Seismic imaging with the elliptic Radon transform

Andreas Rieder

Christine Grathwohl
Peer Kunstmann
Todd Quinto

Organization of the material

A linear inverse problem in seismic imaging
The elliptic Radon transform
Imaging operators: general results
Imaging operators: concrete setting
Numerical examples

A linear inverse problem inseismic imaging

The elliptic Radon transform

Imaging operators: general results

Imaging operators: concrete setting

Numerical examples

A linear inverse problem in seismic imaging

An inverse problem for the acoustic wave equation

$u\left(t ; \mathbf{x}, \mathbf{x}_{\mathbf{s}}\right)$ acoustic potential in $\mathbf{x} \in \mathbb{R}^{d}, d \in\{2,3\}$, at time $t \geq 0$

$$
\frac{1}{\nu^{2}} \partial_{t}^{2} u-\Delta_{\mathbf{x}} u=\delta\left(\mathbf{x}-\mathbf{x}_{\mathbf{s}}\right) \delta(t), \quad u\left(0, \cdot, \mathbf{x}_{\mathbf{s}}\right)=\partial_{t} u\left(0, \cdot, \mathbf{x}_{\mathbf{s}}\right)=0
$$

$\nu=\nu(\mathbf{x})$ speed of sound, $\mathbf{x}_{\mathbf{s}}$ excitation (source) point.

Seismic imaging

Recover ν from the backscattered (reflected) fields

$$
u\left(t ; \mathbf{x}_{\mathbf{r}}, \mathbf{x}_{\mathbf{s}}\right), \quad t \in[0, T], \quad\left(\mathbf{x}_{\mathbf{r}}, \mathbf{x}_{\mathbf{s}}\right) \in \mathcal{R} \times \mathcal{S}
$$

where
$\mathcal{S} / \mathcal{R}$ sets of source/receiver points, and
T observation period.

Generalized Radon transform

Consider the ansatz

$$
\frac{1}{\nu^{2}(\mathbf{x})}=\frac{1+n(\mathbf{x})}{c^{2}(\mathbf{x})}
$$

$c=c(\mathbf{x})$ smooth and known background velocity.
Determine n from (e.g. SYMES 1998)

$$
F n\left(T ; \mathbf{x}_{\mathbf{r}}, \mathbf{x}_{\mathbf{s}}\right) \approx \int_{0}^{T}(T-t)^{d-2}(u-\widetilde{u})\left(t ; \mathbf{x}_{\mathbf{r}}, \mathbf{x}_{\mathbf{s}}\right) \mathrm{d} t
$$

with the generalized Radon transform

$$
F w\left(T ; \mathbf{x}_{\mathbf{r}}, \mathbf{x}_{\mathbf{s}}\right)=\int \frac{w(\mathbf{x})}{c^{2}(\mathbf{x})} a\left(\mathbf{x}, \mathbf{x}_{\mathbf{s}}\right) a\left(\mathbf{x}, \mathbf{x}_{\mathbf{r}}\right) \delta\left(T-\tau\left(\mathbf{x}, \mathbf{x}_{\mathbf{s}}\right)-\tau\left(\mathbf{x}, \mathbf{x}_{\mathbf{r}}\right)\right) \mathrm{d} \mathbf{x}
$$

which integrates w over reflection isochrones: $T=\tau\left(\cdot, \mathbf{x}_{\mathbf{s}}\right)+\tau\left(\cdot, \mathbf{x}_{\mathbf{r}}\right)$. Travel-time τ and amplitude a can be computed from

$$
\left|\nabla_{\mathbf{x}} \tau\right|=c^{-1} \quad \text { and } \quad 2 \nabla_{\mathbf{x}} a \cdot \nabla_{\mathbf{x}} \tau+a \Delta_{\mathbf{x}} \tau=0
$$

Historical note: Kirchhoff migration

- Since the 1950's Kirchhoff migration is the standard technique to approximately solve the integral equation.
- BEYLKIN $(1984,1985)$ gave Kirchhoff migration a mathematical foundation:

$$
n_{\mathrm{rec}}=F^{\#} P g \quad \text { where } g=F n \text { are the data (measurements) }
$$

P convolution, $F^{\#}$ dual transform (generalized backprojection).
Further,

$$
n_{\mathrm{rec}}=F^{\#} P F n=I_{\text {partial }} n+\Psi n,
$$

$I_{\text {partial }}$ kind of band pass filter, Ψ is smoothing.

Our approach: complementing Kirchhoff

- As we cannot hope to recover n from the data completely we consider imaging operators which differ from the Kirchhoff operator $F^{\#} P F$:

$$
\Lambda=K F^{\dagger} \psi F
$$

ψ smooth cutoff, F^{\dagger} (weighted) L^{2} dual, K properly supported pseudo of positive order m.

- We reconstruct Λn from the data $g=F n$.
- We compute the symbol of Λ to find useful K 's.
- Our reconstruction technique based on Λ differs from Kirchhoff migration. In fact, an explicit expression of F^{\dagger} is not required (Grathwohl ET AL. 2018)

A linear inverse problem in seismic imaging

The elliptic
Radon transform
Imaging operators: general results

Imaging operators: concrete setting

Numerical examples

The elliptic Radon transform

Assumptions

Let $d=2$ (for the ease of presentation). Further, let

- the background velocity c be constant, say, $c=1$,
- $n \in L^{2}\left(\mathbb{R}_{+}^{2}\right)$ be compactly supported (the positive direction of the $x_{2}{ }^{-}$ axis points downwards),
- sources and receivers be parameterized by $s \in \mathbb{R}$ via

$$
\mathbf{x}_{\mathbf{s}}(s)=(s-\alpha, 0)^{\top}, \quad \mathbf{x}_{\mathbf{r}}(s)=(s+\alpha, 0)^{\top}
$$

with common offset $\alpha \geq 0$ (common offset data acquisition geometry).

Thus the reflection isochrones are ellipses with foci x_{s} and x_{r}.

The 2D situation

The elliptic Radon transform

Now the generalized RT becomes

$$
F w(s, t)=\int A(s, \mathbf{x}) w(\mathbf{x}) \delta(t-\varphi(s, \mathbf{x})) \mathrm{d} \mathbf{x}, \quad t>2 \alpha
$$

with

$$
\varphi(s, \mathbf{x}):=\left|\mathbf{x}_{\mathbf{s}}(s)-\mathbf{x}\right|+\left|\mathbf{x}_{\mathbf{r}}(s)-\mathbf{x}\right|
$$

and

$$
A(s, \mathbf{x})=\frac{1}{\sqrt{\left|\mathbf{x}_{\mathbf{s}}(s)-\mathbf{x}\right|\left|\mathbf{x}_{\mathbf{r}}(s)-\mathbf{x}\right|}}
$$

A linear inverse problem in seismic imaging
The elliptic Radon transform
Imaging oper-
ators: general
results
Imaging operators: concrete setting
Numerical examples

Imaging operators: general results

Basics on pseudo-differential operators 1

Let $\Omega \subset \mathbb{R}^{d}$ be open and let $P: \mathcal{C}^{\infty}(\Omega) \rightarrow \mathcal{C}^{\infty}(\Omega)$ be a linear differential operator of order m,

$$
P u(\mathbf{x})=\sum_{|\alpha| \leq m} f_{\alpha}(\mathbf{x}) \partial^{\alpha} u(\mathbf{x}), \quad f_{\alpha} \in \mathcal{C}^{\infty}(\Omega)
$$

If $u \in \mathcal{C}_{0}^{\infty}(\Omega)$ then
$P u(\mathbf{x})=\frac{1}{(2 \pi)^{d / 2}} \int \mathrm{e}^{\imath \mathbf{x} \cdot \xi} p(\mathbf{x}, \xi) \widehat{u}(\xi) \mathrm{d} \xi=\frac{1}{(2 \pi)^{d}} \iint \mathrm{e}^{\imath(\mathbf{x}-\mathbf{y}) \cdot \xi} p(\mathrm{x}, \xi) u(\mathbf{y}) \mathrm{d} \mathbf{y} \mathrm{d} \xi$
where

$$
p(\mathbf{x}, \xi)=\sum_{|\alpha| \leq m} f_{\alpha}(\mathbf{x})(\imath \xi)^{\alpha}
$$

is the symbol of P.

Basics on pseudo-differential operators 2

- $p \in \mathcal{C}^{\infty}\left(\Omega \times \mathbb{R}^{d}\right)$ is a symbol of order $m \in \mathbb{R}$ if for any $\alpha, \beta \in \mathbb{N}_{0}^{d}$ and any $K \Subset \Omega$ there is a $C=C_{\alpha, \beta, K}$ such that

$$
\sup _{\mathbf{x} \in K}\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} p(\mathbf{x}, \xi)\right| \leq C(1+|\xi|)^{m-|\beta|} \quad \text { for all } \xi \in \mathbb{R}^{d} .
$$

- The set of all symbols of order m on Ω is denoted by $S^{m}(\Omega)$.
- For $p \in S^{m}(\Omega)$ we define the operator Ψ_{p} on $\mathcal{C}_{0}^{\infty}(\Omega)$ by

$$
\mathbf{\Psi}_{p} u(\mathbf{x})=\frac{1}{(2 \pi)^{d}} \iint \mathrm{e}^{\imath(\mathbf{x}-\mathbf{y}) \cdot \xi} p(\mathbf{x}, \xi) u(\mathbf{y}) \mathrm{d} \mathbf{y} \mathrm{~d} \xi
$$

and call it a pseudo-differential operator of order m.

- The top order symbol $\sigma\left(\boldsymbol{\Psi}_{p}\right)$ of $\boldsymbol{\Psi}_{p}$ is the equivalence class of p in $S^{m}(\Omega) / S^{m-1}(\Omega)$.

Basics on pseudo-differential operators 3

- Let P be the differential operator with symbol $\sum_{|\alpha| \leq m} f_{\alpha}(\mathbf{x})(\imath \xi)^{\alpha}$. Then,

$$
\sigma(P)=\sum_{|\alpha|=m} f_{\alpha}(\mathbf{x})(\imath \xi)^{\alpha} .
$$

- The operator $\Lambda^{s}=(I-\Delta)^{s / 2}$ with symbol $\left(1+|\xi|^{2}\right)^{s / 2}$ of order $s \in \mathbb{R}$ has top order symbol

$$
\varphi(\xi)|\xi|^{s}
$$

for any $\varphi \in \mathcal{C}^{\infty}$ with $\varphi(\xi)=1$ for large $|\xi|$ where, in case of $s<0$, we additionally require that $\varphi=0$ in a neighborhood of 0 .

Basics on pseudo-differential operators 4

Theorem: Let Ψ_{p} be a pseudo of order m. Then, $\Psi_{p}: H_{0}^{s}(\Omega) \rightarrow H_{\mathrm{loc}}^{s-m}(\Omega)$ continuously ${ }^{1}$ for all $s \in \mathbb{R}$.

Proof: See standard textbooks.

[^0]
Setting the stage: the imaging operators

We consider

$$
K F^{\dagger} \psi F
$$

where

- $\psi: S \times(2 \alpha, \infty) \rightarrow[0, \infty)$ is a smooth compactly supported cutoff fct ,
- F^{\dagger} is the generalized backprojection operator

$$
F^{\dagger} u(\mathbf{x})=\int_{S} W(s, \mathbf{x}) u(s, \varphi(s, \mathbf{x})) \mathrm{d} s
$$

where W is a smooth positive weight, and

- K is a pseudo on \mathbb{R}_{+}^{2} of pos. order m with symbol k (properly supp).

Here, S is the bounded open set of parameters $s \in \mathbb{R}$ for the sourcereceiver pairs.

We have a pseudo

Theorem: Let F, F^{\dagger}, K, ψ, and W be defined as above. Then,

$$
K F^{\dagger} \psi F
$$

is a pseudo of order $m-1$.

Proof:

- Guillemin-Sternberg 1977: Let R be any hypersurface Radon transform in a d-dim. space and let R^{\dagger} be its (formal, smoothly weighted) L^{2}-adjoint. If R satisfies the Bolker assumption then $R^{\dagger} \psi R$ is a pseudo of order $1-d$.
- Our transform F on \mathbb{R}_{+}^{2} satisfies the Bolker assumption (Krishnan ET AL. 2012).
- Hence, $F^{\dagger} \psi F$ is a pseudo of order -1 .
- K is properly supported and has order m.

The symbol

Theorem: The top order symbol of $K F^{\dagger} \psi F$ is

$$
\sigma(\mathbf{x}, \xi)=\frac{2 \pi k(\mathbf{x}, \xi) \psi(s, \varphi(s, \mathbf{x})) W(s, \mathbf{x}) A(s, \mathbf{x})}{|\omega| B(s, \mathbf{x})}
$$

where

$$
B(s, \mathbf{x})=\left|\operatorname{det}\binom{\nabla_{x} \varphi(s, \mathbf{x})}{\frac{\partial}{\partial s} \nabla_{x} \varphi(s, \mathbf{x})}\right|
$$

The symbol is evaluated at (\mathbf{x}, ξ) where $s \in \mathbb{R}$ and $\omega \in \mathbb{R}$ are defined by

$$
\xi=\omega \nabla_{\mathbf{x}} \varphi(s, \mathbf{x}) .
$$

$$
\varphi(s, \mathbf{x})=\left|\mathbf{x}_{\mathbf{s}}(s)-\mathbf{x}\right|+\left|\mathbf{x}_{\mathbf{r}}(s)-\mathbf{x}\right|, \quad A(s, \mathbf{x})=\frac{1}{\sqrt{\left|\mathbf{x}_{\mathbf{s}}(s)-\mathbf{x}\right|\left|\mathbf{x}_{\mathbf{r}}(s)-\mathbf{x}\right|}}
$$

The symbol

Theorem: The top order symbol of $K F^{\dagger} \psi F$ is

$$
\sigma(\mathbf{x}, \xi)=\frac{2 \pi k(\mathbf{x}, \xi) \psi(s, \varphi(s, \mathbf{x})) W(s, \mathbf{x}) A(s, \mathbf{x})}{|\omega| B(s, \mathbf{x})}
$$

where

$$
B(s, \mathbf{x})=\left|\operatorname{det}\binom{\nabla_{x} \varphi(s, \mathbf{x})}{\frac{\partial}{\partial s} \nabla_{x} \varphi(s, \mathbf{x})}\right|
$$

The symbol is evaluated at (\mathbf{x}, ξ) where $s \in \mathbb{R}$ and $\omega \in \mathbb{R}$ are defined by

$$
\xi=\omega \nabla_{\mathbf{x}} \varphi(s, \mathbf{x}) .
$$

Idea of the proof and related work

- Follow the general calculation of QUINTO 1980:

He expressed the symbol of generalized Radon transforms in terms of defining measures.

Microlocal properties of F and $F^{*} \psi F$ in various geometric settings have been studied by several authors, for instance,

Beylkin 1985, Rakesh 1988, Nolan/Symes 1997, ten Krode et Al. 1998, Stolk 2000, De Hoop et Al. 2009, Quinto ET AL. 2011, Krishnan et AL. 2012, Felea ET AL. 2016, ... etc.

A linear inverse problem in seismic imaging

The elliptic Radon transform

Imaging operators: general results

Imaging operators: concrete setting

Imaging operators: concrete setting

The symbol: a closer look

Set

$$
\Lambda:=\Delta F^{*} \psi F
$$

that is, Λ has order 1 (cf. Bleistein 1987).
Corollary: Let $\alpha=0$. Then,

$$
\sigma(\mathbf{x}, \xi)=-\pi \frac{|\xi|}{x_{2}} \psi\left(x_{1}-\frac{\xi_{1}}{\xi_{2}} x_{2}, 2 x_{2} \frac{|\xi|}{\left|\xi_{2}\right|}\right) .
$$

The symbol: a closer look

Set

$$
\Lambda:=\Delta F^{*} \psi F,
$$

that is, Λ has order 1 (cf. Bleistein 1987).
Corollary: Let $\alpha=0$. Then,

$$
\begin{gathered}
\sigma(\mathbf{x}, \xi)=-\pi \frac{|\xi|}{x_{2}} \psi\left(x_{1}-\frac{\xi_{1}}{\xi_{2}} x_{2}, 2 x_{2} \frac{|\xi|}{\left|\xi_{2}\right|}\right) . \\
C(\mathbf{x}):=\left\{\xi \in \mathbb{R}^{2}: \xi_{2} \neq 0, \psi\left(x_{1}-\frac{\xi_{1}}{\xi_{2}} x_{2}, 2 x_{2} \frac{|\xi|}{\left|\xi_{2}\right|}\right)>0\right\} .
\end{gathered}
$$

Corollary: Let $\alpha=0$ and $\xi \in C(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}_{+}^{2}$. Then, for $u \in \mathcal{D}_{0}^{\prime}\left(\mathbb{R}_{+}^{2}\right)$

$$
(\mathrm{x}, \xi) \in \mathrm{WF}^{s}(u) \Longleftrightarrow(\mathrm{x}, \xi) \in \mathrm{WF}^{s-1}(\Lambda u)
$$

$(\mathrm{x}, \xi) \in \mathrm{WF}^{s}(u): \Longleftrightarrow u$ fails to be in H^{s} about x in direction ξ

The symbol: a closer look

Set

$$
\Lambda:=\Delta F^{*} \psi F,
$$

that is, Λ has order 1 (cf. Bleistein 1987).
Corollary: Let $\alpha=0$. Then,

$$
\begin{gathered}
\sigma(\mathbf{x}, \xi)=-\pi \frac{|\xi|}{x_{2}} \psi\left(x_{1}-\frac{\xi_{1}}{\xi_{2}} x_{2}, 2 x_{2} \frac{|\xi|}{\left|\xi_{2}\right|}\right) . \\
C(\mathbf{x}):=\left\{\xi \in \mathbb{R}^{2}: \xi_{2} \neq 0, \psi\left(x_{1}-\frac{\xi_{1}}{\xi_{2}} x_{2}, 2 x_{2} \frac{|\xi|}{\left|\xi_{2}\right|}\right)>0\right\} .
\end{gathered}
$$

Corollary: Let $\alpha=0$ and $\xi \in C(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}_{+}^{2}$. Then, for $u \in \mathcal{D}_{0}^{\prime}\left(\mathbb{R}_{+}^{2}\right)$

$$
(\mathrm{x}, \xi) \in \mathrm{WF}^{s}(u) \Longleftrightarrow(\mathrm{x}, \xi) \in \mathrm{WF}^{s-1}(\Lambda u) .
$$

Remark: Similar results hold for $\alpha>0$.

H^{s}-Wavefront set: an example

Let $\Omega \subset \mathbb{R}^{d}$ be open with a \mathcal{C}^{∞}-boundary. Then

$$
\mathrm{WF}^{s}\left(\chi_{\Omega}\right)=\left\{(\mathbf{x}, \xi): \mathbf{x} \in \operatorname{bd}(\Omega), \xi \in \mathbb{R}^{d} \backslash\{\mathbf{0}\}, \xi \perp \operatorname{bd}(\Omega) \text { at } \mathbf{x}\right\}, s \geq 1 / 2 .
$$

For $s<1 / 2$ we have $\mathrm{WF}^{s}\left(\chi_{\Omega}\right)=\emptyset$.

The symbol for $\alpha>0$

$$
\begin{gathered}
\sigma(\mathbf{x}, \xi) \approx-\pi \frac{|\xi|}{x_{2}} \psi\left(x_{1}-\frac{\xi_{1}}{\xi_{2}} x_{2}, 2 x_{2} \frac{|\xi|}{\left|\xi_{2}\right|}\right) \quad \text { for } x_{2} \gg \alpha \\
\sigma(\mathbf{x}, \xi) \approx-\frac{\pi}{2} \frac{|\xi|^{4}}{\left|\xi_{2}\right|\left|\xi_{1}\right|^{2}} \frac{1}{\alpha} \psi\left(x_{1}-\alpha, 2 \alpha+x_{2} \frac{|\xi|^{2}}{2\left|\xi_{1} \xi_{2}\right|}\right) \quad \text { for } \alpha \gg x_{2}
\end{gathered}
$$

Modified imaging operator

$$
\Lambda_{\mathrm{mod}}:=\Delta(M+\alpha I) F_{2}^{*} \psi F_{2}
$$

where M is multiplication with x_{2}.
The top order symbol of $\Lambda_{\bmod }$ is $\left(x_{2}+\alpha\right) \sigma(\mathrm{x}, \xi)$.

- The symbol of $\Lambda_{\text {mod }}$ compensates the factor $1 / x_{2}$ for $x_{2} \gg \alpha$ and $1 / \alpha$ for $\alpha \gg x_{2}$.
- Thus, jumps in n with the same height but at different depths will be reconstructed with the same intensities relatively independent of α.

A linear inverse problem in seismic imaging

The elliptic Radon transform

Imaging operators: general results

Imaging operators: concrete setting

Numerical examples

The phantom n and its transform $\psi F n$

Λ vs. $\Lambda_{\text {mod }}$ for $\alpha=1$

Λ vs. $\Lambda_{\text {mod }}$ for $\alpha=10$

Data from the wave equation

$$
F w\left(T ; \mathbf{x}_{\mathbf{r}}, \mathbf{x}_{\mathbf{s}}\right)=\int_{0}^{T}(u-\widetilde{u})\left(t ; \mathbf{x}_{\mathbf{r}}, \mathbf{x}_{\mathbf{s}}\right) \mathrm{d} t
$$

- $[0.1,1] \times[0.1,0.8]$ with absorbing bc using PML. Step size 0.01 .
- 17 source/receiver pairs, $\alpha=0.05$, positioned at $(s \pm \alpha, 0.1), s \in\{0.15+$ $0.05 i: i=0, \ldots, 16\}$, to record u at the receivers.
- Temporal source signal: scaled Gaussian.
- \widetilde{u} was computed with constant sound speed $c=1$.

Wavefields

Sine profile

Cosine profile

PySIT -Seismic Imaging Toolbox for Python by L. Demanet \& R. Hewitt

Preprocessed seismograms

Reconstructed images

Wrong background velocity

Things to remember

- We introduced a class of imaging operators for the elliptic Radon transform for enhancing singularities.
- These operators are pseudo-differential operators and we computed their symbols explicitly.
- Thus, we constructed operators which reconstruct relatively independently of depth and offset.

Things to remember

- We introduced a class of imaging operators for the elliptic Radon transform for enhancing singularities.
- These operators are pseudo-differential operators and we computed their symbols explicitly.
- Thus, we constructed operators which reconstruct relatively independently of depth and offset.

Next challenges

- Non-constant background velocity: symbol, inversion scheme, field data.

Things to remember

- We introduced a class of imaging operators for the elliptic Radon transform for enhancing singularities.
- These operators are pseudo-differential operators and we computed their symbols explicitly.
- Thus, we constructed operators which reconstruct relatively independently of depth and offset.

Next challenges

- Non-constant background velocity: symbol, inversion scheme, field data.

Thank you for your attention!

Approximate inverse ${ }^{2}$

Instead of $\Lambda n(\mathbf{p})$ we try to compute

$$
\Lambda_{\gamma} n(\mathbf{p}):=\left\langle\Lambda n, e_{\mathbf{p}, \gamma}\right\rangle_{L^{2}\left(\mathbb{R}^{2}\right)}=\Lambda n \star e_{\mathbf{0}, \gamma}(\mathbf{p})
$$

where $e_{\mathbf{p}, \gamma}, \gamma>0$, is a mollifier:

$$
\operatorname{supp} e_{\mathbf{p}, \gamma}=\overline{B_{\gamma}(\mathbf{p})}, \quad \int e_{\mathbf{p}, \gamma}(\mathbf{x}) \mathrm{d} \mathbf{x}=1, \quad e_{\mathbf{p}, \gamma} \xrightarrow{\gamma \rightarrow 0} \delta(\cdot-\mathbf{p}) .
$$

We use

$$
e_{\mathbf{p}, \gamma, k}(\mathbf{x})=C_{k, \gamma}\left\{\begin{array}{c}
\left(\gamma^{2}-\Theta^{2}\right)^{k}: ~ \\
0 \quad: \Theta \geq \gamma,
\end{array} \quad \Theta=|\mathbf{x}-\mathbf{p}|,\right.
$$

with $k>0$ and

$$
C_{k, \gamma}=\frac{k+1}{\pi \gamma^{2(k+1)}} .
$$

[^1]
Reconstruction kernel

Lemma: For $k \geq 3$ we have that

$$
\Lambda_{\gamma} n(\mathbf{p})=\left\langle\Phi F n, \psi_{\mathbf{p}, \gamma, k}\right\rangle_{L^{2}(\mathbb{R} \times] 2 \alpha, \infty[)}
$$

with the reconstruction kernel

$$
\psi_{\mathbf{p}, \gamma, k}(s, t)=4 k C_{k, \gamma}\left((k-1) F\left(|\cdot-\mathbf{p}|^{2} \widetilde{e}_{\mathbf{p}, \gamma, k-2}\right)(s, t)-F \widetilde{e}_{\mathbf{p}, \gamma, k-1}(s, t)\right)
$$

with $\widetilde{e}_{\mathbf{p}, \gamma, k}=e_{\mathbf{p}, \gamma, k} / C_{k, \gamma}$.
Proof: By duality, $\Lambda_{\gamma} n(\mathbf{p})=\left\langle\Delta F^{*} \Phi F n, e_{\mathbf{p}, \gamma, k}\right\rangle=\left\langle\Phi F n, \psi_{\mathbf{p}, \gamma, k}\right\rangle$ with

$$
\psi_{\mathbf{p}, \gamma, k}=F \Delta e_{\mathbf{p}, \gamma, k}=C_{k, \gamma} F \Delta \widetilde{e}_{\mathbf{p}, \gamma, k}
$$

and $\Delta \widetilde{e}_{\mathbf{p}, \gamma, k}=4 k(k-1)|\cdot-\mathbf{p}|^{2} \widetilde{e}_{\mathbf{p}, \gamma, k-2}-4 k \widetilde{e}_{\mathbf{p}, \gamma, k-1}$ yields the result. \checkmark

The kernel for Λ

Discretization

We compute

$$
\Lambda_{\gamma} n(\mathbf{p})=\left\langle\Phi F n, \psi_{\mathbf{p}, \gamma, 3}\right\rangle_{L^{2}(\mathbb{R} \times] 2 \alpha, \infty[)}
$$

from the discrete data

$$
g(i, j)=\Phi\left(s_{i}, t_{j}\right) F n\left(s_{i}, t_{j}\right), \quad i=1, \ldots, N_{s}, j=1, \ldots, N_{t},
$$

where

$$
\left\{s_{i}\right\} \subset\left[-s_{\max }, s_{\max }\right] \quad \text { and } \quad\left\{t_{j}\right\} \subset\left[t_{\min }, t_{\max }\right], t_{\min }>2 \alpha,
$$

are uniformly distributed with step sizes h_{s} and h_{t}, respectively.

$$
\Lambda_{\gamma} n(\mathbf{p}) \approx \widetilde{\Lambda}_{\gamma} n(\mathbf{p}):=h_{s} h_{t} \sum_{i=1}^{N_{s}} \sum_{t_{j} \in \mathcal{T}_{i}(\mathbf{p})} g(i, j) \psi_{\mathbf{p}, \gamma, 3}\left(s_{i}, t_{j}\right)
$$

with $\left|\mathfrak{T}_{i}(\mathbf{p})\right| \sim \gamma$.

Computing the kernel

Let χ be the indicator function of $B_{r}(\mathbf{p})$ which is in the lower half-space. To evaluate

$$
F \chi(s, t)=\int A(s, \mathbf{x}) \chi(\mathbf{x}) \delta(t-\varphi(s, \mathbf{x})) \mathrm{d} \mathbf{x}, \quad t>2 \alpha
$$

we transform the integral by elliptic coordinates $\mathbf{x}(s, t, \phi)=\left(x_{1}, x_{2}\right)^{\top}$,

$$
x_{1}=s+\frac{t}{2} \cos \phi \quad \text { and } \quad x_{2}=\sqrt{\frac{t^{2}}{4}-\alpha^{2}} \sin \phi .
$$

Note: $E(s, t)=\{\mathbf{x}(s, t, \phi): \phi \in[0,2 \pi]\}$ ellipse wrt $\mathbf{x}_{\mathbf{s}}(s), \mathbf{x}_{\mathbf{r}}(s)$, and t.
Thus,

$$
F \chi(s, t)=\frac{1}{\sqrt{t^{2}-4 \alpha^{2}}} \int_{0}^{\pi} \chi(\mathbf{x}(s, t, \phi)) \mathrm{d} \phi .
$$

Computing the kernel (continued)

To evaluate $F \chi(s, t)$ further we provide the following quantities

$$
T_{-/+}=T_{-/+}(s, r, \mathbf{p})=\min / \max \left\{\varphi(s, \mathbf{x}): \mathbf{x} \in \partial B_{r}(\mathbf{p})\right\} .
$$

Computing the kernel (continued)

Remaining tasks: Compute $T_{-/+}, \phi_{1 / 2}$.

$$
T_{-/+}=\min / \max \{\widetilde{\varphi}(\vartheta): \vartheta \in[0,2 \pi[\}
$$

where

$$
\widetilde{\varphi}(\vartheta):=\varphi\left(s, \mathbf{p}+r(\cos \vartheta, \sin \vartheta)^{\top}\right) .
$$

- $\widetilde{\varphi}$ attains exactly one minimum and one maximum in $[0,2 \pi[$.
- As both extrema are clearly separated, we can apply Newton's method to get the two zeros of $\widetilde{\varphi}^{\prime}$.

Computing the kernel (continued)

- Having T_{\mp} we solve

$$
r^{2}=|\mathbf{p}-\mathbf{x}(s, t, \phi)|^{2} \quad \text { for } \phi .
$$

For $t \in] T_{-}, T_{+}\left[, s \in \mathbb{R}\right.$ we have exactly the two solutions ϕ_{1} and ϕ_{2}.

- We substitute

$$
\begin{array}{ll}
z=\cos \phi, & b=\left(s-p_{1}\right) t, \\
c=\left(p_{1}-s\right)^{2}+p_{2}^{2}+\frac{t^{2}}{4}-\alpha^{2}-r^{2}, & d=\sqrt{t^{2}-4 \alpha^{2}} p_{2},
\end{array}
$$

to obtain the equation

$$
d \sqrt{1-z^{2}}=c+b z+\alpha^{2} z^{2}
$$

which has exactly two solutions $-1 \leq z_{2}<z_{1} \leq 1$.

- By Newton's method again,

$$
\phi_{i}=\arccos z_{i}, \quad i=1,2
$$

Computing the kernel (continued)

- The kernel $\psi_{\mathbf{p}, \gamma, k}=F \Delta e_{\mathbf{p}, \gamma, k}$ can be computed just as $F \chi$.
- Indeed, let $k=3$, then

$$
\Delta e_{\mathbf{p}, \gamma, 3}(\mathbf{x})=C_{3, \gamma}\left(-36|\mathbf{x}-\mathbf{p}|^{4}+48 \gamma^{2}|\mathbf{x}-\mathbf{p}|^{2}-12 \gamma^{4}\right) \chi_{B_{\gamma}(\mathbf{p})}(\mathbf{x}) .
$$

Now F can be applied to each of the components of $\Delta e_{\mathbf{p}, \gamma, 3}$, e.g.,

$$
F\left(|\cdot-\mathbf{p}|^{4} \chi_{B_{\gamma}(\mathbf{p})}\right)(s, t)=\left\{\begin{array}{cc}
0 & : t \notin] T_{-}, T_{+}[, \\
\frac{1}{\sqrt{t^{2}-4 \alpha^{2}}} \int_{\phi_{1}}^{\phi_{2}}|\mathbf{x}(s, t, \phi)-\mathbf{p}|^{4} \mathrm{~d} \phi & : t \in] T_{-}, T_{+}[.
\end{array}\right.
$$

Here,

$$
|\mathbf{x}(s, t, \phi)-\mathbf{p}|^{4}=\left(\left(s-p_{1}+\frac{t}{2} \cos \phi\right)^{2}+\left(\sqrt{\frac{t^{2}}{4}-\alpha^{2}} \sin \phi-p_{2}\right)^{2}\right)^{2}
$$

is a trigonometric polynomial which can be integrated analytically.

[^0]: ${ }^{1}$ Topology of $H_{\mathrm{loc}}^{s}: u_{k} \rightarrow u$ in $H_{\text {loc }}^{s}$ if $\left\|\varphi u_{k}-\varphi u\right\|_{s} \rightarrow 0$ for all $\varphi \in \mathcal{C}_{0}^{\infty}(\Omega)$.

[^1]: ${ }^{2}$ Louis 1996

