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The X-ray transform on constant curvature disks

Introduction

Toy Model: The X-ray transform on CCD’s

Let M the unit disk in R2. For κ ∈ (−1, 1) define the metric
gκ(z) := (1 + κ|z |2)−2|dz |2 on M, of constant curvature 4κ.

κ = −0.8

A family of simple metrics which degenerates at κ→ ±1.
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The X-ray transform on constant curvature disks

Introduction

The XRT on media with variable refractive index

The general project is to understand the XRT on manifolds.
Applications to

X-ray CT in media with variable refractive index.

Travel-time tomography/boundary rigidity, etc. . .

By ’understand’ we mean:

Injectivity. Stability estimates.

Reconstruct various types of integrands (functions, vectors,
tensor fields) explicitly and efficiently.

Range characterizations, SVD (if possible !).

Mitigate the trade-off between parallel and fan-beam
geometries (starting with the Euclidean case).
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The XRT on media with variable refractive index

The general project is to understand the XRT on simple surfaces.
Applications to

X-ray CT in media with variable refractive index.
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The X-ray transform on constant curvature disks

Introduction

Parallel v/s fan-beam geometry

Parallel geometry: enjoys the Fourier Slice
theorem, which allows for a rigorous, efficient
regularization theory.

Fan-beam geometry:

’natural’ acquisition geometry, then
traditionally rebinned into parallel data
before processed. [Natterer ’01]

no parallel geometry on non-homogeneous
surfaces. Instead, PDE’s on the unit
phase space.

The Euclidean disk benefits from both
viewpoints.

4 / 20



The X-ray transform on constant curvature disks

Introduction

Parallel v/s fan-beam geometry

Parallel geometry: enjoys the Fourier Slice
theorem, which allows for a rigorous, efficient
regularization theory.

Fan-beam geometry:

’natural’ acquisition geometry, then
traditionally rebinned into parallel data
before processed. [Natterer ’01]

no parallel geometry on non-homogeneous
surfaces. Instead, PDE’s on the unit
phase space.

The Euclidean disk benefits from both
viewpoints.

4 / 20



The X-ray transform on constant curvature disks

Introduction

Literature, or rather, authors. . .
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5 / 20



The X-ray transform on constant curvature disks

Introduction

Literature, or rather, authors. . .

Radon, Funk, Helgason, Ludwig, Gel’fand, Graev, Quinto, Cormack,

Natterer, Maass, Louis, Rigaud, Hahn, Kuchment, Agranovsky,

Ambartsoumian, Krishnan, Abishek, Mishra

Herglotz, Wiechert, Zoeppritz, Anikonov, Romanov, Mukhometov,

Sharafutdinov, Pestov, Uhlmann, Vasy, Stefanov, Zhou, Assylbekov,

Paternain, Salo, Ilmavirta, Guillarmou, Guillemin, Railo,

Lehtonen, Cekić...
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1 The Euclidean case

2 Const. Curv. Disks: Range Characterization

3 Const. Curv. Disks: Singular Value Decomposition



The X-ray transform on constant curvature disks

The Euclidean case

The classical moment conditions

Parallel geometry: R : S(R2)→ S(R× S1)

Rf (s, θ) =
∫
R
f (−s θ̂⊥ + tθ̂) dt, (s, θ) ∈ R× S1.

↔

Moment conditions: Gelfand, Graev, Helgason, Ludwig

D(s, θ) = Rf (s, θ) for some f iff

(i) D(s, θ) = D(−s, θ + π) for all (s, θ) ∈ R× S1.

(ii) For k ≥ 0, pk(θ) :=
∫
R skD(s, θ) ds =

∑k
`=−k a`,ke

ikθ.

⇔
∫
S1

∫
RD(s, θ)ske ipθ ds dθ = 0, |p| > k , p − k even.
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The X-ray transform on constant curvature disks

The Euclidean case

The Pestov-Uhlmann range characterization

I0 : C∞(M)→ C∞+ (∂+SM)

I0f (x , v) =

∫ τ(x,v)

0

f (γx,v (t)) dt.

S: scattering relation
Range characterization of I0:

I0(C∞(M)) = P−(C∞α (∂+SM)), [Pestov-Uhlmann ’05]

P− takes the form P− := A∗−H−A+, where

A+ : C∞(∂+SM)→ C∞(∂SM) symmetrization w.r.t. S.

H−: odd Hilbert transform on the fibers of ∂SM.

A∗− : C∞(∂SM)→ C∞(∂SM): A∗−f (x , v) = f (x , v)− f (S(x , v)).
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The X-ray transform on constant curvature disks

The Euclidean case

Equivalence of ranges characterizations

Theorem (M., IPI, ’15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator P− = A∗−H−A+.

Euclidean scattering relation:
S(β, α) = (β + π + 2α, π − α).

Explicit construction of the SVD of
P− : L2(∂+SM)→ L2(∂+SM).

Reparameterized moment conditions is
equivalent to saying “D ⊥ Range P−”.

u′p,q = e ipβ(e i(2q+1)α +

(−1)pe i(2(p−q)−1)α)

We also understand how the cokernel can be realized by other
types of integrands.
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The X-ray transform on constant curvature disks

The Euclidean case

SVD of I0

Zernike polynomials:
Zn,k , n ∈ N0, 0 ≤ k ≤ n.

Uniquely defined through the
properties:
[Kazantzev-Bukhgeym ’07]

Zn,0 = zn.

∂z̄Zn,k = −∂zZn,k−1,
1 ≤ k ≤ n.

Zn,k |∂M(e iβ) = e i(n−2k)β.

In addition,

(Zn,k ,Zn′,k ′)L2(M) =
π

n + 1
δn,n′ δk,k ′ .

I0[Zn,k ] =
C

n + 1
e i(n−2k)(β+α+π)(e i(n+1)α + (−1)ne−i(n+1)α).

(in parallel coordinates, β + α + π = θ and sinα = s)
9 / 20
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The X-ray transform on constant curvature disks

Const. Curv. Disks: Range Characterization

Range characterizations: statement

Theorem (Mishra-M., preprint ’19)

Let M equipped with the metric gκ for κ ∈ (−1, 1). Suppose
u ∈ C∞(∂+SM) such that S∗Au = u. Then u ∈ I0(C∞(M)) iff
either of the following is satisfied

1 u = P−w for some w ∈ C∞α,+,−(∂+SM). [Pe-Uhl, ’04]

2 u satisfies a complete set of othogonality/moment conditions:

(u, ψκn,k)L2(∂+SM,dΣ2) = 0, n ≥ 0, k < 0, k > n,

where we have defined

ψκn,k :=
(−1)n

4π

√
s′κ(α)e

i(n−2k)(β+sκ(α))(e i(n+1)sκ(α) + (−1)ne−i(n+1)sκ(α)),

sκ(α) := tan−1

(
1− κ
1 + κ

tanα

)
. (s0(α) = α, sκ ◦ s−κ = id)

3 C−u = 0, where C− := 1
2A
∗
−H−A− (id + C 2

− = ΠRan I0)
10 / 20
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3 C−u = 0, where C− := 1
2A
∗
−H−A− (id + C 2

− = ΠRan I0)
10 / 20



The X-ray transform on constant curvature disks

Const. Curv. Disks: Range Characterization

Proof

In light of the first item, understand the action of P− = A∗−H−A+,
e.g. find its SVD. Construct functions that

extend smoothly under A±

transform well under fiberwise Hilbert transform and
scattering relation

S(β, α) = (β + π + 2sκ(α), π − α).

are even or odd w.r.t. SA := S ◦ (α 7→ α + π)

This produces four families of functions, some giving the L2 − L2

SVD of P− and the eigendecomposition of C−.
In particular, Ran P− = ker C−.
The SVD picture is identical to the Euclidean one !
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The X-ray transform on constant curvature disks

Const. Curv. Disks: Singular Value Decomposition

SVD: Statement

Theorem (Mishra-M., preprint ’19)

Let M be the unit disk equipped with the metric gκ for
κ ∈ (−1, 1). Define sκ(α) and {ψκn,k}n≥0,k∈Z as above, as well as

Ẑκn,k(z) :=

√
n + 1

π
(1− κ)1 + κ|z |2

1− κ|z |2 Zn,k︸︷︷︸
Zernike

(
1− κ

1− κ|z |2 z
)
,

ψ̂κn,k := 2
√
1 + κ ψκn,k , σκn,k :=

1√
1− κ

2
√
π√

n + 1
.

• {Ẑκn,k}n≥0, 0≤k≤n ONB of L2(M,wκ) where wκ(z) := 1+κ|z|2
1−κ|z|2 .

• {ψ̂κn,k}n≥0, 0≤k≤n ON in L2(∂+SM, dΣ2) ∩ ker(id − S∗A).

For any f ∈ wκL
2(M,wκ) expanding as

f = wκ
∑
n≥0

n∑
k=0

fn,k Ẑκn,k , we have I0f =
∑
n≥0

n∑
k=0

σκn,k fn,k ψ̂κn,k .
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The X-ray transform on constant curvature disks

Const. Curv. Disks: Singular Value Decomposition

Proof (sketch)

• Take the functions in the range of I0, namely,

ψκn,k , n ≥ 0, 0 ≤ k ≤ n,

and prove that Zκn,k := I ∗0ψ
κ
n,k is orthogonal on M for some weight

[Maass, Louis].
• Also show that I ∗0ψ

κ
n,k = 0 for k /∈ 0 . . . n.

Note: I ∗0 depends on the weight in data space. Since ψκn,k is

orthogonal in L2(∂+SM), it is natural to define I ∗0 w.r.t. this
topology.
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The X-ray transform on constant curvature disks

Const. Curv. Disks: Singular Value Decomposition

Proof (ugly)

(β−, α−)(ρ, θ): coordinates of the unique curve through (ρe i0, θ).

I∗0 ψ
κ
n,k (ρe iω) ∝ e i(n−2k)ω

∫
S1

e
i(n−2k)(β−+s(α−))

√
s′(α−)

e
i(n+1)s(α−)

+ (−1)ne
−i(n+1)s(α−)

2 cos(α−)
dθ

∝ e i(n−2k)ω
∫
S1

e
i(n−2k)(β−+s(α−))

Un(sin(s(α−))) s
′(α−) dθ (Un : Cheb 2)

Note the following relation:

β−(ρ, θ) + s(α−(ρ, θ)) + π = θ − tan−1

(
κρ2 sin(2θ)

1 + κρ2 cos(2θ)

)
= θ′(ρ, θ)

Now change variable θ → θ′ with ∂θ′

∂θ ∝
1−κρ2

1+κρ2 s′(α−(ρ, θ)):

I ∗0 ψ
κ
n,k(ρe

iω) ∝ e i(n−2k)ω 1 + κρ2

1− κρ2

∫
S1

e i(n−2k)θ′Un

(
− 1− κ
1− κρ2

ρ sin θ′
)

dθ′

Now use Euclidean knowledge.
At least 3 miracles along the way.
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The X-ray transform on constant curvature disks

Const. Curv. Disks: Singular Value Decomposition

Visualization: {Z κ
n,k}0≤n≤5,0≤k≤n, κ = −0.8
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Visualization: {Z κ
n,k}0≤n≤5,0≤k≤n, κ = 0
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The X-ray transform on constant curvature disks

Const. Curv. Disks: Singular Value Decomposition

Visualization: {Z κ
n,k}0≤n≤5,0≤k≤n, κ = 0.8
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The X-ray transform on constant curvature disks

Const. Curv. Disks: Singular Value Decomposition

Conclusions

On the geodesic X-ray transform on constant curvature disks

Range characterizations via either projection operators or
moment conditions.

SVD of I0 for a special choice of weights on M and ∂+SM.

Perspectives:

tensor tomography, regularity of special invariant distributions,

sharp Sobolev mapping properties for I0.

generalize to other (non-CC, non-symmetric) geometries.

Thank you

Reference:
- R. K. Mishra, F. M., Range characterizations and Singular Value
Decomposition of the geodesic X-ray transform on disks of
constant curvature, preprint (2019) - arXiv:1906.09389
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