François Monard

Dept. of Mathematics, University of California Santa Cruz

August 6, 2019 MS. 3: Gen. RT and Applications in Imaging Cormack Conference, Tufts University

Toy Model: The X-ray transform on CCD's

Let *M* the unit disk in \mathbb{R}^2 . For $\kappa \in (-1, 1)$ define the metric $g_{\kappa}(z) := (1 + \kappa |z|^2)^{-2} |dz|^2$ on *M*, of constant curvature 4κ .

 $\kappa = -0.8$

Toy Model: The X-ray transform on CCD's

Let *M* the unit disk in \mathbb{R}^2 . For $\kappa \in (-1, 1)$ define the metric $g_{\kappa}(z) := (1 + \kappa |z|^2)^{-2} |dz|^2$ on *M*, of constant curvature 4κ .

 $\kappa = -0.4$

Toy Model: The X-ray transform on CCD's

Let *M* the unit disk in \mathbb{R}^2 . For $\kappa \in (-1, 1)$ define the metric $g_{\kappa}(z) := (1 + \kappa |z|^2)^{-2} |dz|^2$ on *M*, of constant curvature 4κ .

Toy Model: The X-ray transform on CCD's

Let *M* the unit disk in \mathbb{R}^2 . For $\kappa \in (-1, 1)$ define the metric $g_{\kappa}(z) := (1 + \kappa |z|^2)^{-2} |dz|^2$ on *M*, of constant curvature 4κ .

A family of **simple** metrics which degenerates at $\kappa \to \pm 1$.

 $\kappa = 0.4$

Toy Model: The X-ray transform on CCD's

Let *M* the unit disk in \mathbb{R}^2 . For $\kappa \in (-1, 1)$ define the metric $g_{\kappa}(z) := (1 + \kappa |z|^2)^{-2} |dz|^2$ on *M*, of constant curvature 4κ .

 $\kappa = 0.8$

The XRT on media with variable refractive index

The general project is to understand the XRT on manifolds. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...

By 'understand' we mean:

- Injectivity. Stability estimates.
- Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
- Range characterizations, SVD (if possible !).
- Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).

The XRT on media with variable refractive index

The general project is to understand the XRT on manifolds. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...

By 'understand' we mean:

- Injectivity. Stability estimates.
- Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
- Range characterizations, SVD (if possible !).
- Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).

The XRT on media with variable refractive index

The general project is to understand the XRT on simple manifolds. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...
- By 'understand' we mean:
 - Injectivity. Stability estimates.
 - Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
 - Range characterizations, SVD (if possible !).
 - Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).

The XRT on media with variable refractive index

The general project is to understand the XRT on simple surfaces. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...
- By 'understand' we mean:
 - Injectivity. Stability estimates.
 - Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
 - Range characterizations, SVD (if possible !).
 - Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).

The XRT on media with variable refractive index

The general project is to understand the XRT on CCD's. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...
- By 'understand' we mean:
 - Injectivity. Stability estimates.
 - Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
 - Range characterizations, SVD (if possible !).
 - Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).

The XRT on media with variable refractive index

The general project is to understand the XRT on CCD's. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...
- By 'understand' we mean:
 - Injectivity. Stability estimates.
 - Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
 - Range characterizations, SVD (if possible !).
 - Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).

Parallel v/s fan-beam geometry

Parallel geometry: enjoys the Fourier Slice theorem, which allows for a rigorous, efficient regularization theory.

Fan-beam geometry:

- 'natural' acquisition geometry, then traditionally rebinned into parallel data before processed. [Natterer '01]
- no parallel geometry on non-homogeneous surfaces. Instead, PDE's on the unit phase space.
- The **Euclidean disk** benefits from both viewpoints.

FAN-BEAM

Parallel v/s fan-beam geometry

Parallel geometry: enjoys the Fourier Slice theorem, which allows for a rigorous, efficient regularization theory.

Fan-beam geometry:

- 'natural' acquisition geometry, then traditionally rebinned into parallel data before processed. [Natterer '01]
- no parallel geometry on non-homogeneous surfaces. Instead, PDE's on the unit phase space.
- The **Euclidean disk** benefits from both viewpoints.

FAN-BEAM

Literature, or rather, authors...

Radon, Funk, Helgason, Ludwig, Gel'fand, Graev, Quinto, Cormack, Natterer, Maass, Louis, Rigaud, Hahn, Kuchment, Agranovsky, Ambartsoumian, Krishnan, Abishek, Mishra Herglotz, Wiechert, Zoeppritz, Anikonov, Romanov, Mukhometov, Sharafutdinov, Pestov, Uhlmann, Vasy, Stefanov, Zhou, Assylbekov, Paternain, Salo, Ilmavirta, Guillarmou, Guillemin, Railo, Lehtonen, Cekić...

Literature, or rather, authors...

Radon, Funk, Helgason, Ludwig, Gel'fand, Graev, Quinto, Cormack, Natterer, Maass, Louis, Rigaud, Hahn, Kuchment, Agranovsky, Ambartsoumian, Krishnan, Abishek, Mishra Herglotz, Wiechert, Zoeppritz, Anikonov, Romanov, Mukhometov, Sharafutdinov, Pestov, Uhlmann, Vasy, Stefanov, Zhou, Assylbekov, Paternain, Salo, Ilmavirta, Guillarmou, Guillemin, Railo, Lehtonen, Cekić...

> PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 83, Number 2, October 1981

THE RADON TRANSFORM ON A FAMILY OF CURVES IN THE PLANE¹

A. M. CORMACK

ABSTRACT. Inversion formulas are given for Radon's problem when the line integrals are evaluated along curves given, for a fixed (p, ϕ) , by $r^{\alpha} \cos|\alpha(\theta - \phi)| = p^{\alpha}$, where α is real, $\alpha \neq 0$.

Outline

2 Const. Curv. Disks: Range Characterization

3 Const. Curv. Disks: Singular Value Decomposition

The classical moment conditions

Parallel geometry: $\mathcal{R}:\mathcal{S}(\mathbb{R}^2)
ightarrow\mathcal{S}(\mathbb{R} imes\mathbb{S}^1)$

$$\mathcal{R}f(s, heta)=\int_{\mathbb{R}}f(-s\hat{ heta}^{\perp}+t\hat{ heta})\;dt,\quad(s, heta)\in\mathbb{R} imes\mathbb{S}^{1}.$$

 ${
m \underline{Moment\ conditions:}}$ Gelfand, Graev, Helgason, Ludwig $\mathcal{D}(s, heta)=\mathcal{R}f(s, heta)$ for some f iff

(i) $\mathcal{D}(s,\theta) = \mathcal{D}(-s,\theta+\pi)$ for all $(s,\theta) \in \mathbb{R} \times \mathbb{S}^1$. (ii) For $k \ge 0$, $p_k(\theta) := \int_{\mathbb{R}} s^k \mathcal{D}(s,\theta) ds = \sum_{\ell=-k}^k a_{\ell,k} e^{ik\theta}$. $\Rightarrow \int_{\mathbb{R}^2} \int_{\mathbb{R}} \mathcal{D}(s,\theta) s^k e^{ip\theta} ds d\theta = 0$, |p| > k, p - k even.

The classical moment conditions

Parallel geometry: $\mathcal{R}:\mathcal{S}(\mathbb{R}^2)
ightarrow\mathcal{S}(\mathbb{R} imes\mathbb{S}^1)$

$$\mathcal{R}f(s, heta)=\int_{\mathbb{R}}f(-s\hat{ heta}^{\perp}+t\hat{ heta})\;dt,\quad(s, heta)\in\mathbb{R} imes\mathbb{S}^{1}.$$

 $\begin{array}{l} \underline{\text{Moment conditions: Gelfand, Graev, Helgason, Ludwig}} \\ \mathcal{D}(s,\theta) = \mathcal{R}f(s,\theta) \text{ for some } f \text{ iff} \\ (i) \ \mathcal{D}(s,\theta) = \mathcal{D}(-s,\theta+\pi) \text{ for all } (s,\theta) \in \mathbb{R} \times \mathbb{S}^1. \\ (ii) \ \text{For } k \geq 0, \ p_k(\theta) := \int_{\mathbb{R}} s^k \mathcal{D}(s,\theta) \ ds = \sum_{\ell=-k}^k a_{\ell,k} e^{ik\theta}. \\ \Leftrightarrow \int_{\mathbb{S}^1} \int_{\mathbb{R}} \mathcal{D}(s,\theta) s^k e^{ip\theta} \ ds \ d\theta = 0, \ |p| > k, \ p - k \text{ even.} \end{array}$

The classical moment conditions

Parallel geometry: $\mathcal{R}:\mathcal{S}(\mathbb{R}^2)
ightarrow\mathcal{S}(\mathbb{R} imes\mathbb{S}^1)$

$$\mathcal{R}f(s, heta)=\int_{\mathbb{R}}f(-s\hat{ heta}^{\perp}+t\hat{ heta})\;dt,\quad(s, heta)\in\mathbb{R} imes\mathbb{S}^{1}.$$

 $\begin{array}{l} \underline{\text{Moment conditions: Gelfand, Graev, Helgason, Ludwig}} \\ \mathcal{D}(s,\theta) = \mathcal{R}f(s,\theta) \text{ for some } f \text{ iff} \\ (i) \ \mathcal{D}(s,\theta) = \mathcal{D}(-s,\theta+\pi) \text{ for all } (s,\theta) \in \mathbb{R} \times \mathbb{S}^1. \\ (ii) \ \text{For } k \geq 0, \ p_k(\theta) := \int_{\mathbb{R}} s^k \mathcal{D}(s,\theta) \ ds = \sum_{\ell=-k}^k a_{\ell,k} e^{ik\theta}. \\ \Leftrightarrow \int_{\mathbb{S}^1} \int_{\mathbb{R}} \mathcal{D}(s,\theta) s^k e^{ip\theta} \ ds \ d\theta = 0, \ |p| > k, \ p-k \text{ even.} \end{array}$

The classical moment conditions

Parallel geometry: $\mathcal{R}:\mathcal{S}(\mathbb{R}^2)
ightarrow\mathcal{S}(\mathbb{R} imes\mathbb{S}^1)$

$$\mathcal{R}f(s, heta)=\int_{\mathbb{R}}f(-s\hat{ heta}^{\perp}+t\hat{ heta})\;dt,\quad(s, heta)\in\mathbb{R} imes\mathbb{S}^{1}.$$

 $\begin{array}{l} \underline{\text{Moment conditions: Gelfand, Graev, Helgason, Ludwig}}\\ \mathcal{D}(s,\theta) = \mathcal{R}f(s,\theta) \text{ for some } f \text{ iff}\\ (i) \ \mathcal{D}(s,\theta) = \mathcal{D}(-s,\theta+\pi) \text{ for all } (s,\theta) \in \mathbb{R} \times \mathbb{S}^1.\\ (ii) \ \text{For } k \geq 0, \ p_k(\theta) := \int_{\mathbb{R}} s^k \mathcal{D}(s,\theta) \ ds = \sum_{\ell=-k}^k a_{\ell,k} e^{ik\theta}.\\ \Leftrightarrow \ \int_{\mathbb{S}^1} \int_{\mathbb{R}} \mathcal{D}(s,\theta) s^k e^{ip\theta} \ ds \ d\theta = 0, \ |p| > k, \ p - k \text{ even.} \end{array}$

The Pestov-Uhlmann range characterization

$$I_0: C^\infty(M) \to C^\infty_+(\partial_+SM)$$

$$I_0f(x,v)=\int_0^{\tau(x,v)}f(\gamma_{x,v}(t))\ dt.$$

 \mathcal{S} : scattering relation

Range characterization of I_0

$$(M,g)$$

$$(X,y) = (\gamma_{X,y}(t), \dot{\gamma}_{X,y}(t))$$

[Pestov-Uhlmann '05]

 P_{-} takes the form $P_{-} := A_{-}^{*}H_{-}A_{+}$, where

- $A_+: C^{\infty}(\partial_+SM) \to C^{\infty}(\partial SM)$ symmetrization w.r.t. S.
- H_{-} : odd Hilbert transform on the fibers of ∂SM .
- $A^*_-: C^{\infty}(\partial SM) \to C^{\infty}(\partial SM): A^*_-f(x,v) = f(x,v) f(S(x,v)).$

The Pestov-Uhlmann range characterization

$$I_0: C^\infty(M) \to C^\infty_+(\partial_+SM)$$

$$I_0f(x,v)=\int_0^{\tau(x,v)}f(\gamma_{x,v}(t))\ dt.$$

S: scattering relation Range characterization of I_0 :

[Pestov-Uhlmann '05]

 P_{-} takes the form $P_{-} := A_{-}^{*}H_{-}A_{+}$, where

 $I_0(C^{\infty}(M)) = P_-(C^{\infty}_{\alpha}(\partial_+ SM)),$

- $A_+: C^{\infty}(\partial_+SM) \to C^{\infty}(\partial SM)$ symmetrization w.r.t. S.
- H_{-} : odd Hilbert transform on the fibers of ∂SM .
- $A^*_-: C^{\infty}(\partial SM) \to C^{\infty}(\partial SM): A^*_-f(x,v) = f(x,v) f(S(x,v)).$

Equivalence of ranges characterizations

Theorem (M., IPI, '15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_{-} = A_{-}^{*}H_{-}A_{+}$.

- Euclidean scattering relation:
 S(β, α) = (β + π + 2α, π − α).
- Explicit construction of the SVD of P_− : L²(∂₊SM) → L²(∂₊SM).
- Reparameterized moment conditions is equivalent to saying "D L Range

Equivalence of ranges characterizations

Theorem (M., IPI, '15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_{-} = A_{-}^{*}H_{-}A_{+}$.

- Euclidean scattering relation: $S(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha).$
- Explicit construction of the SVD of $P_-: L^2(\partial_+SM) \to L^2(\partial_+SM).$
- Reparameterized moment conditions is equivalent to saying " $\mathcal{D} \perp$ Range P_{-} ".

Equivalence of ranges characterizations

Theorem (M., IPI, '15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_{-} = A_{-}^{*}H_{-}A_{+}$.

- Euclidean scattering relation: $S(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha).$
- Explicit construction of the SVD of $P_-: L^2(\partial_+SM) \to L^2(\partial_+SM).$
- Reparameterized moment conditions is equivalent to saying "D ⊥ Range P_".

$$u_{p,q}' = e^{ipeta}(e^{i(2q+1)lpha}+ (-1)^p e^{i(2(p-q)-1)lpha})$$

Equivalence of ranges characterizations

Theorem (M., IPI, '15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_{-} = A_{-}^{*}H_{-}A_{+}$.

- Euclidean scattering relation: $S(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha).$
- Explicit construction of the SVD of $P_-: L^2(\partial_+SM) \to L^2(\partial_+SM).$
- Reparameterized moment conditions is equivalent to saying " $\mathcal{D} \perp$ Range P_{-} ".

$$u_{p,q}' = e^{ipeta}(e^{i(2q+1)lpha}+ (-1)^p e^{i(2(p-q)-1)lpha})$$

Equivalence of ranges characterizations

Theorem (M., IPI, '15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_{-} = A_{-}^{*}H_{-}A_{+}$.

- Euclidean scattering relation: $S(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha).$
- Explicit construction of the SVD of $P_-: L^2(\partial_+SM) \to L^2(\partial_+SM).$
- Reparameterized moment conditions is equivalent to saying " $\mathcal{D} \perp$ Range P_{-} ".

$$u_{p,q}' = e^{ipeta}(e^{i(2q+1)lpha}+ (-1)^p e^{i(2(p-q)-1)lpha})$$

Equivalence of ranges characterizations

Theorem (M., IPI, '15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_{-} = A_{-}^{*}H_{-}A_{+}$.

- Euclidean scattering relation: $S(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha).$
- Explicit construction of the SVD of $P_-: L^2(\partial_+SM) \to L^2(\partial_+SM).$
- Reparameterized moment conditions is equivalent to saying " $\mathcal{D} \perp$ Range P_{-} ".

$$u_{p,q}' = e^{ip\beta} (e^{i(2q+1)lpha} + (-1)^p e^{i(2(p-q)-1)lpha})$$

SVD of I_0

Zernike polynomials: $Z^{n,k}$, $n \in \mathbb{N}_0$, $0 \le k \le n$.

Uniquely defined through the properties:

[Kazantzev-Bukhgeym '07]

•
$$Z_{n,0}=z^n$$
.

•
$$\partial_{\overline{z}} Z_{n,k} = -\partial_{z} Z_{n,k-1},$$

 $1 \le k \le n.$

•
$$Z_{n,k}|_{\partial M}(e^{i\beta}) = e^{i(n-2k)\beta}$$

In addition,

$$(Z_{n,k}, Z_{n',k'})_{L^2(M)} = \frac{\pi}{n+1} \, \delta_{n,n'} \, \delta_{k,k'}.$$

$$l_0[Z^{n,k}] = \frac{C}{n+1} e^{i(n-2k)(\beta+\alpha+\pi)} (e^{i(n+1)\alpha} + (-1)^n e^{-i(n+1)\alpha}).$$

(in parallel coordinates, $\beta + \alpha + \pi = \theta$ and sin $\alpha = s$)

SVD of I_0

Zernike polynomials: $Z^{n,k}$, $n \in \mathbb{N}_0$, $0 \le k \le n$.

Uniquely defined through the properties:

[Kazantzev-Bukhgeym '07]

•
$$Z_{n,0}=z^n$$
.

•
$$\partial_{\overline{z}} Z_{n,k} = -\partial_{z} Z_{n,k-1},$$

 $1 \le k \le n.$

•
$$Z_{n,k}|_{\partial M}(e^{i\beta}) = e^{i(n-2k)\beta}$$
.

In addition,

$$(Z_{n,k}, Z_{n',k'})_{L^2(M)} = \frac{\pi}{n+1} \, \delta_{n,n'} \, \delta_{k,k'}.$$

 $I_0[Z^{n,k}] = \frac{C}{n+1} e^{i(n-2k)(\beta+\alpha+\pi)} (e^{i(n+1)\alpha} + (-1)^n e^{-i(n+1)\alpha})$

(in parallel coordinates, $\beta + \alpha + \pi = \theta$ and sin $\alpha = s$)

SVD of I_0

Zernike polynomials: $Z^{n,k}$, $n \in \mathbb{N}_0$, $0 \le k \le n$.

Uniquely defined through the properties:

[Kazantzev-Bukhgeym '07]

•
$$Z_{n,0}=z^n$$
.

•
$$\partial_{\overline{z}} Z_{n,k} = -\partial_{z} Z_{n,k-1},$$

 $1 \le k \le n.$

•
$$Z_{n,k}|_{\partial M}(e^{i\beta}) = e^{i(n-2k)\beta}$$
.

In addition,

$$(Z_{n,k}, Z_{n',k'})_{L^2(M)} = \frac{\pi}{n+1} \, \delta_{n,n'} \, \delta_{k,k'}.$$

$$I_0[Z^{n,k}] = \frac{C}{n+1} e^{i(n-2k)(\beta+\alpha+\pi)} (e^{i(n+1)\alpha} + (-1)^n e^{-i(n+1)\alpha}).$$

(in parallel coordinates, $\beta + \alpha + \pi = \theta$ and sin $\alpha = s$)

Outline

2 Const. Curv. Disks: Range Characterization

3 Const. Curv. Disks: Singular Value Decomposition

Range characterizations: statement

Theorem (Mishra-M., preprint '19)

Let *M* equipped with the metric g_{κ} for $\kappa \in (-1, 1)$. Suppose $u \in C^{\infty}(\partial_+SM)$ such that $S^*_A u = u$. Then $u \in I_0(C^{\infty}(M))$ iff

Range characterizations: statement

Theorem (Mishra-M., preprint '19)

Let M equipped with the metric g_{κ} for $\kappa \in (-1, 1)$. Suppose $u \in C^{\infty}(\partial_{+}SM)$ such that $S_{A}^{*}u = u$. Then $u \in I_{0}(C^{\infty}(M))$ iff either of the following is satisfied

• $u = P_{-}w$ for some $w \in C^{\infty}_{\alpha,+,-}(\partial_{+}SM)$. [Pe-Uhl, '04]

2 u satisfies a complete set of othogonality/moment conditions:

 $(u, \psi_{n,k}^{\kappa})_{L^{2}(\partial_{+}SM, d\Sigma^{2})} = 0, \qquad n \ge 0, \ k < 0, \ k > n_{2}$

where we have defined

 $\psi_{n,k}^{\kappa} := \frac{(-1)^n}{4\pi} \sqrt{\mathfrak{s}_{\kappa}'(\alpha)} e^{i(n-2k)(\beta+\mathfrak{s}_{\kappa}(\alpha))} (e^{i(n+1)\mathfrak{s}_{\kappa}(\alpha)} + (-1)^n e^{-i(n+1)\mathfrak{s}_{\kappa}(\alpha)}),$ $\mathfrak{s}_{\kappa}(\alpha) := \tan^{-1} \left(\frac{1-\kappa}{1+\kappa} \tan \alpha\right). \qquad (\mathfrak{s}_0(\alpha) = \alpha, \qquad \mathfrak{s}_{\kappa} \circ \mathfrak{s}_{-\kappa} = id)$

3 $C_{-}u = 0$, where $C_{-} := \frac{1}{2}A_{-}^{*}H_{-}A_{-}$

Range characterizations: statement

Theorem (Mishra-M., preprint '19)

Let M equipped with the metric g_{κ} for $\kappa \in (-1, 1)$. Suppose $u \in C^{\infty}(\partial_{+}SM)$ such that $S_{A}^{*}u = u$. Then $u \in I_{0}(C^{\infty}(M))$ iff either of the following is satisfied

)
$$u=P_{-}w$$
 for some $w\in C^{\infty}_{lpha,+,-}(\partial_{+}SM)$. [Pe-Uhl, '04]

u satisfies a complete set of othogonality/moment conditions:

$$(u,\psi_{n,k}^{\kappa})_{L^2(\partial_+SM,d\Sigma^2)}=0, \qquad n\geq 0, \ k<0, \ k>n_k$$

$$\begin{split} \psi_{n,k}^{\kappa} &:= \frac{(-1)^n}{4\pi} \sqrt{\mathfrak{s}_{\kappa}'(\alpha)} e^{i(n-2k)(\beta+\mathfrak{s}_{\kappa}(\alpha))} (e^{i(n+1)\mathfrak{s}_{\kappa}(\alpha)} + (-1)^n e^{-i(n+1)\mathfrak{s}_{\kappa}(\alpha)}),\\ \mathfrak{s}_{\kappa}(\alpha) &:= \tan^{-1} \left(\frac{1-\kappa}{1+\kappa} \tan \alpha\right). \qquad (\mathfrak{s}_0(\alpha) = \alpha, \qquad \mathfrak{s}_{\kappa} \circ \mathfrak{s}_{-\kappa} = id) \end{split}$$

3
$$C_{-}u = 0$$
, where $C_{-} := \frac{1}{2}A_{-}^{*}H_{-}A_{-}$

Range characterizations: statement

Theorem (Mishra-M., preprint '19)

Let M equipped with the metric g_{κ} for $\kappa \in (-1, 1)$. Suppose $u \in C^{\infty}(\partial_{+}SM)$ such that $S_{A}^{*}u = u$. Then $u \in I_{0}(C^{\infty}(M))$ iff either of the following is satisfied

)
$$u=P_{-}w$$
 for some $w\in C^{\infty}_{lpha,+,-}(\partial_{+}SM)$. [Pe-Uhl, '04]

u satisfies a complete set of othogonality/moment conditions:

$$(u,\psi_{n,k}^{\kappa})_{L^2(\partial_+SM,d\Sigma^2)}=0, \qquad n\geq 0, \ k<0, \ k>n_k$$

$$\psi_{n,k}^{\kappa} := \frac{(-1)^n}{4\pi} \sqrt{\mathfrak{s}_{\kappa}'(\alpha)} e^{i(n-2k)(\beta+\mathfrak{s}_{\kappa}(\alpha))} (e^{i(n+1)\mathfrak{s}_{\kappa}(\alpha)} + (-1)^n e^{-i(n+1)\mathfrak{s}_{\kappa}(\alpha)}),$$

$$\mathfrak{s}_{\kappa}(\alpha) := \tan^{-1} \left(\frac{1-\kappa}{1+\kappa} \tan \alpha\right). \qquad (\mathfrak{s}_0(\alpha) = \alpha, \qquad \mathfrak{s}_{\kappa} \circ \mathfrak{s}_{-\kappa} = id)$$

3
$$C_-u = 0$$
, where $C_- := \frac{1}{2}A_-^*H_-A_ (id + C_-^2 = \prod_{Ran I_0})$

Range characterizations: statement

Theorem (Mishra-M., preprint '19)

Let M equipped with the metric g_{κ} for $\kappa \in (-1, 1)$. Suppose $u \in C^{\infty}(\partial_{+}SM)$ such that $S_{A}^{*}u = u$. Then $u \in I_{0}(C^{\infty}(M))$ iff either of the following is satisfied

)
$$u=P_{-}w$$
 for some $w\in C^{\infty}_{lpha,+,-}(\partial_{+}SM)$. [Pe-Uhl, '04]

u satisfies a complete set of othogonality/moment conditions:

$$(u,\psi_{n,k}^{\kappa})_{L^2(\partial_+SM,d\Sigma^2)}=0, \qquad n\geq 0, \ k<0, \ k>n_k$$

$$\psi_{n,k}^{\kappa} := \frac{(-1)^n}{4\pi} \sqrt{\mathfrak{s}_{\kappa}'(\alpha)} e^{i(n-2k)(\beta+\mathfrak{s}_{\kappa}(\alpha))} (e^{i(n+1)\mathfrak{s}_{\kappa}(\alpha)} + (-1)^n e^{-i(n+1)\mathfrak{s}_{\kappa}(\alpha)}),$$

$$\mathfrak{s}_{\kappa}(\alpha) := \tan^{-1} \left(\frac{1-\kappa}{1+\kappa} \tan \alpha\right). \qquad (\mathfrak{s}_0(\alpha) = \alpha, \qquad \mathfrak{s}_{\kappa} \circ \mathfrak{s}_{-\kappa} = id)$$

3
$$C_-u = 0$$
, where $C_- := \frac{1}{2}A_-^*H_-A_ (id + C_-^2 = \prod_{Ran I_0})$

Range characterizations: statement

Theorem (Mishra-M., preprint '19)

Let M equipped with the metric g_{κ} for $\kappa \in (-1, 1)$. Suppose $u \in C^{\infty}(\partial_{+}SM)$ such that $S_{A}^{*}u = u$. Then $u \in I_{0}(C^{\infty}(M))$ iff either of the following is satisfied

)
$$u=P_{-}w$$
 for some $w\in C^{\infty}_{lpha,+,-}(\partial_{+}SM)$. [Pe-Uhl, '04]

u satisfies a complete set of othogonality/moment conditions:

$$(u,\psi_{n,k}^{\kappa})_{L^2(\partial_+SM,d\Sigma^2)}=0, \qquad n\geq 0, \ k<0, \ k>n_{2k}$$

$$\psi_{n,k}^{\kappa} := \frac{(-1)^n}{4\pi} \sqrt{\mathfrak{s}_{\kappa}'(\alpha)} e^{i(n-2k)(\beta+\mathfrak{s}_{\kappa}(\alpha))} (e^{i(n+1)\mathfrak{s}_{\kappa}(\alpha)} + (-1)^n e^{-i(n+1)\mathfrak{s}_{\kappa}(\alpha)}),$$

$$\mathfrak{s}_{\kappa}(\alpha) := \tan^{-1} \left(\frac{1-\kappa}{1+\kappa} \tan \alpha\right). \qquad (\mathfrak{s}_0(\alpha) = \alpha, \qquad \mathfrak{s}_{\kappa} \circ \mathfrak{s}_{-\kappa} = id)$$

3
$$C_-u = 0$$
, where $C_- := \frac{1}{2}A_-^*H_-A_-$ (id + $C_-^2 = \prod_{Ran I_0}$)

Proof

In light of the first item, understand the action of $P_- = A_-^* H_- A_+$, e.g. find its SVD. Construct functions that

- extend smoothly under A_{\pm}
- transform well under fiberwise Hilbert transform and scattering relation

$$S(\beta, \alpha) = (\beta + \pi + 2\mathfrak{s}_{\kappa}(\alpha), \pi - \alpha).$$

• are even or odd w.r.t. $\mathcal{S}_{\mathcal{A}} := \mathcal{S} \circ (\alpha \mapsto \alpha + \pi)$

This produces four families of functions, some giving the $L^2 - L^2$ SVD of P_- and the eigendecomposition of C_- . In particular, Ran $P_- = \ker C_-$. The SVD picture is identical to the Euclidean one !

Proof

In light of the first item, understand the action of $P_- = A_-^* H_- A_+$, e.g. find its SVD. Construct functions that

- extend smoothly under A_{\pm}
- transform well under fiberwise Hilbert transform and scattering relation

$$S(\beta, \alpha) = (\beta + \pi + 2\mathfrak{s}_{\kappa}(\alpha), \pi - \alpha).$$

• are even or odd w.r.t. $\mathcal{S}_{\mathcal{A}} := \mathcal{S} \circ (\alpha \mapsto \alpha + \pi)$

This produces four families of functions, some giving the $L^2 - L^2$ SVD of P_- and the eigendecomposition of C_- . In particular, Ran $P_- = \ker C_-$. The SVD picture is identical to the Euclidean one !

Proof

In light of the first item, understand the action of $P_- = A_-^* H_- A_+$, e.g. find its SVD. Construct functions that

- extend smoothly under A_{\pm}
- transform well under fiberwise Hilbert transform and scattering relation

$$S(\beta, \alpha) = (\beta + \pi + 2\mathfrak{s}_{\kappa}(\alpha), \pi - \alpha).$$

• are even or odd w.r.t. $\mathcal{S}_{\mathcal{A}} := \mathcal{S} \circ (\alpha \mapsto \alpha + \pi)$

This produces four families of functions, some giving the $L^2 - L^2$ SVD of P_- and the eigendecomposition of C_- . In particular, Ran $P_- = \ker C_-$. The SVD picture is identical to the Euclidean one !

Outline

2 Const. Curv. Disks: Range Characterization

3 Const. Curv. Disks: Singular Value Decomposition

SVD: Statement

Theorem (Mishra-M., preprint '19)

Let *M* be the unit disk equipped with the metric g_{κ} for $\kappa \in (-1, 1)$. Define $\mathfrak{s}_{\kappa}(\alpha)$ and $\{\psi_{n,k}^{\kappa}\}_{n \geq 0, k \in \mathbb{Z}}$ as above, as well as

$$egin{aligned} \widehat{Z_{n,k}^\kappa}(z) &:= \sqrt{rac{n+1}{\pi}}(1-\kappa)rac{1+\kappa|z|^2}{1-\kappa|z|^2}rac{Z_{n,k}}{Z_{ernike}}\left(rac{1-\kappa}{1-\kappa|z|^2}z
ight), \ \widehat{\psi_{n,k}^\kappa} &:= 2\sqrt{1+\kappa}\;\psi_{n,k}^\kappa, \qquad \sigma_{n,k}^\kappa &:= rac{1}{\sqrt{1-\kappa}}rac{2\sqrt{\pi}}{\sqrt{n+1}}. \end{aligned}$$

• $\{\widehat{Z_{n,k}^{\kappa}}\}_{n\geq 0, \ 0\leq k\leq n}$ ONB of $L^{2}(M, w_{\kappa})$ where $w_{\kappa}(z) := \frac{1+\kappa|z|^{2}}{1-\kappa|z|^{2}}$. • $\{\widehat{\psi_{n,k}^{\kappa}}\}_{n\geq 0, \ 0\leq k\leq n}$ ON in $L^{2}(\partial_{+}SM, d\Sigma^{2}) \cap \ker(id - S_{A}^{*})$. For any $f \in w_{\kappa}L^{2}(M, w_{\kappa})$ expanding as

$$f = w_{\kappa} \sum_{n \ge 0} \sum_{k=0}^{n} f_{n,k} \widehat{Z_{n,k}^{\kappa}}, \qquad \text{we have} \quad I_0 f = \sum_{n \ge 0} \sum_{k=0}^{n} \sigma_{n,k}^{\kappa} f_{n,k} \ \widehat{\psi_{n,k}^{\kappa}}.$$

Proof (sketch)

• Take the functions in the range of I_0 , namely,

$$\psi_{n,k}^{\kappa}, \qquad n\geq 0, \qquad 0\leq k\leq n,$$

and prove that $Z_{n,k}^{\kappa}:=I_0^*\psi_{n,k}^{\kappa}$ is orthogonal on M for some weight [Maass, Louis].

• Also show that
$$I_0^*\psi_{n,k}^\kappa = 0$$
 for $k \notin 0 \dots n$.

Note: I_0^* depends on the weight in data space. Since $\psi_{n,k}^{\kappa}$ is orthogonal in $L^2(\partial_+ SM)$, it is natural to define I_0^* w.r.t. this topology.

Proof (ugly)

 $(\beta_{-}, \alpha_{-})(\rho, \theta)$: coordinates of the unique curve through $(\rho e^{i0}, \theta)$.

$$\begin{split} & \int_{0}^{\mathfrak{s}} \psi_{n,k}^{\kappa}(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} \sqrt{\mathfrak{s}'(\alpha_{-})} \frac{e^{i(n+1)\mathfrak{s}(\alpha_{-})} + (-1)^{n} e^{-i(n+1)\mathfrak{s}(\alpha_{-})}}{2\cos(\alpha_{-})} \ d\theta \\ & \propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} U_{n}(\sin(\mathfrak{s}(\alpha_{-}))) \ \mathfrak{s}'(\alpha_{-}) \ d\theta \qquad (U_{n}: \mathsf{Cheb}\ 2) \end{split}$$

Note the following relation:

$$\beta_{-}(\rho,\theta) + \mathfrak{s}(\alpha_{-}(\rho,\theta)) + \pi = \theta - \tan^{-1}\left(\frac{\kappa\rho^{2}\sin(2\theta)}{1 + \kappa\rho^{2}\cos(2\theta)}\right) = \theta'(\rho,\theta)$$
ow change variable $\theta \to \theta'$ with $\frac{\partial\theta'}{\partial\theta'} \simeq \frac{1 - \kappa\rho^{2}}{2} \mathfrak{s}'(\alpha_{-}(\rho,\theta))$:

Now change variable heta o heta' with $rac{\partial heta'}{\partial heta}\proptorac{1-\kappa
ho^2}{1+\kappa
ho^2}\,\mathfrak{s}'(lpha_-(
ho, heta))$

$$J_0^*\psi_{n,k}^{\kappa}(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \frac{1+\kappa\rho^2}{1-\kappa\rho^2} \int_{\mathbb{S}^1} e^{i(n-2k)\theta'} U_n\left(-\frac{1-\kappa}{1-\kappa\rho^2}\rho\sin\theta'\right) \ d\theta'$$

Now use Euclidean knowledge.

Proof (ugly)

 $(\beta_-, \alpha_-)(\rho, \theta)$: coordinates of the unique curve through $(\rho e^{i0}, \theta)$.

$$\begin{split} t_{0}^{*}\psi_{n,k}^{\kappa}(\rho e^{i\omega}) &\propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} \sqrt{\mathfrak{s}'(\alpha_{-})} \frac{e^{i(n+1)\mathfrak{s}(\alpha_{-})} + (-1)^{n}e^{-i(n+1)\mathfrak{s}(\alpha_{-})}}{2\cos(\alpha_{-})} \ d\theta \\ &\propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} U_{n}(\sin(\mathfrak{s}(\alpha_{-}))) \ \mathfrak{s}'(\alpha_{-}) \ d\theta \qquad (U_{n}: \mathsf{Cheb}\ 2) \end{split}$$

Note the following relation:

$$\beta_{-}(\rho,\theta) + \mathfrak{s}(\alpha_{-}(\rho,\theta)) + \pi = \theta - \tan^{-1}\left(\frac{\kappa\rho^{2}\sin(2\theta)}{1 + \kappa\rho^{2}\cos(2\theta)}\right) = \theta'(\rho,\theta)$$

Now change variable $\theta \to \theta'$ with $\frac{\partial \theta'}{\partial \theta} \propto \frac{1-\kappa\rho^2}{1+\kappa\rho^2} \mathfrak{s}'(\alpha_-(\rho,\theta))$:

$$J_0^*\psi_{n,k}^{\kappa}(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \frac{1+\kappa\rho^2}{1-\kappa\rho^2} \int_{\mathbb{S}^1} e^{i(n-2k)\theta'} U_n\left(-\frac{1-\kappa}{1-\kappa\rho^2}\rho\sin\theta'\right) \ d\theta'$$

Now use Euclidean knowledge.

Proof (ugly)

 $(\beta_-, \alpha_-)(\rho, \theta)$: coordinates of the unique curve through $(\rho e^{i0}, \theta)$.

$$\begin{split} & t_{0}^{*}\psi_{n,k}^{\kappa}(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} \sqrt{\mathfrak{s}'(\alpha_{-})} \frac{e^{i(n+1)\mathfrak{s}(\alpha_{-})} + (-1)^{n}e^{-i(n+1)\mathfrak{s}(\alpha_{-})}}{2\cos(\alpha_{-})} \ d\theta \\ & \propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} U_{n}(\sin(\mathfrak{s}(\alpha_{-}))) \ \mathfrak{s}'(\alpha_{-}) \ d\theta \qquad (U_{n}: \mathsf{Cheb}\ 2) \end{split}$$

Note the following relation:

$$\beta_{-}(\rho,\theta) + \mathfrak{s}(\alpha_{-}(\rho,\theta)) + \pi = \theta - \tan^{-1}\left(\frac{\kappa\rho^{2}\sin(2\theta)}{1 + \kappa\rho^{2}\cos(2\theta)}\right) = \theta'(\rho,\theta)$$

Now change variable $\theta \to \theta'$ with $\frac{\partial \theta'}{\partial \theta} \propto \frac{1-\kappa\rho^2}{1+\kappa\rho^2} \mathfrak{s}'(\alpha_-(\rho,\theta))$:

$$J_0^*\psi_{n,k}^{\kappa}(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \frac{1+\kappa\rho^2}{1-\kappa\rho^2} \int_{\mathbb{S}^1} e^{i(n-2k)\theta'} U_n\left(-\frac{1-\kappa}{1-\kappa\rho^2}\rho\sin\theta'\right) \ d\theta'$$

Now use Euclidean knowledge.

Proof (ugly)

 $(\beta_{-}, \alpha_{-})(\rho, \theta)$: coordinates of the unique curve through $(\rho e^{i0}, \theta)$.

$$\begin{split} & t_{0}^{*}\psi_{n,k}^{\kappa}(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} \sqrt{\mathfrak{s}'(\alpha_{-})} \frac{e^{i(n+1)\mathfrak{s}(\alpha_{-})} + (-1)^{n}e^{-i(n+1)\mathfrak{s}(\alpha_{-})}}{2\cos(\alpha_{-})} \ d\theta \\ & \propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} U_{n}(\sin(\mathfrak{s}(\alpha_{-}))) \ \mathfrak{s}'(\alpha_{-}) \ d\theta \qquad (U_{n}: \mathsf{Cheb}\ 2) \end{split}$$

Note the following relation:

$$\beta_{-}(\rho,\theta) + \mathfrak{s}(\alpha_{-}(\rho,\theta)) + \pi = \theta - \tan^{-1}\left(\frac{\kappa\rho^{2}\sin(2\theta)}{1 + \kappa\rho^{2}\cos(2\theta)}\right) = \theta'(\rho,\theta)$$

Now change variable $\theta \to \theta'$ with $\frac{\partial \theta'}{\partial \theta} \propto \frac{1-\kappa\rho^2}{1+\kappa\rho^2} \mathfrak{s}'(\alpha_-(\rho,\theta))$:

$$J_0^*\psi_{n,k}^\kappa(
ho e^{i\omega})\propto e^{i(n-2k)\omega}rac{1+\kappa
ho^2}{1-\kappa
ho^2}\int_{\mathbb{S}^1}e^{i(n-2k) heta'}U_n\left(-rac{1-\kappa}{1-\kappa
ho^2}
ho\sin heta'
ight)\ d heta'$$

Now use Euclidean knowledge.

Proof (ugly)

 $(\beta_{-}, \alpha_{-})(\rho, \theta)$: coordinates of the unique curve through $(\rho e^{i0}, \theta)$.

$$\begin{split} & t_{0}^{*}\psi_{n,k}^{\kappa}(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} \sqrt{\mathfrak{s}'(\alpha_{-})} \frac{e^{i(n+1)\mathfrak{s}(\alpha_{-})} + (-1)^{n}e^{-i(n+1)\mathfrak{s}(\alpha_{-})}}{2\cos(\alpha_{-})} \ d\theta \\ & \propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} U_{n}(\sin(\mathfrak{s}(\alpha_{-}))) \ \mathfrak{s}'(\alpha_{-}) \ d\theta \qquad (U_{n}: \mathsf{Cheb}\ 2) \end{split}$$

Note the following relation:

$$\beta_{-}(\rho,\theta) + \mathfrak{s}(\alpha_{-}(\rho,\theta)) + \pi = \theta - \tan^{-1}\left(\frac{\kappa\rho^{2}\sin(2\theta)}{1 + \kappa\rho^{2}\cos(2\theta)}\right) = \theta'(\rho,\theta)$$

Now change variable $\theta \to \theta'$ with $\frac{\partial \theta'}{\partial \theta} \propto \frac{1-\kappa\rho^2}{1+\kappa\rho^2} \mathfrak{s}'(\alpha_-(\rho,\theta))$:

$$U_0^*\psi_{n,k}^\kappa(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \frac{1+\kappa\rho^2}{1-\kappa\rho^2} \int_{\mathbb{S}^1} e^{i(n-2k)\theta'} U_n\left(-\frac{1-\kappa}{1-\kappa\rho^2}\rho\sin\theta'
ight) d\theta'$$

Now use Euclidean knowledge.

Proof (ugly)

 $(\beta_{-}, \alpha_{-})(\rho, \theta)$: coordinates of the unique curve through $(\rho e^{i0}, \theta)$.

$$\begin{split} & b_{0}^{*}\psi_{n,k}^{\kappa}(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} \sqrt{\mathfrak{s}'(\alpha_{-})} \frac{e^{i(n+1)\mathfrak{s}(\alpha_{-})} + (-1)^{n}e^{-i(n+1)\mathfrak{s}(\alpha_{-})}}{2\cos(\alpha_{-})} \ d\theta \\ & \propto e^{i(n-2k)\omega} \int_{\mathbb{S}^{1}} e^{i(n-2k)(\beta_{-}+\mathfrak{s}(\alpha_{-}))} U_{n}(\sin(\mathfrak{s}(\alpha_{-}))) \ \mathfrak{s}'(\alpha_{-}) \ d\theta \qquad (U_{n}: \mathsf{Cheb}\ 2) \end{split}$$

Note the following relation:

$$\beta_{-}(\rho,\theta) + \mathfrak{s}(\alpha_{-}(\rho,\theta)) + \pi = \theta - \tan^{-1}\left(\frac{\kappa\rho^{2}\sin(2\theta)}{1 + \kappa\rho^{2}\cos(2\theta)}\right) = \theta'(\rho,\theta)$$

Now change variable $\theta \to \theta'$ with $\frac{\partial \theta'}{\partial \theta} \propto \frac{1-\kappa\rho^2}{1+\kappa\rho^2} \mathfrak{s}'(\alpha_-(\rho,\theta))$:

$$I_0^*\psi_{n,k}^{\kappa}(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \frac{1+\kappa\rho^2}{1-\kappa\rho^2} \int_{\mathbb{S}^1} e^{i(n-2k)\theta'} U_n\left(-\frac{1-\kappa}{1-\kappa\rho^2}\rho\sin\theta'\right) \ d\theta'$$

Now use Euclidean knowledge.

Const. Curv. Disks: Singular Value Decomposition

Visualization: $\{Z_{n,k}^{\kappa}\}_{0\leq n\leq 5, 0\leq k\leq n}$, $\kappa=-0.8$

Const. Curv. Disks: Singular Value Decomposition

Visualization: $\{Z_{n,k}^{\kappa}\}_{0\leq n\leq 5, 0\leq k\leq n}$, $\kappa=-0.4$

Const. Curv. Disks: Singular Value Decomposition

Visualization: $\{Z_{n,k}^{\kappa}\}_{0 \le n \le 5, 0 \le k \le n}$, $\kappa = 0$

Const. Curv. Disks: Singular Value Decomposition

Visualization: $\{Z_{n,k}^{\kappa}\}_{0 \le n \le 5, 0 \le k \le n}$, $\kappa = 0.4$

Const. Curv. Disks: Singular Value Decomposition

Visualization: $\{Z_{n,k}^{\kappa}\}_{0 \leq n \leq 5, 0 \leq k \leq n}$, $\kappa = 0.8$

Conclusions

On the geodesic X-ray transform on constant curvature disks

- Range characterizations via either projection operators or moment conditions.
- SVD of I_0 for a special choice of weights on M and ∂_+SM .

Perspectives:

- tensor tomography, regularity of special invariant distributions,
- sharp Sobolev mapping properties for I_0 .
- generalize to other (non-CC, non-symmetric) geometries.

Thank you

Reference:

- R. K. Mishra, F. M., Range characterizations and Singular Value Decomposition of the geodesic X-ray transform on disks of constant curvature, preprint (2019) - arXiv:1906.09389

Conclusions

On the geodesic X-ray transform on constant curvature disks

- Range characterizations via either projection operators or moment conditions.
- SVD of I_0 for a special choice of weights on M and ∂_+SM .

Perspectives:

- tensor tomography, regularity of special invariant distributions,
- sharp Sobolev mapping properties for I_0 .
- generalize to other (non-CC, non-symmetric) geometries.

Thank you

Reference:

- R. K. Mishra, F. M., Range characterizations and Singular Value Decomposition of the geodesic X-ray transform on disks of constant curvature, preprint (2019) - arXiv:1906.09389

Conclusions

On the geodesic X-ray transform on constant curvature disks

- Range characterizations via either projection operators or moment conditions.
- SVD of I_0 for a special choice of weights on M and ∂_+SM .

Perspectives:

- tensor tomography, regularity of special invariant distributions,
- sharp Sobolev mapping properties for I_0 .
- generalize to other (non-CC, non-symmetric) geometries.

Thank you

Reference:

- R. K. Mishra, F. M., Range characterizations and Singular Value Decomposition of the geodesic X-ray transform on disks of constant curvature, preprint (2019) - arXiv:1906.09389