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The X-ray transform on constant curvature disks
Introduction

Toy Model: The X-ray transform on CCD's

Let M the unit disk in R?. For x € (—1,1) define the metric
g«(2) :== (1 + K|z|?)72|dz|? on M, of constant curvature 4.
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@ Reconstruct various types of integrands (functions, vectors,
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Introduction

The XRT on media with variable refractive index

The general project is to understand the XRT on CCD's.
Applications to

@ X-ray CT in media with variable refractive index.

e Travel-time tomography/boundary rigidity, etc. ..
By 'understand’ we mean:

@ Injectivity. Stability estimates.

@ Reconstruct various types of integrands (functions, vectors,
tensor fields) explicitly and efficiently.

@ Range characterizations, SVD (if possible !).

o Mitigate the trade-off between parallel and fan-beam
geometries (starting with the Euclidean case).
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Introduction

Parallel v/s fan-beam geometry

HRAY SOURCE
—

Parallel geometry: enjoys the Fourier Slice
theorem, which allows for a rigorous, efficient
regularization theory.

Fan-beam geometry:

@ ’'natural’ acquisition geometry, then DETECTOR
traditionally rebinned into parallel data
before processed. [Natterer ’01]

PARALLEL

@ no parallel geometry on non-homogeneous
surfaces. Instead, PDE's on the unit
phase space.

The Euclidean disk benefits from both
viewpoints.

FAN-BEAM
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PROCEEDINGS OF THE,
AMERICAN MATHEMATICAL SOCIETY
Volume 83, Number 2, October 1981

THE RADON TRANSFORM ON A FAMILY OF CURVES
IN THE PLANE!

A. M. CORMACK
ABSTRACT. Inversion formulas are given for Radon’s problem when the line

integrals are evaluated along curves given, for a fixed (p, ¢), by r® cos|a(f — ¢)] =
p°, where a is real, a # 0.
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The classical moment conditions

Parallel geometry: R : S(R?) — S(R x S)
RF(s,0) = / f(—s0* +td) dt, (s,0) e R xS
R
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Moment conditions: Gelfand, Graev, Helgason, Ludwig

D(s,0) = Rf(s,0) for some f iff
(i) D(s,0) = D(—s,0 + ) for all (s,0) € R x St
(if) For k >0, pk(0) := [ s*D(s,0) ds = Zéf:_k ap ke’
< [ [gD(s,0)s*e?’ ds d§ =0, |p| > k, p— k even.
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0

S: scattering relation
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The Euclidean case

The Pestov-Uhlmann range characterization

lo COO(M) — Cf((LSM) (M.g)

T (x,v)
If(x,v) :/ f(vx.v(t)) dt. S

0

S: scattering relation
Range characterization of Iy:

’ /o(COO(M)) = P,(Cgo(aJrSM)), [Pestov-Uhlmann ’05]

P_ takes the form P_ := A* H_A,, where
@ A, : C®(0:5M) — C>°(9SM) symmetrization w.r.t. S.
@ H_: odd Hilbert transform on the fibers of 9SM.
@ A* : C®(OSM) — C>°(9SM): A* f(x,v) = f(x,v) — F(S(x,v)).
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Equivalence of ranges characterizations

Theorem (M., IPI, '15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator P = A* H_A,..

@ Euclidean scattering relation: 5f
S(B,a) =(f+7+2a,m— ).

@ Explicit construction of the SVD of
P_: 12(04SM) — L2(0,SM).

v,.B)
5 RangeP.
-10 -5 0 5 1‘0
u 0= elpﬁ(el(2q+l)a +

(_1)pef(2(pfq)71)a)
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The X-ray transform on constant curvature disks
The Euclidean case

Equivalence of ranges characterizations

Theorem (M., IPI, '15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator P = A* H_A,..

o Euclidean scattering relation:
S(8,0) = (B+m + 20,7 — a).

@ Explicit construction of the SVD of e E
P_: 12(04SM) — L2(0,SM). '

@ Reparameterized moment conditions is v ¢ s
equivalent to saying “D 1 Range P_". Up g = PP (et 4

(_1)pef(2(pfq)71)a)
We also understand how the cokernel can be realized by other
types of integrands.



The Euclidean case

Zernike polynomials:
Z"k. neNp, 0< k< n.
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The Euclidean case

SVD of Iy

Zernike polynomials: Uniquely defined through the
Z"k neNp, 0< k <n. properties:
. [Kazantzev-Bukhgeym ’07]
PN ‘U ’ o Zn70 = 7"
p \dxl le_ ] 822,1’/( = _8ZZn,k—]_x
»
N 7 2._222 1§k§n
Qe o Zyklom(eP) = el(n=2k)5.
<z,* "Z;l Z’xli B ‘Zi i 7_
- Ya ®( Y In addition,
Ao A A
RHOOBE (Zokes Zor k)20 = —— o St
WO W, O, &, k> &n' k") 12(M) n.n’ Ok,k’-

n+1
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The Euclidean case

SVD of
Zernike po|ynomia|s: Uniquely defined through the
7k ne No, 0 < k < n. properties:
. [Kazantzev-Bukhgeym ’07]
“U ’ o Zyo=2".
p \d % ° 8ZZn,k = _8zZn,k—1:
SO 1< k< n.
: t‘ ) ( ) 0/ P, o an|3/\//(e'ﬂ) = ei(n=2k)8
«;‘ 2, W, <% ’
N O( T ) In addition,
i A Lz 1) i N -Z‘
;l' ‘ \ _ ™
2 7 Zr,l S & W (Z"vk’z"'»k')Lz(M) T hr1 Onn Ok k-
/o[Zn’k] — p—e 1el(n—2k)(/8+a+7r)(el(n+1)oc + (_1)ne—/(n+1)a).

(in parallel coordinates, § + a + 7 = 6 and sina = s)
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Let M equipped with the metric g,, for k € (—1,1). Suppose
u € C>*(045M) such that Sjhu = u.
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Range characterizations: statement

Theorem (Mishra-M., preprint '19)

Let M equipped with the metric g,, for k € (—1,1). Suppose
u € C>®(04SM) such that Shu = u. Then u € l(C>(M)) iff
either of the following is satisfied

Q u=P_w forsomew € C° (0;SM). [Pe-Un1, °04]
@ u satisfies a complete set of othogonality/moment conditions:
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Const. Curv. Disks: Range Characterization

Range characterizations: statement

Theorem (Mishra-M., preprint '19)

Let M equipped with the metric g,, for k € (—1,1). Suppose
u € C>®(04SM) such that Shu = u. Then u € l(C>(M)) iff
either of the following is satisfied

Q u=P_w forsomew € C° (0;SM). [Pe-Un1, °04]
@ u satisfies a complete set of othogonality/moment conditions:
(u, Y i) 26, sm,ax2) = 0, n>0, k<0, k>n,

where we have defined

ws,k 2= (;;[r)” \/mef("*y()(ﬁ*%(a))(ef("+1)5m(05) + (_1)nefi(n+1)5,‘-(a))7

1—
s, (a) == tan"* (1 " 2 tan a) . (s0(c) = §x 065, = id)

© Cu=0 where C_:=JA*H A (id + C2 = Mgan 1)
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Const. Curv. Disks: Range Characterization

Proof

In light of the first item, understand the action of P_ = A* H_A,,
e.g. find its SVD. Construct functions that

@ extend smoothly under AL

@ transform well under fiberwise Hilbert transform and
scattering relation

S(B,a) = (B+ 7+ 2s4(), m — ).

@ are even or odd w.r.t. Sp:=So(a+— a+m)

This produces four families of functions, some giving the L[> — [2
SVD of P_ and the eigendecomposition of C_.

In particular, Ran P_ = ker C_.

The SVD picture is identical to the Euclidean one !
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Const. Curv. Disks: Singular Value Decomposition

SVD: Statement

Theorem (Mishra-M., preprint '19)

Let M be the unit disk equipped with the metric g, for
€ (—1,1). Define s,(c) and {¢}; , }n>0,kez as above, as well as

= ) n+1 1+ x|z 1-k
zy k( )= - (1- &)17}{‘2'2 Zn k 17%|z|2z )
Zernike
1 2
nk.72\/mwnk7 Onk \/7\/#
1+k|z|?
o {Z }n>0, 0<k<n ONB of L2(M, w,) where w,(z) := 1_:{;{2.

o {05 }n>0, 0<k<n ON in L2(0,.SM, dX2) M ker(id — S3).
For any f € w,L?(M, w,) expanding as

f = W"Zi ﬁ,’kf;"”"‘\k, we have [f = Ziaﬁ,k fo,k 1;,'3

n>0 k=0 n>0 k=0
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Const. Curv. Disks: Singular Value Decomposition

Proof (sketch)

e Take the functions in the range of I, namely,
,’ik, nZO, 0§k§n,

and prove that Z7, := Iy, is orthogonal on M for some weight
[Maass, Louis].

e Also show that [5¢7, =0 for k ¢ 0...n.

Note: /5 depends on the weight in data space. Since 9 is

orthogonal in L2(9;SM), it is natural to define I§ w.r.t. this
topology.
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Const. Curv. Disks: Singular Value Decomposition

Proof (ugly)

(B, a_)(p,0): coordinates of the unique curve through (pe®, ).

f(n+1)5(af)+( l)nefi(n+1)s(a7)

e iw i(n—2k)w i(n—2k)(B_+s(_)) [ 7 e _
Iy ¥y k(pe'™) oc e ./51 e s'(a-) 2cos(a_) 9
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Const. Curv. Disks: Singular Value Decomposition

Proof (ugly)

(B, a_)(p,0): coordinates of the unique curve through (pe®, ).

f(n+1)5(af)+( l)nefi(n+1)s(a7)

e iw i(n—2k)w i(n—2k)(B_+s(_)) [ 7 e _
Iy ¥y k(pe'™) oc e ./51 e s'(a-) 2cos(a_) 9
o el(n—2k)w /1 ei(n72k)(57+5(a7))Un(sin(s(ai))) s’ () do (Up @ Cheb 2)

Note the following relation:

Kp? sin(20) o
)) =0(p,0)

B-(p.0) + s(a—(p, ) + 7 = 0 — tan " (m
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Const. Curv. Disks: Singular Value Decomposition

Proof (ugly)
(B, a_)(p,0): coordinates of the unique curve through (pe®, ).

i(n+1)s(c_) + (71)nefi(n+1)s(a7)

* K iw i(n—2k)w i(n—2k)(B_+s(a_)) [ 1 e
Iy ¥y k(pe'™) oc e ./51 e s'(a-) 2cos(a_) 9

o el(i=2k)w /1 (2B +5(a )y (sin(s(a_))) 5" () dO (Up : Cheb 2)
S

Note the following relation:

B-(p,0) + s(a—(p,0)) +7 =6 —tan"" (%) =0'(p,0)

Now change variable § — 0" with %—%/ x izgi s'(a—(p,0)):
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Const. Curv. Disks: Singular Value Decomposition

Proof (ugly)

(B, a_)(p,0): coordinates of the unique curve through (pe®, ).

i(n+1)s(c_) + (71)nefi(n+1)s(a7)

* R iw i(n—2k)w i(n—2k)(B_+s(a_)) /_ €
Iy ¥y k(pe'™) oc e ./51 e s'(a-) 2cos(a_) 9
o el(n—2k)w /1 ei(n72k)(57+5(a7))Un(sin(s(ai))) s’ () do (Up @ Cheb 2)
S

Note the following relation:

B-(p,0) + s(a—(p,0)) +7 =6 —tan"" (%) =0'(p,0)

Now change variable § — 0" with %—%/ x izgi s'(a—(p,0)):

* 1K iw i(n—2k)w 1 2 i(n— / 1-— .
Ig Yk (pe'”) o =2k ﬂ/ 2y [ — - psing’ ) do’
’ 1—kp? Jo 1— kp?

Now use Euclidean knowledge.
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Const. Curv. Disks: Singular Value Decomposition

Proof (ugly)

(B, a_)(p,0): coordinates of the unique curve through (pe®, ).

i(n+1)s(c_) + (71)nefi(n+1)s(a7)

* R iw i(n—2k)w i(n—2k)(B_+s(a_)) /_ €
Iy ¥y k(pe'™) oc e ./51 e s'(a-) 2cos(a_) 9
o el(n—2k)w /1 ei(n72k)(57+5(a7))Un(sin(s(ai))) s’ () do (Up @ Cheb 2)
S

Note the following relation:

B-(p,0) + s(a—(p,0)) +7 =6 —tan"" (%) =0'(p,0)

Now change variable § — 0" with %—%/ x izgi s'(a—(p,0)):

* 1K iw i(n—2k)w 1 2 i(n— / 1-— .
Ig Yk (pe'”) o =2k ﬂ/ 2y [ — - psing’ ) do’
’ 1—kp? Jo 1— kp?

Now use Euclidean knowledge.
At least 3 miracles along the way.



e2e

o? NU
h..xﬂj
Lnﬁw

Singular Value Decomposition

Disks:

Const. Curv.




Const. Curv. Disks: Singular Value Decomposition




S
=
2
=}
=N
o
Q
[
(s]
g
=
>
r
it
5
-

Const. Curv. Disks:




u“i
590

1
ml

3

Singular Value Decomposition

Const. Curv. Disks:




S
=
2
=}
=N
o
Q
[
(s]
g
=
>
r
it
5
-

Const. Curv. Disks:




The X-ray transform on constant curvature disks
Const. Curv. Disks: Singular Value Decomposition

Conclusions

On the geodesic X-ray transform on constant curvature disks

@ Range characterizations via either projection operators or
moment conditions.

@ SVD of Iy for a special choice of weights on M and 9, SM.
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Conclusions

On the geodesic X-ray transform on constant curvature disks

@ Range characterizations via either projection operators or
moment conditions.

@ SVD of Iy for a special choice of weights on M and 9, SM.
Perspectives:

@ tensor tomography, regularity of special invariant distributions,

@ sharp Sobolev mapping properties for Iy.

@ generalize to other (non-CC, non-symmetric) geometries.

Thank you

Reference:

- R. K. Mishra, F. M., Range characterizations and Singular Value
Decomposition of the geodesic X-ray transform on disks of
constant curvature, preprint (2019) - arXiv:1906.09389
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