan Vashisth(CSRC) Light ray transform



Decomposition theorem

Theorem (Krishnan-Senapati-V.)

Let F ∈ C∞(Ω) be a symmetric 2-tensor field. Then there exists
a symmetric 2-tensor field F̃ satisfying δ(F̃ ) = trace(F̃ ) = 0, a
C∞ function λ and a vector field v satisfing v|∂Ω = 0 such that
F can be decomposed as

F = F̃ + λg + dv. (2)

Here g is the Minkowski metric with (−1, 1, 1, · · · , 1) along the
diagonal and d is the symmetrized derivative of v defined by

(dv)ij =
1

2
(∂ivj + ∂jvi) .

I Analogous to the above decomposition theorem in
Riemannian geometry is proved by Sharafutdinov (2007).
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Uniqueness for trace and divergence free tensor

Assuming that the decomposition theorem is true, then we have

LF (t, x, θ) = LF̃ (t, x, θ), for all (t, x) ∈ R1+n and θ ∈ Sn−1

where F̃ is as in the decomposition theorem. Therefore, it is
enough to prove the following:

Theorem (Krishnan-Senapati-V.)

Let F ∈ C∞(Ω) be a symmetric 2-tensor field with δF = 0 and
trace(F ) = 0. If for a fixed θ0 ∈ Sn−1,

LF (t, x, θ) = 0, for all (t, x) ∈ R1+n and θ near ± θ0,

then F = 0.
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Sketch of proof

We follow the arguments similar to the one used in Stefanov
(2017), RabieniaHaratbar (2018), Krishnan and Vashisth
(2018); let

I z = (t, x) ∈ R1+n and ∇z = (∂t,∇x) := (∂0, ∂1, ∂2, · · · , ∂n)

I ω ∈ R1+n is arbitrary

we have

(ω · ∇z)(LF )(t, x, θ) =

∫
R

θiθjωk∂kFij(t+ s, x+ sθ) ds (3)

holds for all ω ∈ Rn, (t, x) ∈ R1+n and θ ∈ Sn−1. Also by
fundamental theorem of calculus, we have
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Sketch of proof

0 =

∫
R

d

ds
(θiωkFik)(t+ s, x+ sθ) ds

=

∫
R

θiθjωk∂jFik(t+ s, x+ sθ) ds

(4)

Subtracting (4) from (3) and using the hypothesis

I LF (t, x, θ) = 0 for θ near ±θ0,

∫
R

θiθjωk (∂kFij − ∂jFik) (t+ s, x+ sθ) ds = 0,

holds for all (t, x) ∈ R1+n, θ ≈ ±θ0.
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Sketch of proof

Denote hijk := ∂kFij − ∂jFik, we have

Ih(t, x; θ, ω) :=

∫
R

θiθjωkhijk(t+ s, x+ sθ) ds = 0; (5)

holds for all (t, x) ∈ R1+n, ω ∈ R1+n and θ near ± θ0. Next
consider the Fourier transform:

ĥijk(ζ) =

∫
R1+n

hijk(t, x)e−i(t,x)·ζ dtdx (6)

Using the decomposition,

R1+n = R(1, θ)⊕` with ` ∈ (1, θ)⊥ combined with Fubini’s theorem,
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Sketch of proof

we get

ĥijk(ζ) =
√

2

∫
(1,θ)⊥

∫
R

θiθjωkhijk(`+ s(1, θ))e−i(`+s(1,θ))·ζ ds d`

If ζ ∈ (1, θ)⊥, then

θiθjωkĥijk(ζ) =
√

2

∫
(1,θ)⊥

∫
R

θiθjωkhijk(s(1, θ) + `)e−i`·ζ ds d`.

Using (5), we get that

θiθjωkĥijk(ζ) = 0; for all ω ∈ R1+n, ζ ∈ (1, θ)⊥ with θ ≈ ±θ0.
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Sketch of proof

Finally choosing ω = e1 = (1, 0, 0, · · · , 0) ∈ R1+n and definition
of hijk, we get

θiθjF̂ij(ζ) = 0 for all ζ ∈ (1, θ)⊥ and θ near ± θ0. (7)

From here we want to show that Fij ≡ 0 for all 0 ≤ i, j ≤ n.

Idea for proof

First show that F̂ij(ζ0) = 0 for ζ0 := e2 = (0, 0, 1, · · · , 0) ∈ R1+n

fixed space-like vector and for all 0 ≤ i, j ≤ n. Then we show
that F̂ij(ζ) = 0, for all space-like vector ζ near ζ0 hence finally
using the Paley-Wiener thereom, we conclude that Fij(t, x) = 0
in Ω for all 0 ≤ i, j ≤ n.

We give the sketch of proof for n = 3 and similar idea can be
used for n ≥ 4.
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Proof for n = 3 special case

I Fix ζ0 = (0, 0, 1, 0) ∈ R1+3 and ±θ0 = (±1, 0, 0).

I (1,±θ0) · ζ0 = 0

Now consider

± θ0(a) = (± cos a, 0, sin a). (8)

I If a is near 0, then ±θ0(a) is near ±θ0.

I Also (1,±θ0(a)) · ζ0 = 0.
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Proof for n = 3 special case

Using this choice of ζ0 and ±θ0(a) in

θiθjF̂ij(ζ) = 0 for all ζ ∈ (1, θ)⊥ and θ near ± θ0

we get

(
F̂00 ± 2 cos aF̂01 + 2 sin aF̂03 + cos2 aF̂11

± 2 sin a cos aF̂13 + sin2 aF̂33

)
(ζ0) = 0, for a near 0.

(9)
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Proof for n = 3 special case

Now Differentiating above equation twicely w.r.t. a and taking
a→ 0, we get the following set of equations(

F̂00 ± 2F̂01 + F̂11

)
(ζ0) = 0(

F̂03 ± F̂13

)
(ζ0) = 0(

∓F̂01 − F̂11 + F̂33

)
(ζ0) = 0.

Consider the above equations with the positive and negative
signs separately, adding and substracting, we get the following
five equations:

(
F̂00 + F̂11

)
(ζ0) = 0; F̂01(ζ0) = 0; F̂03(ζ0) = 0;

F̂13(ζ0) = 0;
(
−F̂11 + F̂33

)
(ζ0) = 0

(10)
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Proof for n = 3 special case

Since δ(F ) = trace(F ) = 0, we have

F̂02(ζ0) = F̂12(ζ0) = F̂22(ζ0) = F̂32(ζ0) = 0,(
F̂00 + F̂11 + F̂22 + F̂33

)
(ζ0) = 0.

(11)

From these 10 equations in (10) and (11), we get F̂ij(ζ0) = 0 for
all 0 ≤ i, j ≤ 3.

Manmohan Vashisth(CSRC) Light ray transform



Proof for n = 3 general case

I Next, our goal is to show that Fij(ζ) = 0, for ζ 6= 0
space-like vector in a small enough conical neighborhood of
ζ0.

We start with a unit vector in R3, ζ ′ := (ζ1, ζ2, ζ3) ∈ S2, and let
us choose ζ0 = − sinϕ. Then (− sinϕ, ζ1, ζ2, ζ3) is a space-like
vector if −π/2 < ϕ < π/2.

I Let us recall that in showing Fij(ζ0) = 0, we considered a
perturbation ±θ0(a) (see (8)) of the vector
±θ0 = (±1, 0, 0). Note that we required that ±θ0(a) was
close enough to ±θ0 and (1,±θ0(a)) · ζ0 = 0. Our next
calculations are motivated by these requirements for the
vector ζ = (− sinϕ, ζ1, ζ2, ζ3).
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Proof for n = 3 general case

Since we are interested in a non-zero space-like vector in a small
enough conical neighborhood of ζ0, let us choose

ζ1 = sinα cosβ, ζ2 = cosα and ζ3 = sinα sinβ.

Then clearly ζ is close to (0, 1, 0) whenever α and β are close
enough to 0, and choosing ϕ close to 0, we get that the
space-like vector ζ = (− sinϕ, ζ1, ζ2, ζ3) is close enough to
(0, 0, 1, 0).

I Next choose ±θ0(ϕ) := (± cosϕ, sinϕ, 0) close to ±θ0 when
ϕ is close to 0 and the perturbation of θ0(ϕ) (for a close to
0) by

±θ0(ϕ, a) = (± cos a cosϕ, sinϕ, sin a cosϕ) .
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Proof for n = 3 general case

Let us consider the orthogonal matrix A:

A =

cosα cosβ − sinα cosα sinβ
sinα cosβ cosα sinα sinβ
− sinβ 0 cosβ

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
Define ±θ̃0, ±θ̃0(ϕ) and ±θ̃0(a, ϕ) by

±θ̃0 := AT

±1
0
0

 =

± cosα cosβ
∓ sinα

± cosα sinβ



±θ̃0(ϕ) = AT (±θ0(ϕ)) = AT

± cosϕ
sinϕ

0

 =

±a11 cosϕ+ a21 sinϕ
±a12 cosϕ+ a22 sinϕ
±a13 cosϕ+ a23 sinϕ
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Proof for n = 3 general case

± θ̃0(ϕ, a) = AT (±θ0(ϕ, a))

=

±a11 cos a cosϕ+ a21 sinϕ+ a31 sin a cosϕ
±a12 cos a cosϕ+ a22 sinϕ+ a32 sin a cosϕ
±a13 cos a cosϕ+ a23 sinϕ+ a33 sin a cosϕ

 =

A±1 (a)
A±2 (a)
A±3 (a)

 .
I Note that if a, ϕ, α and β are close enough to 0, then
±θ̃0(ϕ, a) ≈ ±θ0. Therefore LF (t, x,±θ̃0(ϕ, a)) = 0.

I Also note that for all ϕ, a, α and β close enough to 0,
(1,±θ̃0(ϕ, a)) · ζ = 0.
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Proof for n = 3 general case

Therefore, using these choice of ζ and ±θ̃0(ϕ, a) in

θiθjF̂ij(ζ) = 0 for all ζ ∈ (1, θ)⊥ and θ near ± θ0

we get that

A±i (a)A±j (a)F̂ij(ζ) = 0; for a near to 0.

I Differentiating above equation twicely w.r.t. a and taking
a→ 0

I Consider the two equations corresponding to the positive
and negative signs and adding and substracting them, we
get five set of equations which coincides with the five
equations in (10) as α, β, ϕ→ 0.
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Proof for n = 3 general case

I Divergence free and trace free conditions give us five more
equations, which are again identical with the five equations
in (11) as α, β, ϕ→ 0.

I Since we know that Fij(ζ0) = 0 for 0 ≤ i, j ≤ 3, we have
that the determinant of the matrix formed by the 10
equations in (10) and (11) is non-zero.

I Therefore we have F̂ij(ζ) = 0 for 0 ≤ i, j ≤ 3, where
ζ = (− sinϕ, sinα cosβ, cosα, sinα sinβ), where α, β and ϕ
are near 0. By the same argument F̂ij(λζ) = 0 for
0 ≤ i, j ≤ 3, where ζ is as above and λ > 0.

So by using the Paley-Wiener theorem, we conclude that F ≡ 0
in Ω. This completes the proof for n = 3. Proof for n ≥ 4
dimensions follows by using the similar arguments.
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Proof for the decomposition theorem

Assume that the decomposition is true. Then

trace(F ) = trace(F̃ ) + trace(λg) + trace(dv).

δF = δ(F̃ ) + δ (λg) + δdv.

Using trace(F̃ ) = δ(F̃ ) = 0, trace(λg) = (n− 1)λ,
δ(λg) = (−∂0λ, ∂1λ, ∂2λ, · · · , ∂nλ)T and trace(dv) = δv, we have

trace(F ) = (n− 1)λ+ (∂0v0 + ∂1v1 + ∂2v2 + · · ·+ ∂nvn) . (12)
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Proof for the decomposition theorem



∂jF0j

∂jF1j

∂jF2j
...

∂jFnj


=


−∂0λ
∂1λ
∂2λ

...
∂nλ

+
1

2


∆v0 + ∂2

0jvj
∆v1 + ∂2

1jvj
∆v2 + ∂2

0jvj
...

∆vn + ∂2
njvj

 (13)

Now using λ from (12) in (13), we get
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Proof for the decomposition theorem


∆v0 + α∂2

0jvj
∆v1 + β∂2

1jvj
∆v2 + β∂2

0jvj
...

∆vn + β∂2
njvj

 =



∂jf0j

∂jf1j

∂jf2j

...

∂jfnj


− 1

n− 1



−∂0tr(f)

∂1tr(f)

∂2tr(f)

...

∂ntr(f)


:=


u0

u1

u2
...
un


(14)

where α :=
(

1 + 2
n−1

)
and β :=

(
1− 2

n−1

)
. Existence of v can

be proved by solving the above system of equations.
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Proof for n = 3


3∂2

0v0 + ∂2
1v0 + ∂2

2v0 + ∂2
3v0 + 2∂2

01v1 + 2∂2
02v2 + 2∂2

03v3 = u0,

∂2
0v1 + ∂2

1v1 + ∂2
2v1 + ∂2

3v1 = u1,

∂2
0v2 + ∂2

1v2 + ∂2
2v2 + ∂2

3v2 = u2,

∂2
0v3 + ∂2

1v3 + ∂2
2v3 + ∂2

3v3 = u3.

(15)

The above system is decoupled and hence can be solved with
the boundary condition v|∂Ω = 0. Then we use (12) to solve for
λ. This completes the proof of the theorem for n = 3.
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Proof for n ≥ 4

From (14), we have


∆v0 + α∂2

0jvj
∆v1 + β∂2

1jvj
∆v2 + β∂2

0jvj
...

∆vn + β∂2
njvj

 =


u0

u1

u2
...
un

 ; v|∂Ω = 0. (16)

Our aim is to show that the coupled system (16) is uniquely
solvable.
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Proof for n ≥ 4

To prove this it is enough (Taylor’s book on PDE 1) to show
that it is strongly elliptic with zero kernel and zero co-kernel.
Let u := (u0, u1, u2, · · · , un) and define the (1 + n)× (1 + n)
matrix A(x, ∂) by

A(x; ∂) :=



∆ + α∂2
0 α∂2

01 α∂02 · · · α∂2
0n

β∂2
10 ∆ + β∂2

1 β∂2
12 · · · β∂2

1n

β∂2
20 β∂2

21 ∆ + β∂2
2 · · · β∂2

2n

β∂2
30 β∂2

31 β∂2
32 · · · β∂2

3n
...

...
...

... · · ·
...

...
...

... · · ·
β∂2

n0 β∂2
n1 β∂2

n2 · · · ∆ + β∂2
n


.
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Proof for n ≥ 4

With this (16) becomes{
A(x; ∂)v = u, in Ω

v = 0, on ∂Ω
(17)
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Strong ellipticity for A(x; ∂)

Symbol A(x; ξ) for operator A(x; ∂) is given by

A(x; ξ) =



|ξ|2 + αξ20 αξ0ξ1 αξ0ξ2 · · · αξ0ξn
βξ1ξ0 |ξ|2 + βξ21 βξ1ξ2 · · · βξ1ξn
βξ2ξ0 βξ2ξ1 |ξ|2 + βξ22 · · · βξ2ξn
βξ3ξ0 βξ3ξ1 βξ3ξ2 · · · βξ3ξn

...
...

... · · ·
...

...
...

... · · ·
...

βξnξ0 βξnξ1 βξnξ2 · · · |ξ|2 + βξ2n


.

(18)

In order to prove the strong ellipticity for A(x; ξ) enough to prove

that the matrix P (x; ξ) := A(x;ξ)+AT (x;ξ)
2 is positive definite.
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Positivity for P (x; ξ)

Let η, ξ ∈ R1+n \ {0} be two column vectors, then we consider

ηTP (x; ξ)η = |ξ|2|η|2 + (α− 1) ξ2
0η

2
0 + ξ0η0 (ξ · η)

+ (1− β)ξ0η0 (ξ · η − ξ0η0) + βξ · η (ξ · η − ξ0η0)

= |ξ|2|η|2 + (α+ β − 2) ξ2
0η

2
0 + β (ξ · η)2

+ 2 (1− β) (ξ · η) ξ0η0.

(19)

Substituting the values of α and β, we have

ηTP (x; ξ)η =
|ξ|2|η|2

n− 1

(
n− 1 + (n− 3)

(
ξ · η
|ξ||η|

)2

+ 4

(
(ξ0η0) (ξ · η)

|ξ|2|η|2

))
.
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Positivity for P (x; ξ)

Define a := ξ0η0
|ξ||η| and b = ξ′·η′

|ξ||η| , then clearly |a| ≤ 1, |b| ≤ 1 and

|a+ b| ≤ 1. Using these in above equation, we get

ηTP (x; ξ)η =
|ξ|2|η|2

n− 1

(
n− 1 + (n− 3) (a+ b)2 + 4a (a+ b)

)
=
|ξ|2|η|2

n− 1

(
n− 1 + (n+ 1) a2 + 2(n− 1)ab+ (n− 3)b2

)
≥ |ξ|

2|η|2

n− 1

(
n− 1 + (n+ 1)a2 − (n− 1)

(
a2 + b2

)
+ (n− 3)b2

)
≥ |ξ|

2|η|2

n− 1

(
n− 1 + 2a2 − 2b2

)
≥ n− 3

n− 1
|ξ|2|η|2

≥ C|ξ|2|η|2; for some constant C > 0 provided n ≥ 4.

This prove the strong ellipticity for A(x; ∂).

Manmohan Vashisth(CSRC) Light ray transform



Kernel of A(x; ∂)

Here we have to prove that the following BVP{
A(x; ∂)v = 0, in Ω

v = 0, on ∂Ω

has only zero solution. Substituting the expression for A(x; ∂)
and v, we have

∆v0 +

(
1 +

2

n− 1

) n∑
k=0

∂2
0kvk = 0, v|∂Ω = 0, (20)

∆vj +

(
1− 2

n− 1

) n∑
k=0

∂2
jkvk = 0, v|∂Ω = 0, 1 ≤ j ≤ n. (21)
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Kernel of A(x; ∂)

Multiplying (20) by v0 and (21) by vj and integrating over Ω,
we have∫

Ω

|∇v0(x)|2dx+

(
1 +

2

n− 1

)∫
Ω

∇ · v(x)∂0v0(x)dx = 0 (22)

and∫
Ω

|∇vj(x)|2dx+

(
1− 2

n− 1

)∫
Ω

∇ · v(x)∂jvj(x)dx = 0. (23)

Adding the set of equations in (22) and (23), we get∫
Ω

n∑
j=0

|∇vj |2dx+ β

∫
Ω

|∇ · v|2dx+
4

n− 1

∫
Ω

∇ · v (∂0v0) dx = 0.

(24)
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Kernel of A(x; ∂)

a := ∂0v0, b :=
∑n

j=1 ∂jvj and c :=
∑n

j=0|∇vj |2 − |∂0v0|2. Using
these in (24), we have∫

Ω

(
c+ a2 +

n− 3

n− 1
(a+ b)2 +

4

n− 1

(
a2 + ab

))
dx = 0.

Now after combining the similar terms, we get

∫
Ω

(
2na2 + 2 (n− 1) ab+ (n− 3) b2 + (n− 1) c

)
dx = 0.

Now lets view the integrand in the above equation as a
quadratic in a and then its discriminant Dn(x) given by

Dn(x) = 4(n− 1)2b2 − 8n
(
(n− 3)b2 + (n− 1)c

)
= 4

[(
−n2 + 4n+ 1

)
b2 − 2n(n− 1)c

]
.
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Kernel of A(x; ∂)

Using the fact that nc ≥ b2 , we get

Dn(x) ≤ 4
(
−n2 + 2n+ 3

)
b2 < 0; if b2 6= 0 and n ≥ 4

but if Dn(x) < 0 then we have the integrand in (24) is strictly
positive which cannot be true since integration in (24) is zero.
Hence we have b = 0, using this in (24), we get v ≡ 0 and hence
KerA(x; ∂) = {0}.
I Similar arguments show that Co-kerA(x; ∂) = {0}.

This completes the proof for existence of v in n ≥ 4.
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Existence of λ and F̃

Using v in (12) i.e. in

trace(F ) = (n− 1)λ+ δv

we get

λ =
trace(F )− δv

n− 1

and then take
F̃ = F − λg − dv

we get the decomposition formula for F .
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Thank you very much for your attention
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