Time Reversal Methods for Thermoacoustic Tomography

Linh Nguyen (University of Idaho)

Joint work with Y. Hristova, P. Kuchment, L. Kunyansky, and V. Katsnelson. Support: NSF grants DMS # 1212125 and DMS #1616904.

> CONFERENCE ON MODERN CHALLENGES IN IMAGING IN THE FOOTSTEPS OF ALLAN MACLEOD CORMACK TUFTS UNIVERSITY, AUG 5-9, 2019

L	in	h	Ν	a	u	V	e	n
				~				

Time reversal

TAT in a Reverberant Cavity

э

(日)

Thermoacoustic Tomography (TAT)

- Microwave \Rightarrow Thermoelastic Expansion \Rightarrow (Ultrasonic) Pressure Wave.
- Pressure measured on observation surface S in a time period (0, T).
- One needs to find the initial pressure f(x).

Mathematical Model

Wave propagation:

$$\left\{\begin{array}{ll}u_{tt}(x,t)-c^2(x)\Delta u(x,t)=0,\ x\in\mathbb{R}^n,\ t\geq 0,\\ u(x,0)=f(x),\ u_t(x,0)=0,\quad x\in\mathbb{R}^n.\end{array}\right.$$

Data: $g = u|_{S \times (0,T)}$.

Problem: Find *f* from *g*.

э

Techniques

- Exact inversion formulas: Norton & Linzer ('80), Finch, Patch & Rakesh ('04), Xu & Wang ('05), Finch, Haltmeier & Rakesh ('07), Kunyansky ('07, '11,'15), N. ('09), Palamodov ('11 & 14), Natterer ('12), Salman ('12), Haltmeier ('11 & '13) ...
- Series solutions: Agranovsky & Kuchment ('07), Kunyansky ('07) ...
- Time-reversal: Finch, Patch & Rakesh ('04), Hristova, Kuchment & N. ('08), Hristova ('09), Stefanov & Uhlmann ('09), J. Qian, Stefanov, G. Uhlmann & H. Zhao ('11) ...
- Iterative methods: Huang et al. ('13), Belhachmi, Glatz, & Scherzer ('15), Arridge, et. al. (2016), Haltmeier & Nguyen ('18) ...

Time Reversal: Main idea

Recall

$$\begin{cases} u_{tt}(x,t) - c^2(x) \Delta u(x,t) = 0, \ (x,t) \in \mathbb{R}^n \times (0,T), \\ u(x,0) = f(x), \ u_t(x,0) = 0, \quad x \in \mathbb{R}^n, \\ u(x,t) = g(x,t), \ (x,t) \in S \times (0,T). \end{cases}$$

Assumption: *S* is a closed surface, Ω - domain bounded by *S*. **Crucial observation:** The energy

$$E_{\Omega}(u,t):=\int_{\Omega}c^{-2}|u_t|^2+|\nabla u|^2\,dx$$

decays to zero as $t \to \infty$. Namely, $u \approx 0$ and $u_t \approx 0$ in Ω when t is big enough.

Linh Nguyen

Simulated Data

Data example in 2D, closed observation surface:

э

Time Reversal: Simple/Effective Approach

Hristova, Kuchment, N. (IP '08) 1: Time reversed problem

$$\begin{cases} v_{tt}(x,t) - c^{2}(x) \Delta v(x,t) = 0, \ (x,t) \in \Omega \times (0,T), \\ v(x,T) = 0, \quad v_{t}(x,T) = 0, \quad x \in \Omega, \\ v(x,t) = \chi(t)g(x,t), \quad (x,t) \in S \times (0,T). \end{cases}$$

Then,

$$v(x,0)\approx f(x).$$

Here, $\chi \equiv 1$ for $t \in [0, T - \epsilon]$ and $\chi(T) = 0$. Hristova (IP '09): rigorous proof for the approximation $v(., 0) \rightarrow f$ as $T \rightarrow \infty$.

¹For constant speed Finch, Patch, & Rakesh ('04)

Finite/Short Time Approach

Stefanov& Uhlmann (IP '09), Qian, Stefanov, Uhlmann, Zhao (SIIMS '11)

$$\begin{cases} \mathbf{v}_{tt}(x,t) - \mathbf{c}^2(x) \,\Delta \mathbf{v}(x,t) = \mathbf{0}, \quad (x,t) \in \Omega \times (\mathbf{0},T), \\ \mathbf{v}(x,T) = \phi(x), \quad \mathbf{v}_t(x,T) = \mathbf{0}, \quad x \in \Omega, \\ \mathbf{v}(x,t) = \mathbf{g}(x,t), \quad (x,t) \in \mathbf{S} \times (\mathbf{0},T), \end{cases}$$

where, ϕ is the harmonic extension of $g(\cdot, T)$ to Ω . Define $A_T g = P_{H_0^1(\Omega)} v(\cdot, 0)$ - first order approximation of f.

Theorem

Under the visibility condition

$$\|f- oldsymbol{A}_{\mathcal{T}}oldsymbol{g}\|_{H^1_0(\Omega)} \leq (1-\delta)\|f\|_{H^1_0(\Omega)},$$

for $0 < \delta < 1$.

Neumann Series Solution

 Since the error operator *E* : *f* → *f* − *A*_T*g* is a contraction, one can repeat the time-reversal method to obtain the exact there construction. Formally

$$f=\sum_{i=0}^{\infty}\mathcal{E}^{i}A_{T}g.$$

The Neumann series solution.

Visibility condition: T > ¹/₂T(Ω). That is, all singularities of f are observed on S.

・ロット (日) (日) (日) (日)

Outlook

The idea of time reversal and Neumann series solutions is efficient for TAT. We will see how it works in:

- TAT in a reverberant cavity
- TAT in elastic media

э

- コン (雪) (ヨ) (ヨ)

Experiment setup

UCL group - Ellwood, Zhang, Beard, Cox (JBO '14):

Mathematical Model

Mathematical model:

$$\begin{cases} u_{tt}(x,t) - c^2(x)\Delta u(x,t) = 0, \ (x,t) \in \Omega \times (0,T), \\ u(x,0) = f(x), \ u_t(x,0) = 0, \quad x \in \Omega, \\ \frac{\partial_{\nu} u(x,t)}{\partial_{\nu} u(x,t)} = 0, \ (x,t) \in \partial\Omega \times (0,T). \end{cases}$$

Data:
$$g = u|_{S \times (0,T)}$$
, where $S \subset \partial \Omega$.
Problem: Find *f* given *g*.
Difficulty: The energy $E_{\Omega}(u, t)$ is conserved for all time *t*.

э

・ロ・・ (日)・ (日)・ (日)・

Historical Remarks

- Kunyansky, Holman, & Cox (IP '13): series expansion (for constant speed and rectangular domain)
- Holman & Kunyansky (IP '15): gradual time reversal
- Stefanov & Yang (IP '15): averaged time reversal
- Acosta & Montalto (IP '15): conjugate gradient method
- Kunyansky & Nguyen (SIIMS '16): dissipative time-reversal
- Stefanov & Yang (IPI'17): Landweber's iteration
- Chervova & Oksanen(IP '16): dissipative time-reversal

- コン (雪) (ヨ) (ヨ)

Dissipative Time Reversal

Time reversed problem

$$\begin{cases} v_{tt}(x,t) - c^2(x) \Delta v(x,t) = 0, \ (x,t) \in \Omega \times (0,T), \\ v(x,T) = 0, \quad v_t(x,T) = 0, \quad x \in \Omega, \\ \partial_n v(x,t) - \lambda(x) v_t(x,t) = -\lambda(x) g_t(x,t), (x,t) \in \partial\Omega \times [0,T]. \end{cases}$$

Define:

$$A_T g = P_{H^1_0(\Omega)} v(.,0).$$

NOTE:

- λ ≡ 1 if S = ∂Ω. Otherwise, a nonnegative smooth approximation of χ_S.
- *u* also the satisfies the same boundary condition

$$\partial_n u(x,t) - \lambda(x) u_t(x,t) = -\lambda(x) g_t(x,t), (x,t) \in \partial\Omega \times [0,T].$$

Observability Time

Observability time T(S): LU of length of generalized geodesics rays until they hit *S*.

Figure: Generalized geodesics rays constant speed

Note: if
$$S = \partial \Omega$$
, $T(S) = T(\Omega)$.

Linh Nguyen

Main Results

Assume Geometric Control Condition: T(S) < T.

Theorem (N.& Kunyansky (SIIMS '16))

(Small time formula) We have

$$\|f-\mathcal{A}_Tg\|_{H^1_0(\Omega)}\leq (1-\epsilon)\|f\|_{H^1_0(\Omega)}$$

Consequentially, for $\mathcal{E} : f \to f - A_T g$

$$f=\sum_{m=0}^{\infty}\mathcal{E}^m A_T g.$$

2 (Large time formula) $\|f - A_T g\|_{H^1_0(\Omega)} \to 0$ exponentially as $T \to \infty$.

э

< 日 > < 同 > < 回 > < 回 > < 回 > <

Proof

Error e = u - v,

$$\begin{cases} \mathbf{e}_{tt}(x,t) - \mathbf{c}^2(x) \Delta \mathbf{e}(x,t) = \mathbf{0}, \ (x,t) \in \Omega \times (\mathbf{0},T), \\ \mathbf{e}(x,T) = \mathbf{u}(x,T), \quad \mathbf{e}_t(x,T) = \mathbf{u}_t(x,T), \quad x \in \Omega, \\ \partial_n \mathbf{e}(x,t) - \lambda(x,t) \, \mathbf{e}_t(x,t) = \mathbf{0}, (x,t) \in \partial\Omega \times (\mathbf{0},T). \end{cases}$$

We have

$$E_{\Omega}(\boldsymbol{e},T) - E_{\Omega}(\boldsymbol{e},0) = \iint\limits_{\partial\Omega imes(0,T)} \lambda(\boldsymbol{x},t) |\boldsymbol{e}_t(\boldsymbol{x},t)|^2 \, d\boldsymbol{x} \, dt.$$

Energy of *e* leaks out going backward in time.

Linh Nguyen	
-------------	--

3

Error Estimate

Bardos, Lebeau & Rauch (SICON '92) Under geometric control condition

$$\iint_{\Omega \times (0,T)} \lambda(\boldsymbol{x},t) \, |\boldsymbol{e}_t(\boldsymbol{x},t)|^2 \, d\boldsymbol{x} \, dt \geq \epsilon \, \boldsymbol{E}_{\Omega}(\boldsymbol{e},T).$$

Then,

$${\it E}_{\Omega}({\it e},{\it 0})\leq ({\it 1}-\epsilon){\it E}_{\Omega}({\it e},{\it T})=({\it 1}-\epsilon){\it E}_{\Omega}({\it u},{\it T}),$$

which implies

$$\|f - A_T g\|_{H^1_0(\Omega)}^2 \le (1 - \epsilon) \|f\|_{H^1_0(\Omega)}^2.$$

This finishes the proof.

NOTE: the condition T > T(S) does not seem to be optimal.

Linh Nguyen

Time reversal

Numerical Setup: Full Data

Numerical setup:

- Domain Ω is a square of size 2 \times 2.
- Sound speed c = 1, $T(S) = T(\Omega) = 2\sqrt{2}$.

・ロト ・同ト ・ヨト ・ヨト

Iterative Reconstruction

Neumann series solution for $T = 1.6 > \frac{1}{2}T(S)$.

Э

Numerical Setup: Partial Data

Numerical setup:

Data collected left and lower edges

•
$$T(S) = 4\sqrt{2}$$
.

Iterative Reconstruction

Reconstruction for partial data with short time $T = 3 > \frac{1}{2}T(S)$.

э

- コン (雪) (ヨ) (ヨ)

Long-Time Reconstruction

Reconstruction with large time: T = 5.

Figure: Gray: phantom, dashed: partial data, black: full data

Li	nh	Nc	ιuv	en
		-		

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Noisy data

Reconstruction with large time: T = 5. Noisy data: 50% noise (in L^2 norm).

Linh Nguyen

Central Line Profile

Figure: Central line profile

æ

(日)

TAT in Elastic Media

Wave propagation:

$$\left\{ \begin{array}{l} \mathbf{u}_{tt}(x,t)-\Delta^*\mathbf{u}(x,t)=\mathbf{0}, \ x\in\mathbb{R}^n, \ t\geq\mathbf{0},\\ \mathbf{u}(x,0)=\mathbf{f}(x), \ \mathbf{u}_t(x,0)=\mathbf{0}, \quad x\in\mathbb{R}^n. \end{array} \right.$$

Here,

•
$$\Delta^* \mathbf{u} = \nabla \cdot [\mu(\mathbf{x})(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)] + \nabla(\lambda(\mathbf{x})\nabla \cdot \mathbf{u})$$

• λ, μ Lamé parameters

Jacobian

$$(\nabla \mathbf{u})_{i,j} = \frac{\partial \mathbf{u}_i}{\partial x_j}.$$

Data: $\mathbf{g} = \mathbf{u}|_{S \times (0,T)}$.

Problem: Find **f** from **g**. That is, to invert $\Lambda : \mathbf{f} \to \mathbf{g}$.

A Bit About Elastic Waves

Two modes of propagation:

- P-wave (longitudinal/fast wave): propagate with speed $c_p(x) = \sqrt{\lambda(x) + 2\mu(x)}$
- S-wave (shear/slow wave): propagate with speed $c_s(x) = \sqrt{\mu(x)}$.

Time Reversal

Tittelfitz (IP '11)

$$\begin{cases} \mathbf{v}_{tt}(x,t) - \Delta^* \mathbf{v}(x,t) = \mathbf{0}, \quad (x,t) \in \Omega \times (\mathbf{0},T), \\ \mathbf{v}(x,T) = \phi(\mathbf{x}), \quad \mathbf{v}_t(x,T) = \mathbf{0}, \quad x \in \Omega, \\ \mathbf{v}(x,t) = \mathbf{g}(x,t), \quad (x,t) \in S \times (\mathbf{0},T). \end{cases}$$

Denote

$$A_T \mathbf{g} = P_{H_0^1(\Omega)} \mathbf{v}(0)$$

time reversal reconstruction of f. Then,

$$\|\mathbf{f}-oldsymbol{A}_{\mathcal{T}}\mathbf{g}\|_{H^1_0(\Omega)}\leq (1-\delta)\|\mathbf{f}\|_{H^1_0(\Omega)}$$

if $c_p(x) < 3c_s(x)$ and T is big enough.

Our Result

Katsnelson & N. (AML '17)

Theorem Under the visibility condition:

$$\|\mathbf{f} - \mathbf{A}_T \mathbf{g}\|_{H^1_0(\Omega)} \leq (1 - \delta) \|\mathbf{f}\|_{H^1_0(\Omega)}.$$

Visibility condition:

$$T > rac{1}{2} \max\{T_s(\Omega), T_p(\Omega)\}.$$

That is, all the singularities are observed on S.

Proof

Need to prove escaped energy $E_{\Omega^c}(\mathbf{u}, T)$ is not negligible

$$\|\mathbf{f}\|_{H_0^1(\Omega)}^2 \leq C E_{\Omega^c}(\mathbf{u}, T).$$

Indeed, write $E_{\Omega^c}(\mathbf{u}, T) := \|(\mathbf{u}(T)|_{\Omega^c}, \mathbf{u}_t(T)|_{\Omega^c})\|^2$, then

Microlocal analysis estimate

$$\|\mathbf{f}\|_{H_0^1(\Omega)}^2 \leq \boldsymbol{c}(\|(\mathbf{u}(\mathcal{T})|_{\Omega^c},\mathbf{u}_t(\mathcal{T})|_{\Omega^c})\|^2 + \|\mathbf{u}(\mathcal{T})\|_{L^2(\Omega)}^2)$$

• Injectivity of the mapping $\mathbf{f} \to (\mathbf{u}(T)|_{\Omega^c}, \mathbf{u}_t(T)|_{\Omega^c})$ A theorem by Taylor finishes the proof.

			1010
	NIC N	1.1	471

・ロット (日) (日) (日) (日)

Proof of Injectivity

Two ingredients - Tittelfitz(SIAP '15):

Theorem (Domain of Dependence)

Let $c_+ = \sup_x c_p(x)$. Assume that $\mathbf{u}(\cdot, t_0) = 0$ for all $x \in B_{c_+(t_1-t_0)}(x_0)$ then $\mathbf{u} = 0$ on

$$\{(x,t): t_0 \le t \le t_1, x \in B_{c_+(t_1-t)}(x_0).\}$$

Theorem (Unique Continuation)

Assume that $\mathbf{u} = 0$ on a neighborhood of x_0 on (t_1, t_2) . Then $\mathbf{u}(x, t) = 0$ for (x, t) in the double cone

$$\left\{ (x,t) : dist_{s}(x,x_{0}) + \left| t - \frac{t_{1} + t_{2}}{2} \right| \le \frac{t_{2} - t_{1}}{2} \right\}$$

Linh Nguyen

Domain of Depend. vs Unique Cont.

Figure: Acoustic Case: $u_{tt} - c^2 u_{xx} = 0$, same slope $\pm \frac{1}{c}$

Figure: Elastic case: different slopes: $\pm \frac{1}{c_0}$ (left) and $\pm \frac{1}{c_s}$ (right).

Proof Done!

Assume that $\mathbf{u}(T)|_{\Omega^c} \equiv \mathbf{u}_t(T)|_{\Omega^c} \equiv 0$. Extend the solution \mathbf{u} evenly. Then, domain peeling argument follows to move to $\partial\Omega$.

Unique continuation and visibility condition shows $\mathbf{f} \equiv \mathbf{0}$.

Questions

Thank you for your attention!

æ