Three-dimensional Motion Reconstruction from Parallel-Beam Projection Data

Denise Schmutz

Modern Challenges in Imaging
In the Footsteps of Allan Cormack
Tufts University

August 5, 2019

Joint work with Peter Elbau, Monika Ritsch-Marte and Otmar Scherzer.

FШF
Der Wissenschaftsfonds.

(1) Motivation

2 Mathematical Model

3) Motion Estimation

- Reconstruction of the translation
- Reduced attenuation maps
- Reconstruction of the rotation

4 Numerics

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves

[^0]Courtesy of Mia Kvåle Løvmo and Benedikt Pressl

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Optical trapping

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Optical trapping

- Optical tweezers

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Optical trapping

- Optical tweezers
- Focused laser beam

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Optical trapping

- Optical tweezers
- Focused laser beam
- Precise and selective handling of single particles

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Optical trapping

- Optical tweezers
- Focused laser beam

- Precise and selective handling of single particles

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Optical trapping

- Optical tweezers
- Focused laser beam
- Precise and selective handling of single particles

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Optical trapping

- Optical tweezers
- Focused laser beam
- Precise and selective handling
 of single particles

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Optical trapping

- Optical tweezers
- Focused laser beam
- Precise and selective handling of single particles

[^1]
Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field

Inverse problems

- Simultaneous trapping of many, comparatively large particles

Optical trapping

- Optical tweezers
- Focused laser beam
- Precise and selective handling of single particles

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Inverse problems

- Estimation of the movement
of the trapped particles

Optical trapping

- Optical tweezers
- Focused laser beam
- Precise and selective handling of single particles

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Inverse problems

- Estimation of the movement of the trapped particles
- 3D tomographic reconstruction

Optical trapping

- Optical tweezers
- Focused laser beam
- Precise and selective handling of single particles

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and non-invasive manner.

Acoustic Trapping

- Sound waves
- Standing wave field
- Simultaneous trapping of many, comparatively large particles

Inverse problems

- Estimation of the movement
of the trapped particles
- 3D tomographic reconstruction

Optical trapping

- Optical tweezers
- Focused laser beam
- Precise and selective handling of single particles

Relation to single particle cryo-electron microscopy

Relation to single particle cryo-electron microscopy

- Electron microscopy of a large number of identical particles

Relation to single particle cryo-electron microscopy

- Electron microscopy of a large number of identical particles
- Particles are in random positions

Relation to single particle cryo-electron microscopy

- Electron microscopy of a large number of identical particles
- Particles are in random positions
- Imaging directions are unknown

Relation to single particle cryo-electron microscopy

- Electron microscopy of a large number of identical particles
- Particles are in random positions
- Imaging directions are unknown
- Specimen itself is unknown as well

Relation to single particle cryo-electron microscopy

- Electron microscopy of a large number of identical particles
- Particles are in random positions
- Imaging directions are unknown
- Specimen itself is unknown as well
- Orientation reconstruction via common line method

(1) Motivation

(2) Mathematical Model
(3) Motion Estimation

- Reconstruction of the translation
- Reduced attenuation maps
- Reconstruction of the rotation

Assumptions

- Bounded object in \mathbb{R}^{3}

Assumptions

- Bounded object in \mathbb{R}^{3}
- Characterised by an attenuation coefficient $u \in C\left(\mathbb{R}^{3} ; \mathbb{R}\right)$

Assumptions

- Bounded object in \mathbb{R}^{3}
- Characterised by an attenuation coefficient $u \in C\left(\mathbb{R}^{3} ; \mathbb{R}\right)$
- $\operatorname{supp}(u) \neq \emptyset$ is compact

Assumptions

- Bounded object in \mathbb{R}^{3}
- Characterised by an attenuation coefficient $u \in C\left(\mathbb{R}^{3} ; \mathbb{R}\right)$
- $\operatorname{supp}(u) \neq \emptyset$ is compact
- Center of u

$$
\mathcal{C}_{3}:=\frac{1}{\int_{\mathbb{R}^{3}} u(x) \mathrm{d} x} \int_{\mathbb{R}^{3}} x u(x) \mathrm{d} x \in \mathbb{R}^{3}
$$

Assumptions

- Bounded object in \mathbb{R}^{3}
- Characterised by an attenuation coefficient $u \in C\left(\mathbb{R}^{3} ; \mathbb{R}\right)$
- $\operatorname{supp}(u) \neq \emptyset$ is compact
- Center of u

$$
\mathcal{C}_{3}:=\frac{1}{\int_{\mathbb{R}^{3}} u(x) \mathrm{d} x} \int_{\mathbb{R}^{3}} x u(x) \mathrm{d} x \in \mathbb{R}^{3}
$$

- Continuous rigid motion

$$
A(t, x)=\mathcal{C}_{3}+R(t)\left(x-\mathcal{C}_{3}+T(t)\right)
$$

$R \in C(\mathbb{R} ; S O(3)) \ldots$ rotation
$T \in C\left(\mathbb{R} ; \mathbb{R}^{3}\right) \ldots$ translation

Assumptions

- Bounded object in \mathbb{R}^{3}
- Characterised by an attenuation coefficient $u \in C\left(\mathbb{R}^{3} ; \mathbb{R}\right)$
- $\operatorname{supp}(u) \neq \emptyset$ is compact
- Center of u

$$
\mathcal{C}_{3}:=\frac{1}{\int_{\mathbb{R}^{3}} u(x) \mathrm{d} x} \int_{\mathbb{R}^{3}} x u(x) \mathrm{d} x \in \mathbb{R}^{3}
$$

- Continuous rigid motion

$$
A(t, x)=\mathcal{C}_{3}+R(t)\left(x-\mathcal{C}_{3}+T(t)\right)
$$

$R \in C(\mathbb{R} ; S O(3)) \ldots$ rotation
$T \in C\left(\mathbb{R} ; \mathbb{R}^{3}\right) \ldots$ translation

- Object is illuminated from the e_{3}-direction with a uniform intensity

Assumptions

- Bounded object in \mathbb{R}^{3}
- Characterised by an attenuation coefficient $u \in C\left(\mathbb{R}^{3} ; \mathbb{R}\right)$
- $\operatorname{supp}(u) \neq \emptyset$ is compact
- Center of u

$$
\mathcal{C}_{3}:=\frac{1}{\int_{\mathbb{R}^{3}} u(x) \mathrm{d} x} \int_{\mathbb{R}^{3}} x u(x) \mathrm{d} x \in \mathbb{R}^{3}
$$

- Continuous rigid motion

$$
A(t, x)=\mathcal{C}_{3}+R(t)\left(x-\mathcal{C}_{3}+T(t)\right)
$$

$R \in C(\mathbb{R} ; S O(3)) \ldots$ rotation
$T \in C\left(\mathbb{R} ; \mathbb{R}^{3}\right) \ldots$ translation

- Object is illuminated from the e_{3}-direction with a uniform intensity
- Light moves along straight lines and only suffers from attenuation

Measurements

Attenuation projection mappings \mathcal{J}

$$
(T, R) \mapsto \mathcal{J}[T, R]\left(t, x_{1}, x_{2}\right)=\int_{-\infty}^{\infty} u(A(t, x)) \mathrm{d} x_{3}
$$

Measurements

Attenuation projection mappings \mathcal{J}

$$
(T, R) \mapsto \mathcal{J}[T, R]\left(t, x_{1}, x_{2}\right)=\int_{-\infty}^{\infty} u\left(\mathcal{C}_{3}+R(t)\left(x-\mathcal{C}_{3}+T(t)\right)\right) \mathrm{d} x_{3}
$$

Measurements

Attenuation projection mappings \mathcal{J}

$$
(T, R) \mapsto \mathcal{J}[T, R]\left(t, x_{1}, x_{2}\right)
$$

Goal

Reconstruction of $R(t)$ and $T(t)$ from collected data of $\mathcal{J}[T, R]\left(t, x_{1}, x_{2}\right)$.

Formulation in Fourier space

- n-dimensional Fourier transform

$$
\mathcal{F}_{n}[f](k)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} f(x) \mathrm{e}^{-\mathrm{i}\langle k, x\rangle} \mathrm{d} x
$$

- Orthogonal projection $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, P x=\binom{x_{1}}{x_{2}}$
- Its adjoint $P^{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, P^{T} k=\binom{k}{0}$

Formulation in Fourier space

- n-dimensional Fourier transform

$$
\mathcal{F}_{n}[f](k)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} f(x) \mathrm{e}^{-\mathrm{i}\langle k, x\rangle} \mathrm{d} x
$$

- Orthogonal projection $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, P x=\binom{x_{1}}{x_{2}}$
- Its adjoint $P^{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, P^{T} k=\binom{k}{0}$

Lemma 1

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\mathcal{J}[R, T]$ be the attenuation mapping of a rigid body motion (R, T). Then, the following identity holds:

$$
\mathcal{F}_{2}[\mathcal{J}[T, R]]=\sqrt{2 \pi} \mathcal{F}_{3}[u]\left(R(t) P^{T} k\right) \mathrm{e}^{\mathrm{i}\left\langle R(t) P^{T} k, \mathcal{C}_{3}\right\rangle} \mathrm{e}^{\mathrm{i}\left\langle k, P\left(T(t)-\mathcal{C}_{3}\right)\right\rangle} .
$$

Formulation in Fourier space

- n-dimensional Fourier transform

$$
\mathcal{F}_{n}[f](k)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} f(x) \mathrm{e}^{-\mathrm{i}\langle k, x\rangle} \mathrm{d} x
$$

- Orthogonal projection $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, P x=\binom{x_{1}}{x_{2}}$
- Its adjoint $P^{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, P^{T} k=\binom{k}{0}$

Lemma 1

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\mathcal{J}[R, T]$ be the attenuation mapping of a rigid body motion (R, T). Then, the following identity holds:

$$
\mathcal{F}_{2}[\mathcal{J}[T, R]]=\sqrt{2 \pi} \mathcal{F}_{3}[u]\left(R(t) P^{T} k\right) \mathrm{e}^{\mathrm{i}\left\langle R(t) P^{T} k, \mathcal{C}_{3}\right\rangle} \mathrm{e}^{\mathrm{i}\left\langle k, P\left(T(t)-\mathcal{C}_{3}\right)\right\rangle} .
$$

- Similar to the projection-slice theorem

(2) Mathematical Model

(3) Motion Estimation

- Reconstruction of the translation
- Reduced attenuation maps
- Reconstruction of the rotation

(1) Motivation

(2) Mathematical Model
(3) Motion Estimation

- Reconstruction of the translation
- Reduced attenuation maps
- Reconstruction of the rotation

4 Numerics

Reconstruction of the translation T

- It is not possible to reconstruct the translation along the e_{3}-direction. For $\rho \in C(\mathbb{R} ; \mathbb{R})$ it holds that

$$
\mathcal{J}[T, R]=\mathcal{J}\left[T+\rho e_{3}, R\right] .
$$

Reconstruction of the translation T

- It is not possible to reconstruct the translation along the e_{3}-direction. For $\rho \in C(\mathbb{R} ; \mathbb{R})$ it holds that

$$
\mathcal{J}[T, R]=\mathcal{J}\left[T+\rho e_{3}, R\right] .
$$

- Let $\mathcal{C}_{2}(t)$ be the center of the attenuation mapping at time t

$$
\mathcal{C}_{2}(t):=\frac{1}{\int_{\mathbb{R}^{2}} \mathcal{J}[T, R](t, x) \mathrm{d} x} \int_{\mathbb{R}^{2}}\binom{x_{1}}{x_{2}} \mathcal{J}[T, R](t, x) \mathrm{d} x .
$$

Reconstruction of the translation T

- It is not possible to reconstruct the translation along the e_{3}-direction. For $\rho \in C(\mathbb{R} ; \mathbb{R})$ it holds that

$$
\mathcal{J}[T, R]=\mathcal{J}\left[T+\rho e_{3}, R\right] .
$$

- Let $\mathcal{C}_{2}(t)$ be the center of the attenuation mapping at time t

$$
\mathcal{C}_{2}(t):=\frac{1}{\int_{\mathbb{R}^{2}} \mathcal{J}[T, R](t, x) \mathrm{d} x} \int_{\mathbb{R}^{2}}\binom{x_{1}}{x_{2}} \mathcal{J}[T, R](t, x) \mathrm{d} x .
$$

Proposition 1

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and \mathcal{J} be the attenuation mapping of a rigid motion of u. Then,

$$
P\left(\mathcal{C}_{3}-T(t)\right)=\mathcal{C}_{2}(t)
$$

for every $T \in C\left(\mathbb{R} ; \mathbb{R}^{3}\right), R \in C(\mathbb{R} ; S O(3)), t \in \mathbb{R}$.

Reconstruction of the translation T

- It is not possible to reconstruct the translation along the e_{3}-direction. For $\rho \in C(\mathbb{R} ; \mathbb{R})$ it holds that

$$
\mathcal{J}[T, R]=\mathcal{J}\left[T+\rho e_{3}, R\right] .
$$

- Let $\mathcal{C}_{2}(t)$ be the center of the attenuation mapping at time t

$$
\mathcal{C}_{2}(t):=\frac{1}{\int_{\mathbb{R}^{2}} \mathcal{J}[T, R](t, x) \mathrm{d} x} \int_{\mathbb{R}^{2}}\binom{x_{1}}{x_{2}} \mathcal{J}[T, R](t, x) \mathrm{d} x .
$$

Proposition 1

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and \mathcal{J} be the attenuation mapping of a rigid motion of u. Then,

$$
P\left(\mathcal{C}_{3}-T(t)\right)=\mathcal{C}_{2}(t)
$$

for every $T \in C\left(\mathbb{R} ; \mathbb{R}^{3}\right), R \in C(\mathbb{R} ; S O(3)), t \in \mathbb{R}$.

- If we start the motion at time $t=0$ with the normalisaton $T(0)=0$, we have

$$
P(T(t))=\mathcal{C}_{2}(0)-\mathcal{C}_{2}(t)
$$

(1) Motivation

(2) Mathematical Model
(3) Motion Estimation

- Reconstruction of the translation
- Reduced attenuation maps
- Reconstruction of the rotation
(4) Numerics

Reduced attenuation map

- From Lemma 1

$$
\mathcal{F}_{2}[\mathcal{J}[T, R]]=\sqrt{2 \pi} \mathcal{F}_{3}[u]\left(R(t) P^{T} k\right) \mathrm{e}^{\mathrm{i}\left\langle R(t) P^{T} k, \mathcal{C}_{3}\right\rangle} \mathrm{e}^{\mathrm{i}\left\langle k, P\left(T(t)-\mathcal{C}_{3}\right)\right\rangle}
$$

Reduced attenuation map

- From Lemma 1

$$
\mathcal{F}_{2}[\mathcal{J}[T, R]]=\sqrt{2 \pi} \mathcal{F}_{3}[u]\left(R(t) P^{T} k\right) \mathrm{e}^{\mathrm{i}\left\langle R(t) P^{T} k, \mathcal{C}_{3}\right\rangle} \mathrm{e}^{\mathrm{i}\left\langle k, P\left(T(t)-\mathcal{C}_{3}\right)\right\rangle}
$$

- From Proposition 1

$$
P\left(\mathcal{C}_{3}-T(t)\right)=\mathcal{C}_{2}(t)
$$

Reduced attenuation map

- From Lemma 1

$$
\mathcal{F}_{2}[\mathcal{J}[T, R]]=\sqrt{2 \pi} \mathcal{F}_{3}[u]\left(R(t) P^{T} k\right) \mathrm{e}^{\mathrm{i}\left\langle R(t) P^{T} k, \mathcal{C}_{3}\right\rangle} \mathrm{e}^{\mathrm{i}\left\langle k, P\left(T(t)-\mathcal{C}_{3}\right)\right\rangle}
$$

- From Proposition 1

$$
P\left(\mathcal{C}_{3}-T(t)\right)=\mathcal{C}_{2}(t)
$$

- Easy to get rid of the dependence on T

Reduced attenuation map

- From Lemma 1

$$
\mathcal{F}_{2}[\mathcal{J}[T, R]]=\sqrt{2 \pi} \mathcal{F}_{3}[u]\left(R(t) P^{T} k\right) \mathrm{e}^{\mathrm{i}\left\langle R(t) P^{T} k, \mathcal{C}_{3}\right\rangle} \mathrm{e}^{\mathrm{i}\left\langle k, P\left(T(t)-\mathcal{C}_{3}\right)\right\rangle}
$$

- From Proposition 1

$$
P\left(\mathcal{C}_{3}-T(t)\right)=\mathcal{C}_{2}(t)
$$

- Easy to get rid of the dependence on T
- We define the reduced attenuation map corresponding to u as

$$
\begin{aligned}
\tilde{\mathcal{J}}: \mathbb{R} \times \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
(t, k) & \mapsto \mathcal{F}_{2}[\mathcal{J}[T, R]](t, k) \mathrm{e}^{\mathrm{i}\left\langle k, \mathcal{C}_{2}\right\rangle}
\end{aligned}
$$

- $\tilde{\mathcal{J}}$ only depends on R

(1) Motivation

(2) Mathematical Model
(3) Motion Estimation

- Reconstruction of the translation
- Reduced attenuation maps
- Reconstruction of the rotation

(4) Numerics

Symmetry property of reduced attenuation map

Lemma 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and let $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Then, for arbitrary $R \in C(\mathbb{R} ; S O(3))$ the following identity holds

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

for all $\lambda \in \mathbb{R}$ and $s, t \in \mathbb{R}$ with $s \neq t$.

Symmetry property of reduced attenuation map

Lemma 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and let $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Then, for arbitrary $R \in C(\mathbb{R} ; S O(3))$ the following identity holds

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

for all $\lambda \in \mathbb{R}$ and $s, t \in \mathbb{R}$ with $s \neq t$.

Symmetry property of reduced attenuation map

Lemma 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and let $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Then, for arbitrary $R \in C(\mathbb{R} ; S O(3))$ the following identity holds

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

for all $\lambda \in \mathbb{R}$ and $s, t \in \mathbb{R}$ with $s \neq t$.

Symmetry property of reduced attenuation map

Lemma 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and let $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Then, for arbitrary $R \in C(\mathbb{R} ; S O(3))$ the following identity holds

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

for all $\lambda \in \mathbb{R}$ and $s, t \in \mathbb{R}$ with $s \neq t$.

Symmetry property of reduced attenuation map

Lemma 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and let $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Then, for arbitrary $R \in C(\mathbb{R} ; S O(3))$ the following identity holds

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

for all $\lambda \in \mathbb{R}$ and $s, t \in \mathbb{R}$ with $s \neq t$.

Symmetry property of reduced attenuation map

Lemma 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and let $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Then, for arbitrary $R \in C(\mathbb{R} ; S O(3))$ the following identity holds

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

for all $\lambda \in \mathbb{R}$ and $s, t \in \mathbb{R}$ with $s \neq t$.

Symmetry property of reduced attenuation map

Lemma 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and let $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Then, for arbitrary $R \in C(\mathbb{R} ; S O(3))$ the following identity holds

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

for all $\lambda \in \mathbb{R}$ and $s, t \in \mathbb{R}$ with $s \neq t$.

Symmetry property of reduced attenuation map

Lemma 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and let $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Then, for arbitrary $R \in C(\mathbb{R} ; S O(3))$ the following identity holds

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

for all $\lambda \in \mathbb{R}$ and $s, t \in \mathbb{R}$ with $s \neq t$.

Symmetry property of reduced attenuation map

Lemma 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and let $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Then, for arbitrary $R \in C(\mathbb{R} ; S O(3))$ the following identity holds

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

for all $\lambda \in \mathbb{R}$ and $s, t \in \mathbb{R}$ with $s \neq t$.

Symmetry property of reduced attenuation map

Lemma 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and let $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Then, for arbitrary $R \in C(\mathbb{R} ; S O(3))$ the following identity holds

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

for all $\lambda \in \mathbb{R}$ and $s, t \in \mathbb{R}$ with $s \neq t$.

Some notation

- Angular velocity ω
- Corresponding to $R \in C^{1}(\mathbb{R} ; S O(3))$ defined via

$$
R(t)^{T} R^{\prime}(t) x=\omega(t) \times x \quad \text { for all } \quad x \in \mathbb{R}^{3}
$$

Some notation

- Angular velocity ω
- Corresponding to $R \in C^{1}(\mathbb{R} ; S O(3))$ defined via

$$
R(t)^{T} R^{\prime}(t) x=\omega(t) \times x \quad \text { for all } \quad x \in \mathbb{R}^{3}
$$

- In cylindrical coordinates

$$
\omega(t)=\binom{\alpha(t) v(t)}{\omega_{3}(t)}=\left(\begin{array}{c}
\alpha(t) \cos (\varphi(t)) \\
\alpha(t) \sin (\varphi(t)) \\
\omega_{3}(t)
\end{array}\right)
$$

Some notation

- Angular velocity ω
- Corresponding to $R \in C^{1}(\mathbb{R} ; S O(3))$ defined via

$$
R(t)^{T} R^{\prime}(t) x=\omega(t) \times x \quad \text { for all } \quad x \in \mathbb{R}^{3}
$$

- In cylindrical coordinates

$$
\omega(t)=\binom{\alpha(t) v(t)}{\omega_{3}(t)}=\left(\begin{array}{c}
\alpha(t) \cos (\varphi(t)) \\
\alpha(t) \sin (\varphi(t)) \\
\omega_{3}(t)
\end{array}\right)
$$

- We set $v^{\perp}(t)=\left(-v_{2}(t), v_{1}(t)\right)^{T}$

Some notation

- Angular velocity ω
- Corresponding to $R \in C^{1}(\mathbb{R} ; S O(3))$ defined via

$$
R(t)^{T} R^{\prime}(t) x=\omega(t) \times x \quad \text { for all } \quad x \in \mathbb{R}^{3}
$$

- In cylindrical coordinates

$$
\omega(t)=\binom{\alpha(t) v(t)}{\omega_{3}(t)}=\left(\begin{array}{c}
\alpha(t) \cos (\varphi(t)) \\
\alpha(t) \sin (\varphi(t)) \\
\omega_{3}(t)
\end{array}\right)
$$

- We set $v^{\perp}(t)=\left(-v_{2}(t), v_{1}(t)\right)^{T}$
- Tensor derivative notation

Some notation

- Angular velocity ω
- Corresponding to $R \in C^{1}(\mathbb{R} ; S O(3))$ defined via

$$
R(t)^{T} R^{\prime}(t) x=\omega(t) \times x \quad \text { for all } \quad x \in \mathbb{R}^{3}
$$

- In cylindrical coordinates

$$
\omega(t)=\binom{\alpha(t) v(t)}{\omega_{3}(t)}=\left(\begin{array}{c}
\alpha(t) \cos (\varphi(t)) \\
\alpha(t) \sin (\varphi(t)) \\
\omega_{3}(t)
\end{array}\right)
$$

- We set $v^{\perp}(t)=\left(-v_{2}(t), v_{1}(t)\right)^{T}$
- Tensor derivative notation
- Consider $f: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{C},(t, k) \mapsto f(t, k)$

Some notation

- Angular velocity ω
- Corresponding to $R \in C^{1}(\mathbb{R} ; S O(3))$ defined via

$$
R(t)^{T} R^{\prime}(t) x=\omega(t) \times x \quad \text { for all } \quad x \in \mathbb{R}^{3}
$$

- In cylindrical coordinates

$$
\omega(t)=\binom{\alpha(t) v(t)}{\omega_{3}(t)}=\left(\begin{array}{c}
\alpha(t) \cos (\varphi(t)) \\
\alpha(t) \sin (\varphi(t)) \\
\omega_{3}(t)
\end{array}\right)
$$

- We set $v^{\perp}(t)=\left(-v_{2}(t), v_{1}(t)\right)^{T}$
- Tensor derivative notation
- Consider $f: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{C},(t, k) \mapsto f(t, k)$
- Derivative of order i of the function f with respect to k for fixed t at a point $\kappa \in \mathbb{R}^{2}$

$$
\mathbf{D}^{i}[f](t, \kappa): \underbrace{\mathbb{R}^{2} \times \mathbb{R}^{2} \cdots \mathbb{R}^{2}}_{i \text { times }} \rightarrow \mathbb{C}
$$

Some notation

- Angular velocity ω
- Corresponding to $R \in C^{1}(\mathbb{R} ; S O(3))$ defined via

$$
R(t)^{T} R^{\prime}(t) x=\omega(t) \times x \quad \text { for all } \quad x \in \mathbb{R}^{3}
$$

- In cylindrical coordinates

$$
\omega(t)=\binom{\alpha(t) v(t)}{\omega_{3}(t)}=\left(\begin{array}{c}
\alpha(t) \cos (\varphi(t)) \\
\alpha(t) \sin (\varphi(t)) \\
\omega_{3}(t)
\end{array}\right)
$$

- We set $v^{\perp}(t)=\left(-v_{2}(t), v_{1}(t)\right)^{T}$
- Tensor derivative notation
- Consider $f: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{C},(t, k) \mapsto f(t, k)$
- Derivative of order i of the function f with respect to k for fixed t at a point $\kappa \in \mathbb{R}^{2}$

$$
\mathbf{D}^{i}[f](t, \kappa): \underbrace{\mathbb{R}^{2} \times \mathbb{R}^{2} \cdots \mathbb{R}^{2}}_{i \text { times }} \rightarrow \mathbb{C}
$$

- Evaluation of the tensor

$$
\mathbf{D}^{i}[f](t, \kappa) \llbracket h_{1}, h_{2}, \cdots, h_{i} \rrbracket
$$

Some notation

- Angular velocity ω
- Corresponding to $R \in C^{1}(\mathbb{R} ; S O(3))$ defined via

$$
R(t)^{T} R^{\prime}(t) x=\omega(t) \times x \quad \text { for all } \quad x \in \mathbb{R}^{3}
$$

- In cylindrical coordinates

$$
\omega(t)=\binom{\alpha(t) v(t)}{\omega_{3}(t)}=\left(\begin{array}{c}
\alpha(t) \cos (\varphi(t)) \\
\alpha(t) \sin (\varphi(t)) \\
\omega_{3}(t)
\end{array}\right)
$$

- We set $v^{\perp}(t)=\left(-v_{2}(t), v_{1}(t)\right)^{T}$
- Tensor derivative notation
- Consider $f: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{C},(t, k) \mapsto f(t, k)$
- Derivative of order i of the function f with respect to k for fixed t at a point $\kappa \in \mathbb{R}^{2}$

$$
\mathbf{D}^{i}[f](t, \kappa): \underbrace{\mathbb{R}^{2} \times \mathbb{R}^{2} \cdots \mathbb{R}^{2}}_{i \text { times }} \rightarrow \mathbb{C}
$$

- Evaluation of the tensor

$$
\mathbf{D}^{i}[f](t, \kappa) \llbracket h_{1}, h_{2}, \cdots, h_{i} \rrbracket
$$

- For $i=1$ and $g: \mathbb{R} \rightarrow \mathbb{R}^{2}, t \mapsto\left(g_{1}(t), g_{2}(t)\right)^{T}$ this is for example

$$
\mathbf{D}^{1}[f](t, g(t)) \llbracket g^{\prime} \rrbracket=\left\langle\nabla_{k}[f](t, g(t)), g^{\prime}(t)\right\rangle
$$

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu \nu^{\perp}(s) \rrbracket .
$$

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu \nu^{\perp}(s) \rrbracket .
$$

Proof sketch

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

Proof sketch

- Use symmetry property of reduced attenuation map

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

Proof sketch

- Use symmetry property of reduced attenuation map

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

- Insert the first order Taylor polynomials

$$
\begin{aligned}
& \frac{1}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)=a_{0}(s)+a_{1}(s)(t-s)+o(t-s) \quad \text { and } \\
& \frac{1}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)=b_{0}(s)+b_{1}(s)(t-s)+o(t-s)
\end{aligned}
$$

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

Proof sketch

- Use symmetry property of reduced attenuation map

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

- Insert the first order Taylor polynomials

$$
\begin{aligned}
& \frac{1}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)=a_{0}(s)+a_{1}(s)(t-s)+o(t-s) \quad \text { and } \\
& \frac{1}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)=b_{0}(s)+b_{1}(s)(t-s)+o(t-s)
\end{aligned}
$$

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

Proof sketch

- Use symmetry property of reduced attenuation map

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

- Insert the first order Taylor polynomials

$$
\begin{aligned}
& \frac{1}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)=\alpha(s) v(s)+\frac{\omega_{3}(s) \alpha(s) v^{\perp}(s)+(\alpha(s) v(s))^{\prime}}{2}(t-s)+o(t-s) \\
& \frac{1}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)=\alpha(s) v(s)+\frac{-\omega_{3}(s) \alpha(s) v^{\perp}(s)+(\alpha(s) v(s))^{\prime}}{2}(t-s)+o(t-s)
\end{aligned}
$$

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

Proof sketch

- Use symmetry property of reduced attenuation map

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

- Insert the first order Taylor polynomials

$$
\begin{aligned}
& \frac{1}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)=\alpha(s) v(s)+\frac{\omega_{3}(s) \alpha(s) v^{\perp}(s)+(\alpha(s) v(s))^{\prime}}{2}(t-s)+o(t-s) \\
& \frac{1}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)=\alpha(s) v(s)+\frac{-\omega_{3}(s) \alpha(s) v^{\perp}(s)+(\alpha(s) v(s))^{\prime}}{2}(t-s)+o(t-s)
\end{aligned}
$$

- Differentiate with respect to t at the position $t=s$

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

Proof sketch

- Use symmetry property of reduced attenuation map

$$
\tilde{\mathcal{J}}\left(s, \frac{\lambda}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)\right)=\tilde{\mathcal{J}}\left(t, \frac{\lambda}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)\right)
$$

- Insert the first order Taylor polynomials

$$
\begin{aligned}
& \frac{1}{t-s} P\left(e_{3} \times\left(R(s)^{T} R(t) e_{3}\right)\right)=\alpha(s) v(s)+\frac{\omega_{3}(s) \alpha(s) v^{\perp}(s)+(\alpha(s) v(s))^{\prime}}{2}(t-s)+o(t-s) \\
& \frac{1}{s-t} P\left(e_{3} \times\left(R(t)^{T} R(s) e_{3}\right)\right)=\alpha(s) v(s)+\frac{-\omega_{3}(s) \alpha(s) v^{\perp}(s)+(\alpha(s) v(s))^{\prime}}{2}(t-s)+o(t-s)
\end{aligned}
$$

- Differentiate with respect to t at the position $t=s$
- Choose for an $s \in \mathbb{R}$ with $\alpha(s) \neq 0$ the parameter $\lambda=\frac{\mu}{\alpha(s)}$

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

How to reconstruct

- Consider function

$$
\mu \mapsto \frac{\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))}{\mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket}
$$

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

How to reconstruct

- Consider function

$$
\mu \mapsto \frac{\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))}{\mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket}
$$

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

How to reconstruct

- Consider function

$$
\mu \mapsto \frac{\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))}{\mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket}
$$

- Look for a vector $v(s) \in \mathbb{S}^{1}$ such that this function is constant

Reconstruction of the cylindrical component v and the height ω_{3}

Proposition 2

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ and $\tilde{\mathcal{J}}$ be the corresponding reduced attenuation map. Moreover, let $R \in C^{2}(\mathbb{R} ; S O(3))$ and $\omega \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ the associated angular velocity. Then, for all $s \in \mathbb{R}$ satisfying $\alpha(s) \neq 0$ and all $\mu \in \mathbb{R}$ the following relation holds:

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

How to reconstruct

- Consider function

$$
\mu \mapsto \frac{\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))}{\mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket}
$$

- Look for a vector $v(s) \in \mathbb{S}^{1}$ such that this function is constant
- The value of this constant function will then be $\omega_{3}(s)$

Reconstruction of the cylindrical radius α

Proposition 3

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$, $\tilde{\mathcal{J}}$ be the reduced attenuation mapping of a rigid motion of u. Let further $R \in C^{4}(\mathbb{R} ; S O(3))$, $t \in \mathbb{R}$ and $\omega \in C^{3}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ be the angular velocity corresponding to R and let $\sigma(t)=\varphi^{\prime}(t)$. Then, for all $t \in \mathbb{R}$ such that $\alpha(t) \neq 0$ and $\sigma(t) \neq-\omega_{3}(t)$, we have

$$
A_{0}(\mu)+A_{02}(\mu) \alpha(t)^{2}+A_{1}(\mu) \mu \frac{\alpha^{\prime}(t)}{\alpha(t)}=0 \quad \text { for all } \quad \mu \in \mathbb{R}
$$

where

$$
\begin{aligned}
& A_{0}(\mu)=\frac{1}{4} \mu\left(\omega_{3}+\sigma\right)\left[\mu^{2} \omega_{3}\left(\omega_{3}-\sigma\right) \mathbf{D}^{3}[\tilde{\mathcal{J}}](s, \mu v) \llbracket v^{\perp}, v^{\perp}, v^{\perp} \rrbracket\right. \\
&+2 \mu \mathbf{D}^{2}[\tilde{\mathcal{J}}](s, \mu v) \llbracket v^{\perp}, \omega_{3} \sigma v-\omega_{3}^{\prime} v^{\perp} \rrbracket+2 \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v) \llbracket \omega_{3}^{2} v^{\perp}+\omega_{3}^{\prime} v \rrbracket \\
&\left.-\mu\left(3 \omega_{3}-\sigma\right) \partial_{t} \mathbf{D}^{2}[\tilde{\mathcal{J}}](s, \mu v) \llbracket v^{\perp}, v^{\perp} \rrbracket+2 \partial_{t I} \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v) \llbracket v^{\perp} \rrbracket\right], \\
& A_{02}(\mu)= \frac{1}{2} \mu\left(\omega_{3}+\sigma\right) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v) \llbracket v^{\perp} \rrbracket, \\
& A_{1}(\mu)= \frac{1}{2}\left(\omega_{3}+\sigma\right)\left[\mu \omega_{3} \mathbf{D}^{2}[\tilde{\mathcal{J}}](s, \mu v) \llbracket v^{\perp}, v^{\perp} \rrbracket-\omega_{3} \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v) \llbracket v \rrbracket-\partial_{t} \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v) \llbracket v^{\perp} \rrbracket\right] .
\end{aligned}
$$

Reconstruction of the cylindrical radius α

Proposition 3

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right), \tilde{\mathcal{J}}$ be the reduced attenuation mapping of a rigid motion of u. Let further $R \in C^{4}(\mathbb{R} ; S O(3)), t \in \mathbb{R}$ and $\omega \in C^{3}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ be the angular velocity corresponding to R and let $\sigma(t)=\varphi^{\prime}(t)$. Then, for all $t \in \mathbb{R}$ such that $\alpha(t) \neq 0$ and $\sigma(t) \neq-\omega_{3}(t)$, we have

$$
A_{0}(\mu)+A_{02}(\mu) \alpha(t)^{2}+A_{1}(\mu) \mu \frac{\alpha^{\prime}(t)}{\alpha(t)}=0 \quad \text { for all } \quad \mu \in \mathbb{R}
$$

How to reconstruct

Reconstruction of the cylindrical radius α

Proposition 3

Let $u \in C_{c}\left(\mathbb{R}^{3} ; \mathbb{R}\right), \tilde{\mathcal{J}}$ be the reduced attenuation mapping of a rigid motion of u. Let further $R \in C^{4}(\mathbb{R} ; S O(3)), t \in \mathbb{R}$ and $\omega \in C^{3}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ be the angular velocity corresponding to R and let $\sigma(t)=\varphi^{\prime}(t)$. Then, for all $t \in \mathbb{R}$ such that $\alpha(t) \neq 0$ and $\sigma(t) \neq-\omega_{3}(t)$, we have

$$
\begin{equation*}
A_{0}(\mu)+A_{02}(\mu) \alpha(t)^{2}+A_{1}(\mu) \mu \frac{\alpha^{\prime}(t)}{\alpha(t)}=0 \quad \text { for all } \quad \mu \in \mathbb{R} \tag{*}
\end{equation*}
$$

How to reconstruct

- Consider (\star) as an overdetermined linear system for $\alpha^{2}(t)$ and $\frac{\alpha^{\prime}(t)}{\alpha(t)}$

Uniqueness considerations

- Similar non-uniqueness issue as in Cryo-EM

Uniqueness considerations

- Similar non-uniqueness issue as in Cryo-EM
- Reconstruction only possible up to an orthogonal transformation

Uniqueness considerations

- Similar non-uniqueness issue as in Cryo-EM
- Reconstruction only possible up to an orthogonal transformation
- Reflection of attenuation coefficient u in the $x_{1} x_{2}$-plane through the origin leads to the same attenuation projection data

Uniqueness considerations

- Similar non-uniqueness issue as in Cryo-EM
- Reconstruction only possible up to an orthogonal transformation
- Reflection of attenuation coefficient u in the $x_{1} x_{2}$-plane through the origin leads to the same attenuation projection data
- Two solutions $v(t)$ and $\check{v}(t)=-v(t)$ of

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

Uniqueness considerations

- Similar non-uniqueness issue as in Cryo-EM
- Reconstruction only possible up to an orthogonal transformation
- Reflection of attenuation coefficient u in the $x_{1} x_{2}$-plane through the origin leads to the same attenuation projection data
- Two solutions $v(t)$ and $\check{v}(t)=-v(t)$ of

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

- Two solutions $\omega(t)$ and $\check{\omega}(t)$
- When the object is moved with respect to ω and the reflected object with respect to $\check{\omega}$, we get exactly the same attenuation projection data

Uniqueness considerations

- Similar non-uniqueness issue as in Cryo-EM
- Reconstruction only possible up to an orthogonal transformation
- Reflection of attenuation coefficient u in the $x_{1} x_{2}$-plane through the origin leads to the same attenuation projection data
- Two solutions $v(t)$ and $\check{v}(t)=-v(t)$ of

$$
\partial_{t} \tilde{\mathcal{J}}(s, \mu v(s))=\omega_{3}(s) \mathbf{D}^{1}[\tilde{\mathcal{J}}](s, \mu v(s)) \llbracket \mu v^{\perp}(s) \rrbracket .
$$

- Two solutions $\omega(t)$ and $\check{\omega}(t)$
- When the object is moved with respect to ω and the reflected object with respect to $\check{\omega}$, we get exactly the same attenuation projection data

2 Mathematical Model

(3) Motion Estimation

- Reconstruction of the translation
- Reduced attenuation maps
- Reconstruction of the rotation

(4) Numerics

Simulations

- For the points $P_{1}=\left(1, \frac{1}{2},-1\right), P_{2}=\left(-\frac{1}{2}, 1,1\right), P_{3}=\left(0,-1, \frac{1}{2}\right)$ and the diagonal matrix $D=\operatorname{diag}(\sqrt{2}, 1,1)$ we consider as an example the attenuation coefficient

$$
u(x)=\prod_{i=1}^{3}\left|x-P_{i}\right|^{2} \mathrm{e}^{-\frac{1}{4}|D x|^{2}}
$$

Simulations

- For the points $P_{1}=\left(1, \frac{1}{2},-1\right), P_{2}=\left(-\frac{1}{2}, 1,1\right), P_{3}=\left(0,-1, \frac{1}{2}\right)$ and the diagonal matrix $D=\operatorname{diag}(\sqrt{2}, 1,1)$ we consider as an example the attenuation coefficient

$$
u(x)=\prod_{i=1}^{3}\left|x-P_{i}\right|^{2} \mathrm{e}^{-\frac{1}{4}|D x|^{2}}
$$

Simulations

- For the points $P_{1}=\left(1, \frac{1}{2},-1\right), P_{2}=\left(-\frac{1}{2}, 1,1\right), P_{3}=\left(0,-1, \frac{1}{2}\right)$ and the diagonal matrix $D=\operatorname{diag}(\sqrt{2}, 1,1)$ we consider as an example the attenuation coefficient

$$
u(x)=\prod_{i=1}^{3}\left|x-P_{i}\right|^{2} \mathrm{e}^{-\frac{1}{4}|D x|^{2}}
$$

- Motion

$$
T(t)=\left(\begin{array}{c}
\cos (6 t) \cos (12 t) \\
\cos (6 t) \sin (12 t) \\
\sin (t)
\end{array}\right) \text { and } \omega(t)=\left(\begin{array}{c}
\alpha(t) \cos (\varphi(t)) \\
\alpha(t) \sin (\varphi(t)) \\
\omega_{3}(t)
\end{array}\right)
$$

with

$$
\alpha(t)=1+10 t^{2}, \varphi(t)=\pi t+\frac{\pi}{3}, \text { and } \omega_{3}(t)=\frac{1}{2}+\sqrt{\frac{1}{2}+5 t}
$$

Simulations

- For the points $P_{1}=\left(1, \frac{1}{2},-1\right), P_{2}=\left(-\frac{1}{2}, 1,1\right), P_{3}=\left(0,-1, \frac{1}{2}\right)$ and the diagonal matrix $D=\operatorname{diag}(\sqrt{2}, 1,1)$ we consider as an example the attenuation coefficient

$$
u(x)=\prod_{i=1}^{3}\left|x-P_{i}\right|^{2} \mathrm{e}^{-\frac{1}{4}|D x|^{2}}
$$

- Motion

$$
T(t)=\left(\begin{array}{c}
\cos (6 t) \cos (12 t) \\
\cos (6 t) \sin (12 t) \\
\sin (t)
\end{array}\right) \text { and } \omega(t)=\left(\begin{array}{c}
\alpha(t) \cos (\varphi(t)) \\
\alpha(t) \sin (\varphi(t)) \\
\omega_{3}(t)
\end{array}\right)
$$

with

$$
\alpha(t)=1+10 t^{2}, \varphi(t)=\pi t+\frac{\pi}{3}, \text { and } \omega_{3}(t)=\frac{1}{2}+\sqrt{\frac{1}{2}+5 t} .
$$

- Discretisation in space

$$
\left(j_{1}, j_{2}, j_{3}\right) \delta_{x}, j \in\{-512, \ldots, 511\}^{2} \times\{-256, \ldots, 255\} \text { with } \delta_{x}=0.05
$$

and in time

$$
\ell \delta_{t}, \ell \in\{0, \ldots, 999\} \text { for } \delta_{t}=0.0005
$$

Reconstruction procedure I

- Calculate the center of the attenuation projection images and read off the first two components of the displacement $T(t)$ via

$$
P(T(t))=\mathcal{C}_{2}(0)-\mathcal{C}_{2}(t)
$$

Reconstruction procedure I

- Calculate the center of the attenuation projection images and read off the first two components of the displacement $T(t)$ via

$$
P(T(t))=\mathcal{C}_{2}(0)-\mathcal{C}_{2}(t)
$$

Reconstruction procedure II

- Consider least square minimisation problem for the function

$$
\tilde{\omega}_{3}(\varphi(t))=\underset{\omega_{3}}{\operatorname{argmin}}\left\{\sum_{j=-512}^{511}\left|\partial_{t} \tilde{J}\left(t, j \delta_{x}\binom{\cos (\varphi(t))}{\sin (\varphi(t))}\right)-\omega_{3}(t) \mathbf{D}^{1}[\tilde{J}]\left(t, j \delta_{x}\binom{\cos (\varphi(t))}{\sin (\varphi(t))}\right)\left[j \delta_{x}\binom{-\sin (\varphi(t))}{\cos (\varphi(t))}\right]\right|^{2}\right\}
$$

to get third component $\omega_{3}(t)$ as function of the yet unknown angular value

Reconstruction procedure II

- Consider least square minimisation problem for the function

$$
\tilde{\omega}_{3}(\varphi(t))=\underset{\omega_{3}}{\operatorname{argmin}}\left\{\sum_{j=-512}^{511}\left|\partial_{t} \tilde{J}\left(t, j \delta_{x}\binom{\cos (\varphi(t))}{\sin (\varphi(t))}\right)-\omega_{3}(t) \mathbf{D}^{1}[\tilde{J}]\left(t, j \delta_{x}\binom{\cos (\varphi(t))}{\sin (\varphi(t))}\right)\left[j \delta_{x}\binom{-\sin (\varphi(t))}{\cos (\varphi(t))}\right]\right|^{2}\right\}
$$

to get third component $\omega_{3}(t)$ as function of the yet unknown angular value

- To obtain the angular function $\varphi(t)$, we minimise the function

$$
\begin{aligned}
& \phi \mapsto \max _{j \in\{-512, \ldots, 511\}}\left\{\left(\left|\tilde{\omega}_{3}(\phi) \mathbf{D}^{1}[\tilde{J}]\left(t, j \delta_{x}\binom{\cos (\phi)}{\sin (\phi)}\right)\left[j \delta_{x}\binom{-\sin (\phi)}{\cos (\phi)}\right]\right|^{2}+\varepsilon\right)^{-1}\right. \\
& \times\left.\times \partial_{t} \tilde{J}\left(t, j \delta_{x}\binom{\cos (\phi)}{\sin (\phi)}\right)-\left.\tilde{\omega}_{3}(\phi) \mathbf{D}^{1}[\tilde{J}]\left(t, j \delta_{x}\binom{\cos (\phi)}{\sin (\phi)}\right)\left[j \delta_{x}\binom{-\sin (\phi)}{\cos (\phi)}\right]\right|^{2}\right\}
\end{aligned}
$$

on $[0, \pi)$ with some tiny $\varepsilon>0$. The minimiser gives us $\varphi(t)$ and thus $\omega_{3}(t)=\tilde{\omega}_{3}(\varphi(t))$.

Reconstruction procedure II

- Consider least square minimisation problem for the function

$$
\tilde{\omega}_{3}(\varphi(t))=\underset{\omega_{3}}{\operatorname{argmin}}\left\{\sum_{j=-512}^{511}\left|\partial_{t} \tilde{J}\left(t, j \delta_{x}\binom{\cos (\varphi(t))}{\sin (\varphi(t))}\right)-\omega_{3}(t) \mathbf{D}^{1}[\tilde{J}]\left(t, j \delta_{x}\binom{\cos (\varphi(t))}{\sin (\varphi(t))}\right)\left[j \delta_{x}\binom{-\sin (\varphi(t))}{\cos (\varphi(t))}\right]\right|^{2}\right\}
$$

to get third component $\omega_{3}(t)$ as function of the yet unknown angular value

- To obtain the angular function $\varphi(t)$, we minimise the function

$$
\begin{aligned}
\phi \mapsto & \max _{j \in\{-512, \ldots, 511\}}\left\{\left(\left|\tilde{\omega}_{3}(\phi) \mathbf{D}^{1}[\tilde{J}]\left(t, j \delta_{x}\binom{\cos (\phi)}{\sin (\phi)}\right)\left[j \delta_{x}\binom{-\sin (\phi)}{\cos (\phi)}\right]\right|^{2}+\varepsilon\right)^{-1}\right. \\
& \left.\times\left|\partial_{t} \tilde{J}\left(t, j \delta_{x}\binom{\cos (\phi)}{\sin (\phi)}\right)-\tilde{\omega}_{3}(\phi) \mathbf{D}^{1}[\tilde{\mathcal{J}}]\left(t, j \delta_{x}\binom{\cos (\phi)}{\sin (\phi)}\right)\left[j \delta_{x}\binom{-\sin (\phi)}{\cos (\phi)}\right]\right|^{2}\right\},
\end{aligned}
$$

on $[0, \pi)$ with some tiny $\varepsilon>0$. The minimiser gives us $\varphi(t)$ and thus $\omega_{3}(t)=\tilde{\omega}_{3}(\varphi(t))$.

Reconstruction procedure II

- Consider least square minimisation problem for the function

$$
\tilde{\omega}_{3}(\varphi(t))=\underset{\omega_{3}}{\operatorname{argmin}}\left\{\sum_{j=-512}^{511}\left|\partial_{t} \tilde{J}\left(t, j \delta_{x}\binom{\cos (\varphi(t))}{\sin (\varphi(t))}\right)-\omega_{3}(t) \mathbf{D}^{1}[\tilde{J}]\left(t, j \delta_{x}\binom{\cos (\varphi(t))}{\sin (\varphi(t))}\right)\left[j \delta_{x}\binom{-\sin (\varphi(t))}{\cos (\varphi(t))}\right]\right|^{2}\right\}
$$

to get third component $\omega_{3}(t)$ as function of the yet unknown angular value

- To obtain the angular function $\varphi(t)$, we minimise the function

$$
\begin{aligned}
\phi \mapsto & \max _{j \in\{-512, \ldots, 511\}}\left\{\left(\left|\tilde{\omega}_{3}(\phi) \mathbf{D}^{1}[\tilde{J}]\left(t, j \delta_{x}\binom{\cos (\phi)}{\sin (\phi)}\right)\left[j \delta_{x}\binom{-\sin (\phi)}{\cos (\phi)}\right]\right|^{2}+\varepsilon\right)^{-1}\right. \\
& \left.\times\left|\partial_{t} \tilde{J}\left(t, j \delta_{x}\binom{\cos (\phi)}{\sin (\phi)}\right)-\tilde{\omega}_{3}(\phi) \mathbf{D}^{1}[\tilde{J}]\left(t, j \delta_{x}\binom{\cos (\phi)}{\sin (\phi)}\right)\left[j \delta_{x}\binom{-\sin (\phi)}{\cos (\phi)}\right]\right|^{2}\right\},
\end{aligned}
$$

on $[0, \pi)$ with some tiny $\varepsilon>0$. The minimiser gives us $\varphi(t)$ and thus $\omega_{3}(t)=\tilde{\omega}_{3}(\varphi(t))$.

Reconstruction procedure III

- To obtain the cylindrical radius α, we consider

$$
A_{0}(\mu)+A_{02}(\mu) \alpha(t)^{2}+A_{1}(\mu) \mu \frac{\alpha^{\prime}(t)}{\alpha(t)}=0 \quad \text { for all } \quad \mu \in \mathbb{R}
$$

as overdetermined linear system (one equation for each value $\left.\mu \in\left\{j \delta_{x} \mid j \in\{-512, \ldots, 511\}\right\}\right)$ for $\alpha^{2}(t)$ and $\frac{\alpha^{\prime}(t)}{\alpha(t)}$, where the coefficients can be explicitly calculated with the values of φ and ω_{3} obtained so far.

Reconstruction procedure III

- To obtain the cylindrical radius α, we consider

$$
A_{0}(\mu)+A_{02}(\mu) \alpha(t)^{2}+A_{1}(\mu) \mu \frac{\alpha^{\prime}(t)}{\alpha(t)}=0 \quad \text { for all } \quad \mu \in \mathbb{R}
$$

as overdetermined linear system (one equation for each value $\left.\mu \in\left\{j \delta_{x} \mid j \in\{-512, \ldots, 511\}\right\}\right)$ for $\alpha^{2}(t)$ and $\frac{\alpha^{\prime}(t)}{\alpha(t)}$, where the coefficients can be explicitly calculated with the values of φ and ω_{3} obtained so far.

Errors

Absolute errors in the reconstructions of φ (the crosses), ω_{3} (the triangles) and α (the squares).

Conclusion and outlook

- First step into the direction of tomographic reconstruction of optically and/or acoustically trapped particles

Conclusion and outlook

- First step into the direction of tomographic reconstruction of optically and/or acoustically trapped particles
- We demonstrated—by explicit reconstruction-how the motional parameters can be recovered

Conclusion and outlook

- First step into the direction of tomographic reconstruction of optically and/or acoustically trapped particles
- We demonstrated-by explicit reconstruction-how the motional parameters can be recovered
- More uniqueness studies are on the way!

Conclusion and outlook

- First step into the direction of tomographic reconstruction of optically and/or acoustically trapped particles
- We demonstrated-by explicit reconstruction-how the motional parameters can be recovered
- More uniqueness studies are on the way!
- Proposed motion estimation will be tested on video data acquired from biological samples (regularisation?)

Conclusion and outlook

- First step into the direction of tomographic reconstruction of optically and/or acoustically trapped particles
- We demonstrated-by explicit reconstruction-how the motional parameters can be recovered
- More uniqueness studies are on the way!
- Proposed motion estimation will be tested on video data acquired from biological samples (regularisation?)
- Study corrections or alternative approaches required when going from attenuation projection images to optical images

References

- G. Thalhammer, R. Steiger, M. Meinschad, M. Hill, S. Bernet, and M. Ritsch-Marte Combined acoustic and optical trapping Biomed. Opt. Express 2.10 (2011).
- M. van Heel Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction Ultramicroscopy 21.2 (1987).
- A. B. Goncharov Methods of integral geometry and recovering a function with compact support from its projections in unknown directions Acta Appl. Math. 11.3 (1988).
- P. Elbau, M. Ritsch-Marte, O. Scherzer, and D. Schmutz Inverse Problems of Trapped Objects arXiv:1907.01387 (2019).
- F. Natterer The mathematics of computerized tomography. Classics in Applied Mathematics vol. 32 (2001).
- L. Lamberg Unique recovery of unknown projection orientations in three-dimensional tomography Inverse Probl. Imaging 2.4 (2008).

Thank you for your attention!

We are supported by the Austrian Science Fund (FWF), with SFB F68, project F6804-N36 (Coupled Physics Imaging), project F6806-N36 (Inverse Problems in Imaging of Trapped Particles), and project F6807-N36 (Tomography with Uncertainties). We thank Gregor Thalhammer, Mia Kvåle Løvmo and Benedikt Pressl for providing the videos.

[^0]: Thalhammer, Steiger, Meinschad, Hill, Bernet, and Ritsch-Marte "Combined acoustic and optical trapping" 2011

[^1]: Thalhammer, Steiger, Meinschad, Hill, Bernet, and Ritsch-Marte "Combined acoustic and optical trapping" 2011

