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An inverse problem for the acoustic wave equation
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u(t;x,xs) acoustic potential in x ∈ R
d, d ∈ {2, 3}, at time t ≥ 0

1

ν2
∂2t u−∆xu = δ(x− xs)δ(t), u(0, ·,xs) = ∂tu(0, ·,xs) = 0,

ν = ν(x) speed of sound, xs excitation (source) point.

Seismic imaging

Recover ν from the backscattered (reflected) fields

u(t;xr,xs), t ∈ [0, T ], (xr,xs) ∈ R× S

where

S/R sets of source/receiver points, and

T observation period.
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Generalized Radon transform
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Consider the ansatz
1

ν2(x)
=

1 + n(x)

c2(x)
,

c = c(x) smooth and known background velocity.

Determine n from (e.g. SYMES 1998)

Fn(T ;xr,xs) ≈
∫ T

0
(T − t)d−2(u− ũ)(t;xr,xs)dt

with the generalized Radon transform

Fw(T ;xr,xs) =

∫
w(x)

c2(x)
a(x,xs)a(x,xr)δ

(
T − τ(x,xs)− τ(x,xr)

)
dx

which integrates w over reflection isochrones: T = τ(·,xs) + τ(·,xr).

Travel-time τ and amplitude a can be computed from

|∇xτ | = c−1 and 2∇xa · ∇xτ + a∆xτ = 0.



Historical note: Kirchhoff migration
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◮ Since the 1950’s Kirchhoff migration is the standard technique to ap-

proximately solve the integral equation.

◮ BEYLKIN (1984, 1985) gave Kirchhoff migration a mathematical foun-

dation:

nrec = F#Pg where g = Fn are the data (measurements)

P convolution, F# dual transform (generalized backprojection).

Further,

nrec = F#PFn = Ipartialn+Ψn,

Ipartial kind of band pass filter, Ψ is smoothing.



Our approach: complementing Kirchhoff
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◮ As we cannot hope to recover n from the data completely we consider

imaging operators which differ from the Kirchhoff operator F#PF :

Λ = KF †ψF

ψ smooth cutoff,

F † (weighted) L2 dual,

K properly supported pseudo of positive order m.

◮ We reconstruct Λn from the data g = Fn.

◮ We compute the symbol of Λ to find useful K ’s.

◮ Our reconstruction technique based on Λ differs from Kirchhoff migra-

tion. In fact, an explicit expression of F † is not required (GRATHWOHL

ET AL. 2018)
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Assumptions
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Let d = 2 (for the ease of presentation). Further, let

◮ the background velocity c be constant, say, c = 1,

◮ n ∈ L2(R2
+) be compactly supported (the positive direction of the x2-

axis points downwards),

◮ sources and receivers be parameterized by s ∈ R via

xs(s) = (s− α, 0)⊤, xr(s) = (s+ α, 0)⊤.

with common offset α ≥ 0 (common offset data acquisition geometry).

Thus the reflection isochrones are ellipses with foci xs and xr.



The 2D situation
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The elliptic Radon transform
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Now the generalized RT becomes

Fw(s, t) =

∫
A(s,x)w(x)δ

(
t− ϕ(s,x)

)
dx, t > 2α,

with

ϕ(s,x) := |xs(s)− x|+ |xr(s)− x|
and

A(s,x) =
1√

|xs(s)− x| |xr(s)− x|
.
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Basics on pseudo-differential operators 1
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Let Ω ⊂ R
d be open and let P : C∞(Ω) → C∞(Ω) be a linear differential

operator of order m,

Pu(x) =
∑

|α|≤m

fα(x)∂
αu(x), fα ∈ C

∞(Ω).

If u ∈ C∞
0 (Ω) then

Pu(x) =
1

(2π)d/2

∫
eıx·ξp(x, ξ)û(ξ)dξ =

1

(2π)d

∫∫
eı (x−y)·ξp(x, ξ)u(y)dydξ

where

p(x, ξ) =
∑

|α|≤m

fα(x)(ıξ)
α

is the symbol of P .



Basics on pseudo-differential operators 2
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◮ p ∈ C∞(Ω × R
d) is a symbol of order m ∈ R if for any α, β ∈ N

d
0 and

any K ⋐ Ω there is a C = Cα,β,K such that

sup
x∈K

|∂αx∂βξ p(x, ξ)| ≤ C (1 + |ξ|)m−|β| for all ξ ∈ R
d.

◮ The set of all symbols of order m on Ω is denoted by Sm(Ω).

◮ For p ∈ Sm(Ω) we define the operator Ψp on C∞
0 (Ω) by

Ψpu(x) =
1

(2π)d

∫∫
eı (x−y)·ξp(x, ξ)u(y)dydξ

and call it a pseudo-differential operator of order m.

◮ The top order symbol σ(Ψp) of Ψp is the equivalence class of p in

Sm(Ω)/Sm−1(Ω).



Basics on pseudo-differential operators 3
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◮ Let P be the differential operator with symbol
∑

|α|≤m fα(x)(ıξ)
α. Then,

σ(P ) =
∑

|α|=m

fα(x)(ıξ)
α.

◮ The operator Λs = (I −∆)s/2 with symbol (1 + |ξ|2)s/2 of order s ∈ R

has top order symbol

ϕ(ξ)|ξ|s

for any ϕ ∈ C∞ with ϕ(ξ) = 1 for large |ξ| where, in case of s < 0, we

additionally require that ϕ = 0 in a neighborhood of 0.



Basics on pseudo-differential operators 4
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Theorem: Let Ψp be a pseudo of order m. Then,

Ψp : H
s
0(Ω) → Hs−m

loc (Ω) continuously1 for all s ∈ R.

Proof: See standard textbooks.

1Topology of Hs
loc: uk → u in Hs

loc if ‖ϕuk − ϕu‖s → 0 for all ϕ ∈ C
∞

0 (Ω).



Setting the stage: the imaging operators
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We consider

KF †ψF

where

◮ ψ : S × (2α,∞) → [0,∞) is a smooth compactly supported cutoff fct,

◮ F † is the generalized backprojection operator

F †u(x) =

∫

S
W (s,x)u(s, ϕ(s,x))ds

where W is a smooth positive weight, and

◮ K is a pseudo on R
2
+ of pos. order m with symbol k (properly supp).

Here, S is the bounded open set of parameters s ∈ R for the source-

receiver pairs.



We have a pseudo

18 c©Andreas Rieder – Seismic imaging with the elliptic Radon transform Modern Challenges in Imaging, Medford, August 2019

Theorem: Let F , F †, K, ψ, and W be defined as above. Then,

KF †ψF

is a pseudo of order m− 1.

Proof:

◮ GUILLEMIN-STERNBERG 1977: Let R be any hypersurface Radon

transform in a d-dim. space and let R† be its (formal, smoothly

weighted) L2-adjoint. If R satisfies the Bolker assumption then R†ψR
is a pseudo of order 1− d.

◮ Our transform F on R
2
+ satisfies the Bolker assumption (KRISHNAN ET

AL. 2012).

◮ Hence, F †ψF is a pseudo of order −1.

◮ K is properly supported and has order m.



The symbol
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Theorem: The top order symbol of KF †ψF is

σ(x, ξ) =
2π k(x, ξ)ψ(s, ϕ(s,x))W (s,x)A(s,x)

|ω|B(s,x)

where

B(s,x) =

∣∣∣∣det
( ∇xϕ(s,x)

∂
∂s∇xϕ(s,x)

)∣∣∣∣ .

The symbol is evaluated at (x, ξ) where s ∈ R and ω ∈ R are defined by

ξ = ω∇xϕ(s,x).

ϕ(s,x) = |xs(s)− x|+ |xr(s)− x|, A(s,x) =
1√

|xs(s)− x| |xr(s)− x|



The symbol
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Theorem: The top order symbol of KF †ψF is

σ(x, ξ) =
2π k(x, ξ)ψ(s, ϕ(s,x))W (s,x)A(s,x)

|ω|B(s,x)

where

B(s,x) =

∣∣∣∣det
( ∇xϕ(s,x)

∂
∂s∇xϕ(s,x)

)∣∣∣∣ .

The symbol is evaluated at (x, ξ) where s ∈ R and ω ∈ R are defined by

ξ = ω∇xϕ(s,x).

b
x1

x2

(s, 0)

∇xϕ(s,x)

ξ

x b

rS rS
xs xr

ω = sgn(ξ2)
|ξ|

|∇xϕ(s,x)|



Idea of the proof and related work
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◮ Follow the general calculation of QUINTO 1980:

He expressed the symbol of generalized Radon transforms in terms of

defining measures.

Microlocal properties of F and F ∗ψF in various geometric settings

have been studied by several authors, for instance,

BEYLKIN 1985, RAKESH 1988, NOLAN/SYMES 1997,

TEN KRODE ET AL. 1998, STOLK 2000, DE HOOP ET AL. 2009,

QUINTO ET AL. 2011, KRISHNAN ET AL. 2012, FELEA ET AL. 2016,

. . . etc.
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The symbol: a closer look
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Set

Λ := ∆F ∗ψF,

that is, Λ has order 1 (cf. BLEISTEIN 1987).

Corollary: Let α = 0. Then,

σ(x, ξ) = −π |ξ|
x2
ψ
(
x1 − ξ1

ξ2
x2, 2x2

|ξ|
|ξ2|

)
.
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Set

Λ := ∆F ∗ψF,

that is, Λ has order 1 (cf. BLEISTEIN 1987).

Corollary: Let α = 0. Then,

σ(x, ξ) = −π |ξ|
x2
ψ
(
x1 − ξ1

ξ2
x2, 2x2

|ξ|
|ξ2|

)
.

C(x) :=
{
ξ ∈ R

2 : ξ2 6= 0, ψ
(
x1 − ξ1

ξ2
x2, 2x2

|ξ|
|ξ2|

)
> 0
}
.

Corollary: Let α = 0 and ξ ∈ C(x) for x ∈ R
2
+. Then, for u ∈ D′

0(R
2
+)

(x, ξ) ∈ WFs(u) ⇐⇒ (x, ξ) ∈ WFs−1(Λu).

(x, ξ) ∈ WFs(u) :⇐⇒ u fails to be in Hs about x in direction ξ



The symbol: a closer look
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Set

Λ := ∆F ∗ψF,

that is, Λ has order 1 (cf. BLEISTEIN 1987).

Corollary: Let α = 0. Then,

σ(x, ξ) = −π |ξ|
x2
ψ
(
x1 − ξ1

ξ2
x2, 2x2

|ξ|
|ξ2|

)
.

C(x) :=
{
ξ ∈ R

2 : ξ2 6= 0, ψ
(
x1 − ξ1

ξ2
x2, 2x2

|ξ|
|ξ2|

)
> 0
}
.

Corollary: Let α = 0 and ξ ∈ C(x) for x ∈ R
2
+. Then, for u ∈ D′

0(R
2
+)

(x, ξ) ∈ WFs(u) ⇐⇒ (x, ξ) ∈ WFs−1(Λu).

Remark: Similar results hold for α > 0.



Hs-Wavefront set: an example
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Let Ω ⊂ R
d be open with a C∞-boundary. Then

WFs(χΩ) = {(x, ξ) : x ∈ bd(Ω), ξ ∈ R
d\{0}, ξ ⊥ bd(Ω) at x}, s ≥ 1/2.

For s < 1/2 we have WFs(χΩ) = ∅.



The symbol for α > 0
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σ(x, ξ) ≈ −π |ξ|
x2
ψ
(
x1 − ξ1

ξ2
x2, 2x2

|ξ|
|ξ2|

)
for x2 ≫ α

σ(x, ξ) ≈ −π
2

|ξ|4
|ξ2| |ξ1|2

1

α
ψ
(
x1 − α, 2α+ x2

|ξ|2

2|ξ1ξ2|

)
for α≫ x2



Modified imaging operator
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Λmod := ∆(M + αI)F ∗
2ψF2

where M is multiplication with x2 .

The top order symbol of Λmod is (x2 + α)σ(x, ξ).

◮ The symbol of Λmod compensates the factor 1/x2 for x2 ≫ α and

1/α for α≫ x2.

◮ Thus, jumps in n with the same height but at different depths will be

reconstructed with the same intensities relatively independent of α.
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The phantom n and its transform ψFn
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Λ vs. Λmod for α = 1
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Λ vs. Λmod for α = 10
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Data from the wave equation
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Fw(T ;xr,xs) =

∫ T

0
(u− ũ)(t;xr,xs)dt

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

◮ [0.1, 1]× [0.1, 0.8] with absorbing bc using PML. Step size 0.01.

◮ 17 source/receiver pairs, α = 0.05, positioned at (s±α, 0.1), s ∈ {0.15+
0.05i : i = 0, . . . , 16}, to record u at the receivers.

◮ Temporal source signal: scaled Gaussian.

◮ ũ was computed with constant sound speed c = 1.

ν = 1

ν = 1.5



Wavefields
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Sine profile Cosine profile

PySIT –Seismic Imaging Toolbox for Python

by L. Demanet & R. Hewitt
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Preprocessed seismograms
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Reconstructed images
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Wrong background velocity
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Things to remember
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◮ We introduced a class of imaging operators for the elliptic Radon trans-

form for enhancing singularities.

◮ These operators are pseudo-differential operators and we computed

their symbols explicitly.

◮ Thus, we constructed operators which reconstruct relatively indepen-

dently of depth and offset.



Things to remember

35 c©Andreas Rieder – Seismic imaging with the elliptic Radon transform Modern Challenges in Imaging, Medford, August 2019

◮ We introduced a class of imaging operators for the elliptic Radon trans-

form for enhancing singularities.

◮ These operators are pseudo-differential operators and we computed

their symbols explicitly.

◮ Thus, we constructed operators which reconstruct relatively indepen-

dently of depth and offset.

Next challenges

◮ Non-constant background velocity: symbol, inversion scheme, field

data.
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◮ We introduced a class of imaging operators for the elliptic Radon trans-

form for enhancing singularities.

◮ These operators are pseudo-differential operators and we computed

their symbols explicitly.

◮ Thus, we constructed operators which reconstruct relatively indepen-

dently of depth and offset.

Next challenges

◮ Non-constant background velocity: symbol, inversion scheme, field

data.

Thank you for your attention!



Approximate inverse2
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Instead of Λn(p) we try to compute

Λγn(p) := 〈Λn, ep,γ〉L2(R2) = Λn ⋆ e0,γ(p)

where ep,γ , γ > 0, is a mollifier:

supp ep,γ = Bγ(p),

∫
ep,γ(x)dx = 1, ep,γ

γ→0−−−→ δ(· − p).

We use

ep,γ,k(x) = Ck,γ

{
(γ2 −Θ2)k : Θ < γ,

0 : Θ ≥ γ,
Θ = |x− p|,

with k > 0 and

Ck,γ =
k + 1

π γ2(k+1)
.

2
Louis 1996



Reconstruction kernel
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Lemma: For k ≥ 3 we have that

Λγn(p) = 〈ΦFn, ψp,γ,k〉L2(R×]2α,∞[)

with the reconstruction kernel

ψp,γ,k(s, t) = 4k Ck,γ

(
(k − 1)F

(
| · −p|2 ẽp,γ,k−2

)
(s, t)− F ẽp,γ,k−1(s, t)

)

with ẽp,γ,k = ep,γ,k/Ck,γ .

Proof: By duality, Λγn(p) = 〈∆F ∗ΦFn, ep,γ,k〉 = 〈ΦFn, ψp,γ,k〉 with

ψp,γ,k = F∆ep,γ,k = Ck,γF∆ẽp,γ,k

and ∆ẽp,γ,k = 4k(k − 1) | · −p|2 ẽp,γ,k−2 − 4k ẽp,γ,k−1 yields the result. X
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We compute

Λγn(p) = 〈ΦFn, ψp,γ,3〉L2(R×]2α,∞[)

from the discrete data

g(i, j) = Φ(si, tj)Fn(si, tj), i = 1, . . . , Ns, j = 1, . . . , Nt,

where
{si} ⊂ [−smax, smax] and {tj} ⊂ [tmin, tmax], tmin > 2α,

are uniformly distributed with step sizes hs and ht, respectively.

Λγn(p) ≈ Λ̃γn(p) := hsht

Ns∑

i=1

∑

tj∈Ti(p)

g(i, j)ψp,γ,3(si, tj)

with |Ti(p)| ∼ γ.
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Let χ be the indicator function of Br(p) which is in the lower half-space.

To evaluate

Fχ(s, t) =

∫
A(s,x)χ(x)δ

(
t− ϕ(s,x)

)
dx, t > 2α,

we transform the integral by elliptic coordinates x(s, t, φ) = (x1, x2)
⊤,

x1 = s+
t

2
cosφ and x2 =

√
t2

4
− α2 sinφ.

Note: E(s, t) =
{
x(s, t, φ) : φ ∈ [0, 2π]

}
ellipse wrt xs(s), xr(s), and t.

Thus,

Fχ(s, t) =
1√

t2 − 4α2

∫ π

0
χ
(
x(s, t, φ)

)
dφ.
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To evaluate Fχ(s, t) further we provide the following quantities

T−/+ = T−/+(s, r,p) = min /max
{
ϕ(s,x) : x ∈ ∂Br(p)

}
.

b

b

b

x1

x2

(s, 0)

T−

T+

rS rS
xs xr

E(s, t) ∩Br(p) 6= ∅ ⇐⇒ T− < t < T+

For t ∈ ]T−, T+[ :

E(s, t)∩Br(p) =
{
x(s, t, φ) : φ ∈ [φ1, φ2]

}

Fχ(s, t) =





0 : t 6∈ ]T−, T+[

φ2 − φ1√
t2 − 4α2

: t ∈ ]T−, T+[
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Remaining tasks: Compute T−/+, φ1/2.

T−/+ = min /max
{
ϕ̃(ϑ) : ϑ ∈ [0, 2π[

}

where

ϕ̃(ϑ) := ϕ
(
s,p+ r(cosϑ, sinϑ)⊤

)
.

◮ ϕ̃ attains exactly one minimum and one maximum in [0, 2π[.

◮ As both extrema are clearly separated, we can apply Newton’s method

to get the two zeros of ϕ̃ ′.



Computing the kernel (continued)

43 c©Andreas Rieder – Seismic imaging with the elliptic Radon transform Modern Challenges in Imaging, Medford, August 2019

◮ Having T∓ we solve

r2 = |p− x(s, t, φ)|2 for φ.

For t ∈ ]T−, T+[, s ∈ R we have exactly the two solutions φ1 and φ2.

◮ We substitute

z = cosφ, b = (s− p1) t,

c = (p1 − s)2 + p22 +
t2

4
− α2 − r2, d =

√
t2 − 4α2 p2,

to obtain the equation

d
√

1− z2 = c+ b z + α2 z2

which has exactly two solutions −1 ≤ z2 < z1 ≤ 1.

◮ By Newton’s method again,

φi = arccos zi, i = 1, 2.
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◮ The kernel ψp,γ,k = F∆ep,γ,k can be computed just as Fχ.

◮ Indeed, let k = 3, then

∆ep,γ,3(x) = C3,γ

(
− 36 |x− p|4 + 48γ2 |x− p|2 − 12γ4

)
χBγ(p)(x).

Now F can be applied to each of the components of ∆ep,γ,3, e.g.,

F
(
|·−p|4χBγ(p)

)
(s, t) =





0 : t 6∈ ]T−, T+[,

1√
t2 − 4α2

∫ φ2

φ1

|x(s, t, φ)− p|4 dφ : t ∈ ]T−, T+[.

Here,

|x(s, t, φ)− p|4 =
((

s− p1 +
t

2
cosφ

)2
+
(√ t2

4
− α2 sinφ− p2

)2
)2

is a trigonometric polynomial which can be integrated analytically.
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