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Allan Cormack on the Radon Transform

"It has recently come to the author’s attention that the problem of determining

a function in a plane from its line integrals was first solved by J. Radon in

1917 (and not in the nineteenth century, as suggested in Cormack (1963))"

1973 Physics in Medicine and Biology



Allan Cormack on the Radon Transform

"It has recently come to the author’s attention that the problem of determining

a function in a plane from its line integrals was first solved by J. Radon in

1917 (and not in the nineteenth century, as suggested in Cormack (1963))"

1973 Physics in Medicine and Biology

1963 Journal of Applied Physics

"Is it possible to determine g? One would think

that this problem would be a standard part of the

nineteenth century mathematical repertoire, but the

author has found no reference to it in standard works."



Outline

One-step spectral CT image reconstruction (OSSCIR)

MOCCA algorithm & block-diagonal step-preconditioning

Spectral calibration

Studies with multi-material basis decomposition

      Experimental results for objects with metal

      and Gadolinium contrast agent



Spectral CT model

materials decomposition

Iw,s,u =
∫

dE Sw,u(E) exp

[

−

∫

ℓ(s,u)
dt µ(E,~r(t))

]

µ(E,~r(t)) =
∑

m

(

µm(E)

ρm

)

ρmfm(~r(t))

photon-counting model: ĉw,l(fkm) = Sw,u,i exp [−µimXlkfkm]

w - energy window

l - transmission ray, depends on s,u

i - energy index

m - material label

k - pixel index



Spectral CT model

with spectral scaling

photon-counting model: ĉw,l(f) = Sw,u,i exp [−µimXlkfkm]

photon-counting model with scaling:

ĉw,l(f, α) = Sw,u,i exp [−αw,u − µimXlkfkm]



Constrained one-step spectral CT

image reconstruction (cOSSCIR)

f ⋆, α⋆ = argminDTPL(c, ĉ(f, α))

constraints ‖α‖2 ≤ δ; ‖∇f ′

m‖1 ≤ γm

* DTPL is a nonconvex function

    - use mirrored convex/concave (MOCCA) alg.

* constraint parameters

   - use validation



Ring artifact mitigation with

partial spectrum auto-calibration
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Aluminum PMMA Mono (40 keV)
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Schmidt et al., TMI vol. 36, 1808-1819 (2017)



cOSSCIR and contrast agent imaging
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Ideal photon-counting spectral response

Barber et al., PMB vol. 61, 3784-3818 (2016)



Rods phantom with realistic spectra

realistic spectra

DTPL minimization

noiseless data
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MOCCA algorithm & block-diagonal step-preconditioning



Chambolle-Pock primal-dual algorithm summary

x⋆ = argmin {F (Kx) +G(x)}

x⋆ = argmin F (Kx)

minxmaxy
{

yTKx− F ∗(y)
}

yn+1 = proxΣ[F
∗](yn + ΣKxn)

xn+1 = xn − TKTyn+1

xn+1 = xn+1 + θ(xn+1 − xn)

optimization problems:

pseudocode:

definitions: F
∗ = max

{

x
′T
x− F (x′)

}

proxΣ[F
∗](x) = argmin

{

F ∗(x′) +
1

2
(x− x′)⊤Σ−1(x− x′)

}

step-size matrices:
(

T−1 −K⊤

−K Σ−1

)

is PSD
σ = (1/λ)/‖K‖2 τ = λ/‖K‖2

Σ = (1/λ) diag(|K|1)−1 T = λ diag(|K⊤|1)−1

two step-size choices



MOCCA 

x⋆ = argmin F (Kx)optimization problem:

F(Kx) is a convex function of x

F(y) is convex-concave:

F(y) = F+(y) - F_(y), 

where F+(y) and F_(y) are convex

F (Kx) 6= maxy
{

yTKx− F ∗(y)
}



MOCCA step sizes

LLSQ(f) =
1

2
‖Xf − g‖22

∂LLSQ(f) = X⊤(Xf − g) = X⊤rLSQ(f)

LTPL(f) = DTPL(c, ĉ(f))

∂LTPL(f) = X⊤µ⊤A(f)⊤rTPL(f)

K(f) = A(f)µX

Σ = (1/λ) diag(|K(f)|1)−1 T = λ diag(|K⊤(f)|1)−1

w - energy window

l - transmission ray

m - material label

k - pixel index

Kwℓ,mk(f)



Chest phantom with ideal spectra
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Ideal photon-counting spectral response

results obtained within 1,000 iterations

using µ-preconditioning



Rods phantom with realistic spectra

realistic spectra

DTPL minimization

noiseless data

1
0
0

2
0
0

1
0
0
0

2
0
0
0

It
er

at
io

n
 s

eq
u

en
ce



Block-diagional step-preconditioning

K(f) = A(f)µX

Σ = (1/λ) diag(|K(f)|1)−1 T = λ diag(|K⊤(f)|1)−1

 CP step-preconditioner

proposed CP step-preconditioner

invariance to orthogonal transformation



Comparison of µ-PC and BD-SPC

Convergence comparison

DTPL minimization

noiseless data
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Multi-basis-material projects

* Contrast agent imaging

    - experiment with Gd imaging  (3 materials)

    - simulation with Gd and I imaging (4 materials)

* Spectral CT with metal

    - experiment with decomposition

       into water, bone, and stainless steel



Rod phantom experiment with metal

Teflon

PMMA

LDPE

Steel

4-window transmission data.  Masked: measurements with <10 counts eliminated.



Other algorithm details

photon-counting model: ĉw,l(fkm) = Sw,u,i softexp [−µimXlkfkm]

f ⋆, α⋆ = argminDTPL(c, ĉ(f, α))

constraints ‖α‖2 ≤ δ;
∑

m

‖∇f ′

m‖1 ≤ γ

Group total variation (GTV):



System calibration



System calibration

Iw,s,u =
∫

dE Sw,u(E) exp

[

−

∫

ℓ(s,u)
dt µ(E,~r(t))

]

Iideal = Q(Imeas)

S(E) = Xmodel(E)Dmodel(E) exp[−poly(E)]
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Iideal = Q(Imeas)

S(E) = Dmodel(E) exp[−poly(E)]



Iideal = Imeas

S(E) = Xmodel(E)Dmodel(E) exp[−poly(E)]



Future directions

Get better PCD detector!


