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The Radon transform over a family of curves – A.M. Cormack

A.M. Cormack (1981) The Radon Transform on a Family of Curves in the Plane,
Proceedings of the American Mathematical Society, Vol. 83, No. 2, pp. 325-330.

Cormack
studied the Radon transform along α and β curves:

Cα(p, ϕ) =
{
x = (r , θ) ∈ R2 : rα cos(α(θ − ϕ)) = pα, |θ − ϕ| ≤ π/2α

}
Cβ(p, ϕ) =

{
x = (r , θ) ∈ R2 : pβ cos(β(θ − ϕ)) = rβ , |θ − ϕ| ≤ π/2β

}
which extend the straight lines (case α = 1) considered for the standard Radon transform.
and proved an inversion formula in the circular harmonic domain.

α = 1
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A family of circular-arcs

G. Rigaud (2013) On the inversion of the RT on a generalized Cormack-type class of
curves, Inverse Problems, 29, 115010.

Definition : C-curves [R’13]
We define the class of curves, C by

C(p, θ) = {x : h1(p) = h2(x) · θ}

with h1 an odd C∞-diffeomorphism and h2 is a C∞-diffeomorphic function acting on the radial
component of x , r = |x |, with

h2(r) =
{ 2sr
r2 − ks2

,
2sr

1− ks2r2
}

s, k ∈ R.

generate circular-arcs:
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Illustration in 2D : A rotation-free modality

G. Rigaud (2017) Compton Scattering Tomography: Feature Reconstruction and
Rotation-Free Modality SIAM J. Imaging Sci., 10(4), 2217-2249.

S is fixed and a detector ring surronds the object.
Advantage: No Rotation of the source and no collimation required

S

D1

E0 Eω

g(ω, v1)
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Physical interactions between photons and matter

S

D

aE (x)

ϑ

aE (x) lineic attenuation coefficient at
energy E
ne(x) electron density

A photon beam flying in a closed domain Ω
with energy E satisfies the stationary transport
equation

ϑ · ∇x I(x , ϑ) + aE (x)I(x , ϑ) = 0, x ∈ Ω

Beer-Lambert law

I(D)
I(S)

= e−
∫
S→D

aE =: e−RaE

The attenuation factor stands for a sum of phe-
nomena which hinder the propagation of the tra-
veling photons:

aE (x) ≈ E−3µPE (x) + σ(E)ne(x)

Photoelectric absorption (low energy)
Compton scattering (high energy)

3D Compton scattering imaging | Gaël RIGAUD | August 9th 2019 4 / 24



1st scattering 2nd scattering Algo & Results Smoothness properties

Physical interactions between photons and matter

S

D

aE (x), ne(x)

ϑ

aE (x) lineic attenuation coefficient at
energy E
ne(x) electron density

A photon beam flying in a closed domain Ω
with energy E satisfies the stationary transport
equation

ϑ · ∇x I(x , ϑ) + aE (x)I(x , ϑ) = 0, x ∈ Ω

Beer-Lambert law

I(D)
I(S)

= e−
∫
S→D

aE =: e−RaE

The attenuation factor stands for a sum of phe-
nomena which hinder the propagation of the tra-
veling photons:

aE (x) ≈ E−3µPE (x) + σ(E)ne(x)

Photoelectric absorption (low energy)
Compton scattering (high energy)

3D Compton scattering imaging | Gaël RIGAUD | August 9th 2019 4 / 24



1st scattering 2nd scattering Algo & Results Smoothness properties

Compton scattering in CT

K L M

+
+ +
+

+
+

-

-

-

- -

-

- -

photon (E0)

scattered photon (Eω)

ω

Compton Formula

Eω = E0

1 + E0
511keV (1 + cosω)

Compton-Effect in CT
→ 70 to 80 % of the emitted radiation
→ treated as noise

How is it exploited today?
→ Compton camera
→ multi-energy CT

Why to use it?
→ substantial part of the radiation (>70%)
→ development of the technology of detectors
→ a new dimension to explore.
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An informative spectrum

Compton Formula

Eω = E0

1 + E0
511keV (1 + cosω)

How to exploit it as imaging agent?
→ Compton scattering transforms
a monochromatic spectrum (S) into
a polychromatic spectrum (D).
→ Use the spectrum of the measured
photons as a vector of information.

Decomposition of the spectrum

Spec(D,E) =
∞∑
i=0

gi (D,E).

with i the order of scattering.
⇒ i = 1, 2 are the prominent cases.

S

D

E0

Compton effect

E0 E

Spec = ?

primary
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1 3D CSI - Modeling the first-order scattering g1

2 3D CSI - Modeling the second-order scattering g2

3 Reconstruction strategy and Results

4 Smoothness properties
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Geometry of the first-order scattered radiation

S

D

v

ne

E0

E0

:

:

:

:

• S: monochromatic ionising source at E0.
• D: energy-sensitive detector

Compton Formula

Eω = E0

1 + E0
511keV (1 + cosω)

• T(ω, v) = {M : ‘SMD = ω} stands for
n = 2 (2) circular-arc(s),
n = 3 a spindle torus.

S

D

S

D

M ω

S

D

M π − ω
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Data interpretation

S

D

v

T(ω, v)

E0

:

:

Eω

:

The number of photons scattered only once at M(x) and
detected at D(d) with energy Eω satisfies:

∂xg1 = I0r2e
4

P(ω) A0(s, x)Aω(x, d)
‖s− x‖2‖x− d‖2

ne(x)dx,

with P(ω) the Klein-Nishina probability and

Aω(x, y) = exp
Å
−‖y− x‖

∫ 1

0
aEω

(
x + t (y− x)

‖y− x‖

)
dt
ã
.

Assuming D to be a point detector,

g1(s, d, ω) ≈
∫
x∈T

A0(s, x)Aω(x, d)
‖s− x‖2‖x− d‖2

ne(x)dx.

→ (weighted) circular/torical Radon transforms.
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Radon transform on spindle tori

G. Rigaud and B. Hahn (2018) 3D Compton scattering imaging and contour
reconstruction for a class of Radon transforms Inverse Problems 34 (2018) 075004 (22pp).

First-order scattering in 3D CSI [R. and Hahn (2018)]
Let ne ∈ L2(Ω) the electron density compactly supported on Ω ⊂ R3. The number of detected
(first-order) scattered photons with energy Eω , g , is written

g1(s, d, ω) = T ne(s, d, ω) :=
∫

x∈T(ω,d,s)

A0(x)
|x− s|2

Aω(x)
|x− d|2

ne(x)dx.

The phase function of the manifold T(ω, d, s) is given by

ω = arctan

Ç√
‖d− s‖2‖x− s‖2 − ((x− s) · (d− s))2

(x− s) · (d− s)− ‖x− s‖2

å
, φ(x, d, s).
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Rotation-free modalities on CSI

g1(s, d, ω) = T ne(s, d, ω) with (d− s) ∈ V. But which V ?

(a) (b) (c)

In 3D one can design the same concept as in 2D with various architectures:
(a) with detectors on a sphere,
(b) with detectors on a cylinder,
(c) with detectors on two planes.
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Geometry of the second-order scattered radiation

s
M(x)

(d, Ed)

N(y)

y ∈ C(ω1, x) ∩ T(ω2, x, d)

Due to the Compton Formula

cosω1 + cosω2 = 2−mc2
( 1
Ed
−

1
E0

)
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Characterizing the intersection

s
M(x)

(d, Ed)

N(y)

T(ω2, x, d)
ω2

ω1

C(ω1, x)

y∩ ∈ C(ω1, x) ∩ T(ω2, x, d)

can be represented using parameters (ω1, ϕ) ∈
[0, π]× [0, 2π] by

y∩ = x+r∩ R2R1

Ç sinω1 cosϕ
sinω1 sinϕ

cosω1

å
if r∩ > 0.

with

r∩ := ‖d− x‖

Ç
z∩ −

√
1− z2∩

tanω2

å
.

where

z∩ := R1(3, 1) sinω1 cosϕ+ R1(3, 2) sinω1 sinϕ+ R1(3, 3) cosω1
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An integral representation

Analytical formulation of g2 [R’19]
Considering an electron density function ne(x) with compact support Ω, a monochromatic
source s with energy E0 as well as a detector d both located outside Ω. Then, the number of
detected photons scattered twice arriving with an energy Ed are given by

g2(d,Ed) =
∫

Ω

∫ 2π

0

∫ π

0
w2(s, x, y∩, d, ω1, ϕ)ne(x)ne(y∩)dS∩(ω1, ϕ)dx

with the physical factors symbolized by

w2(s, x, y∩, d, ω1, ϕ) = AE0 (s, x)AEω1
(x, y∩)AEω2

(y∩, d)

and the differential form of the intersection given by

dS∩(ω1, ϕ) = r∩
√

sin2 ω1(r2∩ + (∂ω1 r∩)2) + (∂ϕr∩)2 dω1dϕ.
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2 points spread function – Comparison with Monte-Carlo data
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How to invert T ne = g1?

T ne(ω, s, d) =
∫

x∈T(ω,s,d)

w(x, ω, s, d)ne(x)dx

How to recover ne ?
Closed-form inversion formulae are unknown.
Iterative algorithms (Landweber, Kaczmarz, etc) are expensive.

What about the contours ne ?
Microlocal analysis states the singularities of ne are preserved through the data (Quinto,
Webber and Holman 17).
Beylkin (1984) proposed a study of the generalized Radon transform on a family of
manifold and a class of reconstruction operators.

G. Beylkin (1984) The inversion problem and applications of the generalized Radon transform, Communications on Pure
and Applied Mathematics, 37, 579–599.

P. Kuchment et al. (1995) On local tomography, Inverse Problems, 11, 571–589.

T. Quinto, V. Krishnan (2015) Microlocal Analysis in Tomography, in Handbook of Mathematical Methods in Imaging,
2e, Book editor: Otmar Scherzer.

J. Webber, S. Holman (2017) Microlocal analysis of a spindle transform, arXiv.
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An extension of Beylkin’s results

G. Rigaud and B. Hahn (2018) 3D Compton scattering imaging and contour
reconstruction for a class of Radon transforms Inverse Problems 34 (2018) 075004 (22pp).

Given the generalized 3D Radon transform along φ ∈ M,

Rc f (p, θ) =
∫

Ω
c(x, p, θ) f (x) δ(p − φ(x, θ))dx, (p, θ) ∈ Π×Θ,

and defining the following backprojection operator

R∗bg(y) =
∫

Θ
b(y, θ) g(φ(y, θ), θ) h(y, θ)dθ for y ∈ Ω.

Theorem [R. and Hahn (2018)]
Given Rc f = g with f ∈ L2(Ω) and c(·) being a strictly positive C∞ smooth function then,

Kf := −1
8π2
R∗b∂

2
pg = f + Ef

with b(y, θ) = (c(y, φ(y, θ), θ))−1 and E a smoothing integral operator.

3D Compton scattering imaging | Gaël RIGAUD | August 9th 2019 17 / 24



1st scattering 2nd scattering Algo & Results Smoothness properties

Contours reconstruction from
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Our problem?

g1(ω, s, d) = T ne(ω, s, d) =
∫

x∈T(ω,s,d)

w(x, ω, s, d)ne(x)dx

is a non-linear mapping in ne (w depends on ne) since

aE (x) ≈ E−3µPE (x) + σ(E)ne(x).

Continuity of g1 [R’19]
Denoting by Td, the restriction of T to one detector d and a given source s, then
Td : L2(Ω)→ L2(R) is continuous

Idea: approximate g1 by

T (f , ne)(ω, v) =
∫

Ω
Wne(x, ω, v) f (x) δ(ω − φ(x, v)) dx

with ne ∈ C∞(Ω) and f ∈ L2(Ω) such that ‖f − ne‖L2(Ω) ≤ ε� 1.
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Representation as Fourier integral operators

G. Rigaud (2019) 3D Compton scattering imaging: study of the spectrum and contour
reconstruction, arXiv:1908.03066

Smoothness property of g1 [R’19]
Let ne ∈ C∞(Ω) given with Ω an open subset of R3. Then the operator T (·, ne) is a Fourier
integral operator of order −1.

Smoothness property of g2 [R’19]
Let ne ∈ C∞(Ω) given with Ω an open subset of R3. Then, under some assumptions on the
phase

Ψ(y, x, d) := ψ(y, x) + cos
(

cot−1 φ(y, x, d)
)
,

g2 can be understood as a Fourier integral operator of order −7
4
.

F. Treves (1980) Introduction to pseudodifferential and Fourier Integral Operators, Plenum Press, New York, The
University Series in Mathematics.
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Contours reconstruction from
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Outlook and Challenges

We learned
how to model the first- and second-order scattering
that the contours of the density can be extracted from the spectrum

Now we need
better estimates for the smoothness properties
to deal with limited data problems in CSI
to deal with the polychromatic case
iterative techniques

⇒ For a start: modified OSEM algorithm applied only on g1
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Some literature

G. Rigaud (2013) On the inversion of the RT on a generalized Cormack-type class of
curves, Inverse Problems, 29, 115010.

G. Rigaud (2017) Compton Scattering Tomography: Feature Reconstruction and
Rotation-Free Modality SIAM J. Imaging Sci., 10(4), 2217-2249.

G. Rigaud and B. Hahn (2018) 3D Compton scattering imaging and contour
reconstruction for a class of Radon transforms Inverse Problems 34 (2018) 075004 (22pp).

G. Rigaud and B. Hahn (2019) Reconstruction Algorithm for 3D Compton scattering
imaging with incomplete data Submitted

G. Rigaud (2019) 3D Compton scattering imaging: study of the spectrum and contour
reconstruction, arXiv:1908.03066

Thank you
for your attention

Questions ?
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