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Travel Time Tomography (Transmission)

Global Seismology

Inverse Problem: Determine inner structure of Earth by measuring travel time of

seismic waves.
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Seismic Waves

(Loading seismic waves.mpg)
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Travel Time Tomography

Long-awaited mathematics proof could help scan Earth’s innards

Nature, Feb, 2017
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Tsunami of 1960 Chilean Earthquake

Black represents the largest waves, decreasing in height through purple, dark red,

orange and on down to yellow. In 1960 a tongue of massive waves spread across

the Pacific, with big ones throughout the region.
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Human Body Seismology

ULTRASOUND TRANSMISSION TOMOGRAPHY(UTT)

T =
∫
γ

1

c(x)
ds = Travel Time (Time of Flight).
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REFLECTION TOMOGRAPHY

Scattering

Points in medium

Obstacle
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REFLECTION TOMOGRAPHY

Oil Exploration Ultrasound
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TRAVELTIME TOMOGRAPHY (Transmission)

Motivation:Determine inner structure of Earth by measuring travel

times of seismic waves

Herglotz (1905), Wiechert-Zoeppritz (1907)

Sound speed c(r), r = |x|

d
dr

(
r

c(r)

)
> 0

T =
∫
γ

1
c(r). What are the curves of propagation γ?
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Ray Theory of Light: Fermat’s principle

Fermat’s principle. Light takes the shortest optical path from A to B (solid

line) which is not a straight line (dotted line) in general. The optical path length

is measured in terms of the refractive index n integrated along the trajectory.

The greylevel of the background indicates the refractive index; darker tones

correspond to higher refractive indices.
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Geodesics (Rays)

The curves are geodesics of a metric ds2 = 1
c2(r)

dx2, or more gen-

erally, ds2 = 1
c2(x)

dx2. Velocity v(x, ξ) = c(x), |ξ| = 1 (isotropic)

Geodesics minimize length (time) locally, ds
c .

Geodesics in a medium with a slow region in the center
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Geodesics in Phase Space

Hamiltonian is given by

Hc(x, ξ) =
1

2

(
c2(x)|ξ|2 − 1

)

Xc(s,X0) =
(
xc(s,X0), ξc(s,X0)

)
be bicharacteristics ,

sol. of
dx

ds
=
∂Hc

∂ξ
,

dξ

ds
= −

∂Hc

∂x

x(0) = x0, ξ(0) = ξ0, X0 = (x0, ξ0), where ξ0 ∈ Sn−1
c (x0)

Sn−1
c (x) =

{
ξ ∈ Rn; Hc(x, ξ) = 0

}
.

Geodesics Projections in x: x(s) .
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Boundary distance function

The travel time information is encoded in the boundary distance

function

x, y ∈ ∂M

dc(x, y) = inf
σ(0)=x
σ(1)=y

L(σ)

L(σ) = length of curve σ

L(σ) =
∫ 1
0

1
c |
dσ
dt |dt

Inverse problem

Determine c knowing dc(x, y) x, y ∈ ∂M
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Obstructions

dc⇒ c ?

dc(x0, ∂M) > supx,y∈∂M dc(x, y)

Need an a-priori condition to recover c from dc.
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DEF (M, c) is simple if given two points x, y ∈ ∂M , ∃! minimizing

geodesic joining x and y and ∂M is strictly convex

strictly convex

THEOREM(Mukhometov, 1975) One can determine c uniquely and

stably from dc if (M, c) is simple.
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Speeds Satisfying the Herglotz condition

ck(r) = exp(k exp(− r2

2σ2)), 0 ≤ σ ≤ 1, σ fixed

Francois Monard: SIAM J. Imaging Sciences (2014)
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Scattering Relation

dc only measures first arrival times of waves.

We need to look at behavior of all geodesics

‖ξ‖c = ‖η‖c = 1

αc(x, ξ) = (y, η), αc is SCATTERING RELATION

If we know direction and point of entrance of geodesic then we

know its direction and point of exit.
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Travel Time Tomography

Define the scattering relation αc.

αc : (x, ξ)→ (y, η).

αc, dc follows all geodesics.

Inverse Problem: Do αc, dc determine c?
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Non-simple Speeds

IP: Do αg, dc determine c?

Remark: If (M, c) is simple, αc is equivalent to dc.

For non-simple metrics (caustics and/or non-convex boundary), this

is the right problem to study.

Some results: local generic rigidity near a class of non-simple sound

speeds (Stefanov-U, 2009), real-analytic sound speeds satisfying a

mild condition (Vargo, 2010), stability estimates for a class of non-

simple sound speeds (Bao-H. Zhang 2014, 2017), foliation condition

(Stefanov-U-Vasy, 2016, 2017).

18



Partial Data

Travel time with partial data: Does dc, known on ∂M × ∂M near

some p, determine c near p uniquely?
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Result on Partial Data

Theorem (Stefanov-U-Vasy, 2016). Let dimM ≥ 3. If ∂M is strictly

convex near p for c and c̃, and dc = dc̃ near (p, p), then c = c̃ near p.

Also stability and reconstruction.

The only results so far of similar nature is for real analytic sound

speeds (Lassas-Sharafutdinov-U, 2003). We can recover the whole

jet of the metric at ∂M and then use analytic continuation.
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Foliation condition

We could use a layer stripping argument to get deeper and deeper

in M and prove that one can determine c in the whole M .

Foliation condition: M is foliated by strictly convex hypersurfaces

if, up to a nowhere dense set, M = ∪t∈[0,T )Σt, where Σt is a smooth

family of strictly convex hypersurfaces and Σ0 = ∂M .

A more general condition: several families, starting from outside

M .
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Global result isotropic case

Theorem (Stefanov-U-Vasy, 2016). Let dimM ≥ 3, let c and c̃ be

two smooth sound speeds on M , let ∂M be strictly convex with

respect to both c and c̃. Assume that M can be foliated by strictly

convex hypersurfaces for c. Then if αc = αc̃, dc = dc̃ we have c = c̃

in M .

Also stability and reconstruction.

Examples: The foliation condition is satisfied for strictly convex

domains of non-negative sectional curvature, simply connected do-

mains with non-positive sectional curvature and simply connected

domains with no focal points.

Foliation condition is an analog of the Herglotz, Wieckert-Zoeppritz

condition for non radial speeds.
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Example: Herglotz and Wiechert & Zoeppritz showed that one can

determine a radial speed c(r) in the ball B(0,1) satisfying

d

dr

r

c(r)
> 0.

The uniqueness is in the class of radial speeds.

One can check directly that their condition is equivalent to the

following one: the Euclidean spheres {|x| = t}, t ≤ 1 are strictly

convex for c−2dx2 as well. Then B(0,1) satisfies the foliation con-

dition. Therefore, if c̃(x) is another speed, not necessarily radial,

with the same distance function and scattering relation, equal to

c on the boundary, then c = c̃. There could be conjugate points.

Also we have stability and reconstruction.
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Long-awaited mathematics proof could help scan Earth’s innards

Nature, Feb, 2017
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Ideas of the proof in isotropic case

The proof is based on two main ideas.

First, we use the approach in a recent paper by U-Vasy (2016) on

the linearized problem with partial data.

Second, we convert the non-linear boundary rigidity problem to a

“pseudo-linear” one. Straightforward linearization, which works for

the problem with full data, fails here.
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Linearized Problem

Let c be a sound speed. Linearizing c 7→ dc leads to the ray transform

If(x, ξ) =
∫ τ(x,ξ)

0
f(γ(t, x, ξ)) dt

where x ∈ ∂M and ξ ∈ SxM = {ξ ∈ TxM ; |ξ| = 1}.

Here γ(t, x, ξ) is the geodesic starting from point x in direction ξ,

and τ(x, ξ) is the time when γ exits M . We assume that (M, c) is

nontrapping, i.e. τ is always finite.
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Inversion of X-ray Transform (Radon 1917)

• If(x, θ) =
∫
f(x+ tθ)dt, |θ| = 1

• (−∆)1/2I∗If = cf, c 6= 0

• (−∆)−1/2f =
∫

f(y)

|x− y|n−1
dy

I∗I is an elliptic pseudodifferential operator of order -1.
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Linearized Problem with Partial Data

U-Vasy result: Consider the inversion of the geodesic ray transform

If(γ) =
∫
f(γ(s)) ds

known for geodesics intersecting some neighborhood of p ∈ ∂M

(where ∂M is strictly convex) “almost tangentially”. It is proven

that those integrals determine f near p uniquely. It is a Helgason

support type of theorem for non-analytic curves! This was extended

recently by H. Zhou for arbitrary curves (∂M must be strictly convex

w.r.t. them) and non-vanishing weights.
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The main idea in U-Vasy is the following:

Introduce an artificial, still strictly convex boundary near p which

cuts a small subdomain near p. Then use Melrose’s scattering calcu-

lus to show that the I, composed with a suitable ‘‘back-projection”

is elliptic in that calculus. Since the subdomain is small, it would

be invertible as well.

29



U-Vasy

Consider

Pf(z) := I∗χIf(z) =
∫
SzM

x−2χIf(γz,v)dv,

where χ is a smooth cutoff sketched below (angle ∼ x), and x is
the distance to the artificial boundary.
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Inversion of local geodesic transform

Pf(z) := I∗χIf(z) =
∫
SzM

x−2χIf(γz,v)dv,

Main result: P is an elliptic pseudodifferential operator in Melrose’s

scattering calculus.

There exists A such that AP = Identity +R

This is Fredholm and R has a small norm in a neighborhood of p.

Therefore invertible near p using Neumann series.

f =(Identity +R)−1AP

=
∞∑
j=0

Kjf, ‖K‖ < 1

31



Some numerical results for inverse geodesic X-ray transform

f1 = 0.01 + sin
(
2π(x+ y + z)/10

)

(T.-S. Au, E. Chung - U, 2019)
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Some numerical results for inverse geodesic X-ray transform

f2 = 0.01 + sin
(
2π(x+ y)/10

)
+ cos

(
2πz/20

)

(T.-S. Au, E. Chung - U, 2019)
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Some numerical results for inverse geodesic X-ray transform

f3 = x+ y2 + z2/2

(T.-S. Au, E. Chung - U, 2019)
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Some numerical results for inverse geodesic X-ray transform

f4 = 1 + 6x+ 4y + 9z + sin
(
2π(x+ z)

)
+ cos

(
2πy

)

(T.-S. Au, E. Chung - U, 2019)
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Some numerical results for inverse geodesic X-ray transform

f5 = x+ ey+z/2

(T.-S. Au, E. Chung - U, 2019)
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• Relative errors for using up to 4 terms in the Neumann series

relative error f1 f2 f3 f4 f5
n=0 37.1% 37.08% 37.13% 37.27% 37.25%
n=1 15.74 % 15.63% 15.81% 16.2% 16.32 %
n=2 8.92% 8.65% 9.09% 9.98% 10.28%
n=3 6.99% 6.55% 7.26% 8.61% 9.02%



Nonlinear Problem

• We test the method using a spherical section of the Marmousi
model

• Results

37



Elasticity

The isotropic elastic equation is given by

(∂2
t − E)u = 0, on Ω× (0, T )

where Ω is a bounded domain, u = (u1, u2, u3), and

(Eu)i = ρ−1
(
∂iλ∇ · u+

∑
j

∂jµ(∂jui + ∂iuj)
)
,

where λ > 0 and µ > 0 are the Lamé parameters and ρ > 0 is the

density.

We want to recover λ, µ and ρ from the DN map

Λf = Σjσij(u)νj, on ∂Ω× (0, T )

where ν is the outer normal and σij(u) = λ∇ · uδij + µ(∂jui + ∂iuj)

is the stress tensor.
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The speed of P-waves is given by

cp =
√

(λ+ 2µ)/ρ

and the speed of S-waves is given by

cs =
√
µ/ρ.

Rachelle has shown that one can recover the boundary jets and the

coefficients inside if both speeds are simple. The proof of the later

uses the boundary rigidity results for c−2
p dx2 and c−2

s dx2 and the

inversion of the geodesic ray transform.

Unique continuation holds but the boundary control method does

not work. The local problem was open.
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Theorem (Stefanov-U-Vasy, 2017). If cs and/or cp increase with

depth in R0 < |x| < R, then knowing the normal derivative of the

solution u(t, x) on the boundary for all boundary values of u(t, x)

(i.e., for all boundary sources) recovers cs and/or cp uniquely there.
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In particular, in the elastic Earth model, we can recover the pressure

and the sheer speeds in the Mantle. The parameters jump across

the interior boundary. It does not matter what happens inside (in

the Outer Core, etc.); and there, the model may even change (liquid

Outer Core). Under some conditions, we can determine also the

location of discontinuities (Stefanov-U-Vasy, 2019, Caday-de Hoop-

Katsnelson-U, 2019)
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Second Step: Reduction to Pseudolinear Problem

Identity (Stefanov-U, 1998)

X 0

Xg1
(t)

Xg2
(t)

Xg1
(s)

Vg1 V g2
g

gi =
1

c2i
dx2,

T = dc1,

F (s) = Xc2

(
T − s,Xc1(s,X0)

)
,

F (0) = Xc2(T,X0), F (T ) = Xc1(T,X0),∫ T
0
F ′(s)ds = Xc1(T,X0)−Xc2(T,X0)

∫ T
0

∂Xc2
∂X0

(
T − s,Xc1(s,X0)

)
(Vc1 − Vc2)

∣∣∣
Xc1(s,X0)

dS

= Xc1(T,X0)−Xc2(T,X0)
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Identity (Stefanov-U, 1998)

∫ T
0

∂Xc2
∂X0

(
T − s,Xc1(s,X0)

)
(Vc1 − Vc2)

∣∣∣
Xc1(s,X0)

dS

= Xc1(T,X0)−Xc2(T,X0)

Vcj :=

(
∂Hcj

∂ξ
,−
∂Hcj

∂x

)
the Hamiltonian vector field.

(gk) =
1

c2k

(
δij
)
, k = 1,2

Vgk =
(
c2kξ, −

1

2
∇(c2k)|ξ|2

)
Linear in c2k!

43



Reconstruction

∫ T
0

∂Xc1
∂X0

(
T − s,Xc2(s,X0)

)
×(

(c21 − c
2
2)ξ, −

1

2
∇(c21 − c

2
2)|ξ|2

)∣∣∣
Xc2(s,X0)

dS

= Xc1(T,X0)︸ ︷︷ ︸
data

−Xc2(T,X0)

Inversion of weighted geodesic ray transform and use similar meth-

ods to U-Vasy.
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