# The X-ray transform on constant curvature disks 

François Monard

Dept. of Mathematics, University of California Santa Cruz
August 6, 2019
MS. 3: Gen. RT and Applications in Imaging Cormack Conference, Tufts University

## Toy Model: The X-ray transform on CCD's

Let $M$ the unit disk in $\mathbb{R}^{2}$. For $\kappa \in(-1,1)$ define the metric $g_{\kappa}(z):=\left(1+\kappa|z|^{2}\right)^{-2}|d z|^{2}$ on $M$, of constant curvature $4 \kappa$.

$$
\kappa=-0.8
$$



A family of simple metrics which degenerates at $\kappa \rightarrow \pm 1$.

## Toy Model: The X-ray transform on CCD's

Let $M$ the unit disk in $\mathbb{R}^{2}$. For $\kappa \in(-1,1)$ define the metric $g_{\kappa}(z):=\left(1+\kappa|z|^{2}\right)^{-2}|d z|^{2}$ on $M$, of constant curvature $4 \kappa$.

$$
\kappa=-0.4
$$



A family of simple metrics which degenerates at $\kappa \rightarrow \pm 1$.

## Toy Model: The X-ray transform on CCD's

Let $M$ the unit disk in $\mathbb{R}^{2}$. For $\kappa \in(-1,1)$ define the metric $g_{\kappa}(z):=\left(1+\kappa|z|^{2}\right)^{-2}|d z|^{2}$ on $M$, of constant curvature $4 \kappa$.

$$
\kappa=0
$$



A family of simple metrics which degenerates at $\kappa \rightarrow \pm 1$.

## Toy Model: The X-ray transform on CCD's

Let $M$ the unit disk in $\mathbb{R}^{2}$. For $\kappa \in(-1,1)$ define the metric $g_{\kappa}(z):=\left(1+\kappa|z|^{2}\right)^{-2}|d z|^{2}$ on $M$, of constant curvature $4 \kappa$.

$$
\kappa=0.4
$$



A family of simple metrics which degenerates at $\kappa \rightarrow \pm 1$.

## Toy Model: The X-ray transform on CCD's

Let $M$ the unit disk in $\mathbb{R}^{2}$. For $\kappa \in(-1,1)$ define the metric $g_{\kappa}(z):=\left(1+\kappa|z|^{2}\right)^{-2}|d z|^{2}$ on $M$, of constant curvature $4 \kappa$.

$$
\kappa=0.8
$$



A family of simple metrics which degenerates at $\kappa \rightarrow \pm 1$.

## The XRT on media with variable refractive index

The general project is to understand the XRT on manifolds. X-ray CT in media with variable refractive index - Travel-time tomography/houndary ricidity atc

## The XRT on media with variable refractive index

The general project is to understand the XRT on manifolds. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...


## The XRT on media with variable refractive index

The general project is to understand the XRT on simple manifolds. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...

By 'understand' we mean:

- Injectivity. Stability estimates.


## The XRT on media with variable refractive index

The general project is to understand the XRT on simple surfaces. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...

By 'understand' we mean:

- Injectivity. Stability estimates.
- Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
$\qquad$


## The XRT on media with variable refractive index

The general project is to understand the XRT on CCD's.
Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...

By 'understand' we mean:

- Injectivity. Stability estimates.
- Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
- Range characterizations, SVD (if possible !).
$\qquad$


## The XRT on media with variable refractive index

The general project is to understand the XRT on CCD's.
Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...

By 'understand' we mean:

- Injectivity. Stability estimates.
- Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
- Range characterizations, SVD (if possible!).
- Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).


## Parallel $\mathrm{v} / \mathrm{s}$ fan-beam geometry

Parallel geometry: enjoys the Fourier Slice theorem, which allows for a rigorous, efficient regularization theory.


[^0]

PARALLEL


## Parallel $\mathrm{v} / \mathrm{s}$ fan-beam geometry

Parallel geometry: enjoys the Fourier Slice theorem, which allows for a rigorous, efficient regularization theory.

## Fan-beam geometry:

- 'natural' acquisition geometry, then traditionally rebinned into parallel data before processed. [Natterer '01]
- no parallel geometry on non-homogeneous surfaces. Instead, PDE's on the unit phase space.

The Euclidean disk benefits from both viewpoints.


## Literature, or rather, authors. . .

Radon, Funk, Helgason, Ludwig, Gel'fand, Graev, Quinto, Cormack, Natterer, Maass, Louis, Rigaud, Hahn, Kuchment, Agranovsky, Ambartsoumian, Krishnan, Abishek, Mishra Herglotz, Wiechert, Zoeppritz, Anikonov, Romanov, Mukhometov, Sharafutdinov, Pestov, Uhlmann, Vasy, Stefanov, Zhou, Assylbekov, Paternain, Salo, Ilmavirta, Guillarmou, Guillemin, Railo, Lehtonen, Cekić...

## Introduction

## Literature, or rather, authors. . .

Radon, Funk, Helgason, Ludwig, Gel’fand, Graev, Quinto, Cormack, Natterer, Maass, Louis, Rigaud, Hahn, Kuchment, Agranovsky, Ambartsoumian, Krishnan, Abishek, Mishra

Herglotz, Wiechert, Zoeppritz, Anikonov, Romanov, Mukhometov, Sharafutdinov, Pestov, Uhlmann, Vasy, Stefanov, Zhou, Assylbekov, Paternain, Salo, Ilmavirta, Guillarmou, Guillemin, Railo, Lehtonen, Cekić...

## THE RADON TRANSFORM ON A FAMILY OF CURVES <br> IN THE PLANE ${ }^{1}$

A. M. CORMACK

Abstract. Inversion formulas are given for Radon's problem when the line integrals are evaluated along curves given, for a fixed $(p, \phi)$, by $r^{\alpha} \cos |\alpha(\theta-\phi)|=$ $p^{\alpha}$, where $\alpha$ is real, $\alpha \neq 0$.

## Outline

(1) The Euclidean case
(2) Const. Curv. Disks: Range Characterization
(3) Const. Curv. Disks: Singular Value Decomposition

## The classical moment conditions

$\underline{\text { Parallel geometry: }} \mathcal{R}: \mathcal{S}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{S}\left(\mathbb{R} \times \mathbb{S}^{1}\right)$

$$
\mathcal{R} f(s, \theta)=\int_{\mathbb{R}} f\left(-s \hat{\theta}^{\perp}+t \hat{\theta}\right) d t, \quad(s, \theta) \in \mathbb{R} \times \mathbb{S}^{1}
$$




Moment conditions:
$\mathcal{D}(s, \theta)=\mathcal{R} f(s, \theta)$ for some $f$ iff

## The classical moment conditions

Parallel geometry: $\mathcal{R}: \mathcal{S}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{S}\left(\mathbb{R} \times \mathbb{S}^{1}\right)$

$$
\mathcal{R} f(s, \theta)=\int_{\mathbb{R}} f\left(-s \hat{\theta}^{\perp}+t \hat{\theta}\right) d t, \quad(s, \theta) \in \mathbb{R} \times \mathbb{S}^{1}
$$




Moment conditions: Gelfand, Graev, Helgason, Ludwig

$$
\mathcal{D}(s, \theta)=\mathcal{R} f(s, \theta) \text { for some } f \text { iff }
$$

(i) $\mathcal{D}(s, \theta)=\mathcal{D}(-s, \theta+\pi)$ for all $(s, \theta) \in \mathbb{R} \times \mathbb{S}^{1}$.

## The classical moment conditions

$\underline{\text { Parallel geometry: } \mathcal{R}: \mathcal{S}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{S}\left(\mathbb{R} \times \mathbb{S}^{1}\right), ~}$

$$
\mathcal{R} f(s, \theta)=\int_{\mathbb{R}} f\left(-s \hat{\theta}^{\perp}+t \hat{\theta}\right) d t, \quad(s, \theta) \in \mathbb{R} \times \mathbb{S}^{1}
$$




Moment conditions: Gelfand, Graev, Helgason, Ludwig

$$
\mathcal{D}(s, \theta)=\mathcal{R} f(s, \theta) \text { for some } f \text { iff }
$$

(i) $\mathcal{D}(s, \theta)=\mathcal{D}(-s, \theta+\pi)$ for all $(s, \theta) \in \mathbb{R} \times \mathbb{S}^{1}$.
(ii) For $k \geq 0, p_{k}(\theta):=\int_{\mathbb{R}} s^{k} \mathcal{D}(s, \theta) d s=\sum_{\ell=-k}^{k} a_{\ell, k} e^{i k \theta}$.

## The classical moment conditions

Parallel geometry: $\mathcal{R}: \mathcal{S}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{S}\left(\mathbb{R} \times \mathbb{S}^{1}\right)$

$$
\mathcal{R} f(s, \theta)=\int_{\mathbb{R}} f\left(-s \hat{\theta}^{\perp}+t \hat{\theta}\right) d t, \quad(s, \theta) \in \mathbb{R} \times \mathbb{S}^{1} .
$$




Moment conditions: Gelfand, Graev, Helgason, Ludwig

$$
\mathcal{D}(s, \theta)=\mathcal{R} f(s, \theta) \text { for some } f \text { iff }
$$

(i) $\mathcal{D}(s, \theta)=\mathcal{D}(-s, \theta+\pi)$ for all $(s, \theta) \in \mathbb{R} \times \mathbb{S}^{1}$.
(ii) For $k \geq 0, p_{k}(\theta):=\int_{\mathbb{R}} s^{k} \mathcal{D}(s, \theta) d s=\sum_{\ell=-k}^{k} a_{\ell, k} e^{i k \theta}$.
$\Leftrightarrow \int_{\mathbb{S}^{1}} \int_{\mathbb{R}} \mathcal{D}(s, \theta) s^{k} e^{i p \theta} d s d \theta=0,|p|>k, p-k$ even.

## The Pestov-Uhlmann range characterization

$I_{0}: C^{\infty}(M) \rightarrow C_{+}^{\infty}\left(\partial_{+} S M\right)$

$$
I_{0} f(x, v)=\int_{0}^{\tau(x, v)} f\left(\gamma_{x, v}(t)\right) d t
$$

$\mathcal{S}$ : scattering relation


## The Pestov-Uhlmann range characterization

$I_{0}: C^{\infty}(M) \rightarrow C_{+}^{\infty}\left(\partial_{+} S M\right)$

$$
I_{0} f(x, v)=\int_{0}^{\tau(x, v)} f\left(\gamma_{x, v}(t)\right) d t .
$$

$\mathcal{S}$ : scattering relation


Range characterization of $I_{0}$ :

$$
I_{0}\left(C^{\infty}(M)\right)=P_{-}\left(C_{\alpha}^{\infty}\left(\partial_{+} S M\right)\right),
$$

[Pestov-Uhlmann '05]
$P_{-}$takes the form $P_{-}:=A_{-}^{*} H_{-} A_{+}$, where

- $A_{+}: C^{\infty}\left(\partial_{+} S M\right) \rightarrow C^{\infty}(\partial S M)$ symmetrization w.r.t. $\mathcal{S}$.
- H_: odd Hilbert transform on the fibers of $\partial S M$.
- $A_{-}^{*}: C^{\infty}(\partial S M) \rightarrow C^{\infty}(\partial S M): A_{-}^{*} f(x, v)=f(x, v)-f(\mathcal{S}(x, v))$.


## Equivalence of ranges characterizations

## Theorem (M., IPI, '15)

Both range characterizations above are equivalent.

## Equivalence of ranges characterizations

## Theorem (M., IPI, '15)

Both range characterizations above are equivalent.
Sketch of proof: Understand the operator $P_{-}=A_{-}^{*} H_{-} A_{+}$.

- Euclidean scattering relation:

$$
\mathcal{S}(\beta, \alpha)=(\beta+\pi+2 \alpha, \pi-\alpha)
$$

## Equivalence of ranges characterizations

## Theorem (M., IPI, '15)

Both range characterizations above are equivalent.
Sketch of proof: Understand the operator $P_{-}=A_{-}^{*} H_{-} A_{+}$.

- Euclidean scattering relation:

$$
\mathcal{S}(\beta, \alpha)=(\beta+\pi+2 \alpha, \pi-\alpha) .
$$

- Explicit construction of the SVD of

$$
P_{-}: L^{2}\left(\partial_{+} S M\right) \rightarrow L^{2}\left(\partial_{+} S M\right)
$$



## Equivalence of ranges characterizations

## Theorem (M., IPI, '15)

Both range characterizations above are equivalent.
Sketch of proof: Understand the operator $P_{-}=A_{-}^{*} H_{-} A_{+}$.

- Euclidean scattering relation:

$$
\mathcal{S}(\beta, \alpha)=(\beta+\pi+2 \alpha, \pi-\alpha) .
$$

- Explicit construction of the SVD of

$$
P_{-}: L^{2}\left(\partial_{+} S M\right) \rightarrow L^{2}\left(\partial_{+} S M\right)
$$

- Reparameterized moment conditions is equivalent to saying " $\mathcal{D} \perp$ Range $P_{-}$".


We also understand how the cokernel can tynes of integrands

## Equivalence of ranges characterizations

## Theorem (M., IPI, '15)

Both range characterizations above are equivalent.
Sketch of proof: Understand the operator $P_{-}=A_{-}^{*} H_{-} A_{+}$.

- Euclidean scattering relation:

$$
\mathcal{S}(\beta, \alpha)=(\beta+\pi+2 \alpha, \pi-\alpha) .
$$

- Explicit construction of the SVD of

$$
P_{-}: L^{2}\left(\partial_{+} S M\right) \rightarrow L^{2}\left(\partial_{+} S M\right)
$$

- Reparameterized moment conditions is equivalent to saying " $\mathcal{D} \perp$ Range $P_{-}$".


We also understand how the cokernel can tynes of integrands

## Equivalence of ranges characterizations

## Theorem (M., IPI, '15)

Both range characterizations above are equivalent.
Sketch of proof: Understand the operator $P_{-}=A_{-}^{*} H_{-} A_{+}$.

- Euclidean scattering relation:

$$
\mathcal{S}(\beta, \alpha)=(\beta+\pi+2 \alpha, \pi-\alpha) .
$$

- Explicit construction of the SVD of

$$
P_{-}: L^{2}\left(\partial_{+} S M\right) \rightarrow L^{2}\left(\partial_{+} S M\right)
$$

- Reparameterized moment conditions is equivalent to saying " $\mathcal{D} \perp$ Range $P_{-}$".


We also understand how the cokernel can be realized by other types of integrands.

## SVD of $I_{0}$

Zernike polynomials: $Z^{n, k}, n \in \mathbb{N}_{0}, 0 \leq k \leq n$.


## Uniquely defined through the

## properties



## SVD of $I_{0}$

Zernike polynomials: $Z^{n, k}, n \in \mathbb{N}_{0}, 0 \leq k \leq n$.


Uniquely defined through the properties:
[Kazantzev-Bukhgeym '07]

- $Z_{n, 0}=z^{n}$.
- $\partial_{\bar{z}} Z_{n, k}=-\partial_{z} Z_{n, k-1}$, $1 \leq k \leq n$.
- $\left.Z_{n, k}\right|_{\partial M}\left(e^{i \beta}\right)=e^{i(n-2 k) \beta}$.

In addition,
$\left(Z_{n, k}, Z_{n^{\prime}, k^{\prime}}\right)_{L^{2}(M)}=\frac{\pi}{n+1} \delta_{n, n^{\prime}} \delta_{k, k^{\prime}}$.

## $S V D$ of $I_{0}$

Zernike polynomials: $Z^{n, k}, n \in \mathbb{N}_{0}, 0 \leq k \leq n$.


Uniquely defined through the properties:
[Kazantzev-Bukhgeym '07]

- $Z_{n, 0}=z^{n}$.
- $\partial_{\bar{z}} Z_{n, k}=-\partial_{z} Z_{n, k-1}$, $1 \leq k \leq n$.
- $\left.Z_{n, k}\right|_{\partial M}\left(e^{i \beta}\right)=e^{i(n-2 k) \beta}$.

In addition,
$\left(Z_{n, k}, Z_{n^{\prime}, k^{\prime}}\right)_{L^{2}(M)}=\frac{\pi}{n+1} \delta_{n, n^{\prime}} \delta_{k, k^{\prime}}$.
$I_{0}\left[Z^{n, k}\right]=\frac{C}{n+1} e^{i(n-2 k)(\beta+\alpha+\pi)}\left(e^{i(n+1) \alpha}+(-1)^{n} e^{-i(n+1) \alpha}\right)$.
(in parallel coordinates, $\beta+\alpha+\pi=\theta$ and $\sin \alpha=s$ )

## Outline

## (1) The Euclidean case

(2) Const. Curv. Disks: Range Characterization
(3) Const. Curv. Disks: Singular Value Decomposition

## Range characterizations: statement

## Theorem (Mishra-M., preprint '19)

Let $M$ equipped with the metric $g_{\kappa}$ for $\kappa \in(-1,1)$. Suppose $u \in C^{\infty}\left(\partial_{+} S M\right)$ such that $S_{A}^{*} u=u$.

## Const. Curv. Disks: Range Characterization

## Range characterizations: statement

## Theorem (Mishra-M., preprint '19)

Let $M$ equipped with the metric $g_{\kappa}$ for $\kappa \in(-1,1)$. Suppose $u \in C^{\infty}\left(\partial_{+} S M\right)$ such that $S_{A}^{*} u=u$. Then $u \in I_{0}\left(C^{\infty}(M)\right)$ iff either of the following is satisfied
(1) $u=P_{-} w$ for some $w \in C_{\alpha,+,-}^{\infty}\left(\partial_{+} S M\right)$. [Pe-Uhl, ' ${ }^{04]}$

## Const. Curv. Disks: Range Characterization

## Range characterizations: statement

## Theorem (Mishra-M., preprint '19)

Let $M$ equipped with the metric $g_{\kappa}$ for $\kappa \in(-1,1)$. Suppose $u \in C^{\infty}\left(\partial_{+} S M\right)$ such that $S_{A}^{*} u=u$. Then $u \in I_{0}\left(C^{\infty}(M)\right)$ iff either of the following is satisfied
(1) $u=P_{-} w$ for some $w \in C_{\alpha,+,-}^{\infty}\left(\partial_{+} S M\right)$. [Pe-Uhl, ' ${ }^{04]}$
(2) $u$ satisfies a complete set of othogonality/moment conditions:

$$
\left(u, \psi_{n, k}^{\kappa}\right)_{L^{2}\left(\partial_{+} S M, d \Sigma^{2}\right)}=0, \quad n \geq 0, k<0, k>n,
$$

where we have defined

$$
\begin{aligned}
& \psi_{n, k}^{\kappa}:=\frac{(-1)^{n}}{4 \pi} \sqrt{\mathfrak{s}_{\kappa}^{\prime}(\alpha)} e^{i(n-2 k)\left(\beta+s_{\kappa}(\alpha)\right)}\left(e^{i(n+1) \mathfrak{s}_{\kappa}(\alpha)}+(-1)^{n} e^{-i(n+1) \mathfrak{s}_{\kappa}(\alpha)}\right), \\
& \mathfrak{s}_{\kappa}(\alpha):=\tan ^{-1}\left(\frac{1-\kappa}{1+\kappa} \tan \alpha\right) .
\end{aligned} \quad\left(\mathfrak{s}_{0}(\alpha)=\alpha, \quad \mathfrak{s}_{\kappa} \circ \mathfrak{s}_{-\kappa}=i d\right),
$$

## Const. Curv. Disks: Range Characterization

## Range characterizations: statement

## Theorem (Mishra-M., preprint '19)

Let $M$ equipped with the metric $g_{\kappa}$ for $\kappa \in(-1,1)$. Suppose $u \in C^{\infty}\left(\partial_{+} S M\right)$ such that $S_{A}^{*} u=u$. Then $u \in I_{0}\left(C^{\infty}(M)\right)$ iff either of the following is satisfied
(1) $u=P_{-} w$ for some $w \in C_{\alpha,+,-}^{\infty}\left(\partial_{+} S M\right)$. [Pe-Uhl, ' ${ }^{04]}$
(2) $u$ satisfies a complete set of othogonality/moment conditions:

$$
\left(u, \psi_{n, k}^{\kappa}\right)_{L^{2}\left(\partial_{+} S M, d \Sigma^{2}\right)}=0, \quad n \geq 0, k<0, k>n,
$$

where we have defined

$$
\begin{aligned}
\psi_{n, k}^{\kappa} & :=\frac{(-1)^{n}}{4 \pi} \sqrt{\mathfrak{s}_{\kappa}^{\prime}(\alpha)} e^{i(n-2 k)\left(\beta+s_{\kappa}(\alpha)\right)}\left(e^{i(n+1) \mathfrak{s}_{\kappa}(\alpha)}+(-1)^{n} e^{-i(n+1) \mathfrak{s}_{\kappa}(\alpha)}\right), \\
\mathfrak{s}_{\kappa}(\alpha) & :=\tan ^{-1}\left(\frac{1-\kappa}{1+\kappa} \tan \alpha\right) .
\end{aligned} \quad\left(\mathfrak{s}_{0}(\alpha)=\alpha, \quad \mathfrak{s}_{\kappa} \circ \mathfrak{s}_{-\kappa}=i d\right),
$$

(3) $C_{-} u=0$, where $C_{-}:=\frac{1}{2} A_{-}^{*} H_{-} A_{-}$

## Const. Curv. Disks: Range Characterization

## Range characterizations: statement

## Theorem (Mishra-M., preprint '19)

Let $M$ equipped with the metric $g_{\kappa}$ for $\kappa \in(-1,1)$. Suppose $u \in C^{\infty}\left(\partial_{+} S M\right)$ such that $S_{A}^{*} u=u$. Then $u \in I_{0}\left(C^{\infty}(M)\right)$ iff either of the following is satisfied
(1) $u=P_{-} w$ for some $w \in C_{\alpha,+,-}^{\infty}\left(\partial_{+} S M\right)$. [Pe-Uhl, ' ${ }^{04]}$
(2) $u$ satisfies a complete set of othogonality/moment conditions:

$$
\left(u, \psi_{n, k}^{\kappa}\right)_{L^{2}\left(\partial_{+} S M, d \Sigma^{2}\right)}=0, \quad n \geq 0, k<0, k>n,
$$

where we have defined

$$
\begin{aligned}
\psi_{n, k}^{\kappa} & :=\frac{(-1)^{n}}{4 \pi} \sqrt{\mathfrak{s}_{\kappa}^{\prime}(\alpha)} e^{i(n-2 k)\left(\beta+s_{\kappa}(\alpha)\right)}\left(e^{i(n+1) \mathfrak{s}_{\kappa}(\alpha)}+(-1)^{n} e^{-i(n+1) \mathfrak{s}_{\kappa}(\alpha)}\right), \\
\mathfrak{s}_{\kappa}(\alpha) & :=\tan ^{-1}\left(\frac{1-\kappa}{1+\kappa} \tan \alpha\right) .
\end{aligned} \quad\left(\mathfrak{s}_{0}(\alpha)=\alpha, \quad \mathfrak{s}_{\kappa} \circ \mathfrak{s}_{-\kappa}=i d\right),
$$

(3) $C_{-} u=0$, where $C_{-}:=\frac{1}{2} A_{-}^{*} H_{-} A_{-}$

## Const. Curv. Disks: Range Characterization

## Range characterizations: statement

## Theorem (Mishra-M., preprint '19)

Let $M$ equipped with the metric $g_{\kappa}$ for $\kappa \in(-1,1)$. Suppose $u \in C^{\infty}\left(\partial_{+} S M\right)$ such that $S_{A}^{*} u=u$. Then $u \in I_{0}\left(C^{\infty}(M)\right)$ iff either of the following is satisfied
(1) $u=P_{-} w$ for some $w \in C_{\alpha,+,-}^{\infty}\left(\partial_{+} S M\right)$. [Pe-Uhl, ' ${ }^{04]}$
(2) $u$ satisfies a complete set of othogonality/moment conditions:

$$
\left(u, \psi_{n, k}^{\kappa}\right)_{L^{2}\left(\partial_{+} S M, d \Sigma^{2}\right)}=0, \quad n \geq 0, k<0, k>n,
$$

where we have defined

$$
\begin{aligned}
\psi_{n, k}^{\kappa} & :=\frac{(-1)^{n}}{4 \pi} \sqrt{\mathfrak{s}_{\kappa}^{\prime}(\alpha)} e^{i(n-2 k)\left(\beta+s_{\kappa}(\alpha)\right)}\left(e^{i(n+1) \mathfrak{s}_{\kappa}(\alpha)}+(-1)^{n} e^{-i(n+1) \mathfrak{s}_{\kappa}(\alpha)}\right), \\
\mathfrak{s}_{\kappa}(\alpha) & :=\tan ^{-1}\left(\frac{1-\kappa}{1+\kappa} \tan \alpha\right) .
\end{aligned} \quad\left(\mathfrak{s}_{0}(\alpha)=\alpha, \quad \mathfrak{s}_{\kappa} \circ \mathfrak{s}_{-\kappa}=i d\right),
$$

(3) $C_{-} u=0$, where $C_{-}:=\frac{1}{2} A_{-}^{*} H_{-} A_{-}$

$$
\left(i d+C_{-}^{2}=\Pi_{\operatorname{Ran} I_{0}}\right)
$$

## Proof

In light of the first item, understand the action of $P_{-}=A_{-}^{*} H_{-} A_{+}$, e.g. find its SVD.
extend smoothly under $A_{\Perp}$
transform well under fiberwise Hilbert transform and scattering relation

## Proof

In light of the first item, understand the action of $P_{-}=A_{-}^{*} H_{-} A_{+}$, e.g. find its SVD. Construct functions that

- extend smoothly under $A_{ \pm}$
- transform well under fiberwise Hilbert transform and scattering relation

$$
\mathcal{S}(\beta, \alpha)=\left(\beta+\pi+2 \mathfrak{s}_{\kappa}(\alpha), \pi-\alpha\right) .
$$

- are even or odd w.r.t. $\mathcal{S}_{A}:=\mathcal{S} \circ(\alpha \mapsto \alpha+\pi)$


## Proof

In light of the first item, understand the action of $P_{-}=A_{-}^{*} H_{-} A_{+}$, e.g. find its SVD. Construct functions that

- extend smoothly under $A_{ \pm}$
- transform well under fiberwise Hilbert transform and scattering relation

$$
\mathcal{S}(\beta, \alpha)=\left(\beta+\pi+2 \mathfrak{s}_{\kappa}(\alpha), \pi-\alpha\right) .
$$

- are even or odd w.r.t. $\mathcal{S}_{A}:=\mathcal{S} \circ(\alpha \mapsto \alpha+\pi)$

This produces four families of functions, some giving the $L^{2}-L^{2}$ SVD of $P_{-}$and the eigendecomposition of $C_{-}$.
In particular, Ran $P_{-}=\operatorname{ker} C_{-}$.
The SVD picture is identical to the Euclidean one!

## Outline

## (1) The Euclidean case

## (2) Const. Curv. Disks: Range Characterization

(3) Const. Curv. Disks: Singular Value Decomposition

## SVD: Statement

## Theorem (Mishra-M., preprint '19)

Let $M$ be the unit disk equipped with the metric $g_{\kappa}$ for $\kappa \in(-1,1)$. Define $\mathfrak{s}_{\kappa}(\alpha)$ and $\left\{\psi_{n, k}^{\kappa}\right\}_{n \geq 0, k \in \mathbb{Z}}$ as above, as well as

$$
\begin{aligned}
\widehat{Z_{n, k}^{\kappa}}(z) & :=\sqrt{\frac{n+1}{\pi}}(1-\kappa) \frac{1+\kappa|z|^{2}}{1-\kappa|z|^{2}} \underbrace{Z_{n, k}}_{\text {Zernike }}\left(\frac{1-\kappa}{1-\kappa|z|^{2}} z\right), \\
\widehat{\psi_{n, k}^{\kappa}} & :=2 \sqrt{1+\kappa} \psi_{n, k}^{\kappa}, \quad \sigma_{n, k}^{\kappa}:=\frac{1}{\sqrt{1-\kappa}} \frac{2 \sqrt{\pi}}{\sqrt{n+1}} .
\end{aligned}
$$

- $\left\{\widehat{Z_{n, k}^{\kappa}}\right\}_{n \geq 0,0 \leq k \leq n}$ ONB of $L^{2}\left(M, w_{\kappa}\right)$ where $w_{\kappa}(z):=\frac{1+\kappa|z|^{2}}{1-\kappa|z|^{2}}$.
- $\left\{\widehat{\psi_{n, k}^{\kappa}}\right\}_{n \geq 0,0 \leq k \leq n} O N$ in $L^{2}\left(\partial_{+} S M, d \Sigma^{2}\right) \cap \operatorname{ker}\left(i d-\mathcal{S}_{A}^{*}\right)$. For any $f \in w_{\kappa} L^{2}\left(M, w_{\kappa}\right)$ expanding as

$$
f=w_{\kappa} \sum_{n \geq 0} \sum_{k=0}^{n} f_{n, k} \widehat{Z_{n, k}^{\kappa}}, \quad \text { we have } \quad l_{0} f=\sum_{n \geq 0} \sum_{k=0}^{n} \sigma_{n, k}^{\kappa} f_{n, k} \widehat{\psi_{n, k}^{\kappa}} .
$$

## Proof (sketch)

- Take the functions in the range of $I_{0}$, namely,

$$
\psi_{n, k}^{\kappa}, \quad n \geq 0, \quad 0 \leq k \leq n,
$$

and prove that $Z_{n, k}^{\kappa}:=I_{0}^{*} \psi_{n, k}^{\kappa}$ is orthogonal on $M$ for some weight [Maass, Louis].

- Also show that $I_{0}^{*} \psi_{n, k}^{\kappa}=0$ for $k \notin 0 \ldots n$.

Note: $I_{0}^{*}$ depends on the weight in data space. Since $\psi_{n, k}^{\kappa}$ is orthogonal in $L^{2}\left(\partial_{+} S M\right)$, it is natural to define $I_{0}^{*}$ w.r.t. this topology.

## Const. Curv. Disks: Singular Value Decomposition

## Proof (ugly)

$\left(\beta_{-}, \alpha_{-}\right)(\rho, \theta)$ : coordinates of the unique curve through $\left(\rho e^{i 0}, \theta\right)$.

$$
I_{0}^{*} \psi_{n, k}^{\kappa}\left(\rho e^{i \omega}\right) \propto e^{i(n-2 k) \omega} \int_{\mathbb{S}^{1}} e^{i(n-2 k)\left(\beta_{-}+\mathfrak{s}\left(\alpha_{-}\right)\right)} \sqrt{\mathfrak{s}^{\prime}\left(\alpha_{-}\right)} \frac{e^{i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}+(-1)^{n} e^{-i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}}{2 \cos \left(\alpha_{-}\right)} d \theta
$$

## Const. Curv. Disks: Singular Value Decomposition

## Proof (ugly)

$\left(\beta_{-}, \alpha_{-}\right)(\rho, \theta)$ : coordinates of the unique curve through $\left(\rho e^{i 0}, \theta\right)$.

$$
\begin{aligned}
I_{0}^{*} \psi_{n, k}^{\kappa}\left(\rho e^{i \omega}\right) & \propto e^{i(n-2 k) \omega} \int_{\mathbb{S}^{1}} e^{i(n-2 k)\left(\beta_{-}+\mathfrak{s}\left(\alpha_{-}\right)\right)} \sqrt{\mathfrak{s}^{\prime}\left(\alpha_{-}\right)} \frac{e^{i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}+(-1)^{n} e^{-i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}}{2 \cos \left(\alpha_{-}\right)} d \theta \\
& \propto e^{i(n-2 k) \omega} \int_{\mathbb{S}^{1}} e^{i(n-2 k)\left(\beta_{-}+\mathfrak{s}\left(\alpha_{-}\right)\right)} U_{n}\left(\sin \left(\mathfrak{s}\left(\alpha_{-}\right)\right)\right) \mathfrak{s}^{\prime}\left(\alpha_{-}\right) d \theta \quad\left(U_{n}:\right. \text { Cheb 2) }
\end{aligned}
$$

## Const. Curv. Disks: Singular Value Decomposition

## Proof (ugly)

$\left(\beta_{-}, \alpha_{-}\right)(\rho, \theta)$ : coordinates of the unique curve through $\left(\rho e^{i 0}, \theta\right)$.

$$
\begin{aligned}
I_{0}^{*} \psi_{n, k}^{\kappa}\left(\rho e^{i \omega}\right) & \propto e^{i(n-2 k) \omega} \int_{\mathbb{S}^{1}} e^{i(n-2 k)\left(\beta_{-}+\mathfrak{s}\left(\alpha_{-}\right)\right)} \sqrt{\mathfrak{s}^{\prime}\left(\alpha_{-}\right)} \frac{e^{i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}+(-1)^{n} e^{-i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}}{2 \cos \left(\alpha_{-}\right)} d \theta \\
& \propto e^{i(n-2 k) \omega} \int_{\mathbb{S}^{1}} e^{i(n-2 k)\left(\beta_{-}+\mathfrak{s}\left(\alpha_{-}\right)\right)} U_{n}\left(\sin \left(\mathfrak{s}\left(\alpha_{-}\right)\right)\right) \mathfrak{s}^{\prime}\left(\alpha_{-}\right) d \theta \quad\left(U_{n}:\right. \text { Cheb 2) }
\end{aligned}
$$

Note the following relation:

$$
\beta_{-}(\rho, \theta)+\mathfrak{s}\left(\alpha_{-}(\rho, \theta)\right)+\pi=\theta-\tan ^{-1}\left(\frac{\kappa \rho^{2} \sin (2 \theta)}{1+\kappa \rho^{2} \cos (2 \theta)}\right)=\theta^{\prime}(\rho, \theta)
$$

## Proof (ugly)

$\left(\beta_{-}, \alpha_{-}\right)(\rho, \theta)$ : coordinates of the unique curve through $\left(\rho e^{i 0}, \theta\right)$.

$$
\begin{aligned}
I_{0}^{*} \psi_{n, k}^{\kappa}\left(\rho e^{i \omega}\right) & \propto e^{i(n-2 k) \omega} \int_{\mathbb{S}^{1}} e^{i(n-2 k)\left(\beta_{-}+\mathfrak{s}\left(\alpha_{-}\right)\right)} \sqrt{\mathfrak{s}^{\prime}\left(\alpha_{-}\right)} \frac{e^{i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}+(-1)^{n} e^{-i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}}{2 \cos \left(\alpha_{-}\right)} d \theta \\
& \propto e^{i(n-2 k) \omega} \int_{\mathbb{S}^{1}} e^{i(n-2 k)\left(\beta_{-}+\mathfrak{s}\left(\alpha_{-}\right)\right)} U_{n}\left(\sin \left(\mathfrak{s}\left(\alpha_{-}\right)\right)\right) \mathfrak{s}^{\prime}\left(\alpha_{-}\right) d \theta \quad\left(U_{n}:\right. \text { Cheb 2) }
\end{aligned}
$$

Note the following relation:

$$
\beta_{-}(\rho, \theta)+\mathfrak{s}\left(\alpha_{-}(\rho, \theta)\right)+\pi=\theta-\tan ^{-1}\left(\frac{\kappa \rho^{2} \sin (2 \theta)}{1+\kappa \rho^{2} \cos (2 \theta)}\right)=\theta^{\prime}(\rho, \theta)
$$

Now change variable $\theta \rightarrow \theta^{\prime}$ with $\frac{\partial \theta^{\prime}}{\partial \theta} \propto \frac{1-\kappa \rho^{2}}{1+\kappa \rho^{2}} \mathfrak{s}^{\prime}\left(\alpha_{-}(\rho, \theta)\right)$ :

Now use Euclidean knowledge.

## Proof (ugly)

$\left(\beta_{-}, \alpha_{-}\right)(\rho, \theta)$ : coordinates of the unique curve through $\left(\rho e^{i 0}, \theta\right)$.

$$
\begin{aligned}
I_{0}^{*} \psi_{n, k}^{\kappa}\left(\rho e^{i \omega}\right) & \propto e^{i(n-2 k) \omega} \int_{\mathbb{S}^{1}} e^{i(n-2 k)\left(\beta_{-}+\mathfrak{s}\left(\alpha_{-}\right)\right)} \sqrt{\mathfrak{s}^{\prime}\left(\alpha_{-}\right)} \frac{e^{i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}+(-1)^{n} e^{-i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}}{2 \cos \left(\alpha_{-}\right)} d \theta \\
& \propto e^{i(n-2 k) \omega} \int_{\mathbb{S}^{1}} e^{i(n-2 k)\left(\beta_{-}+\mathfrak{s}\left(\alpha_{-}\right)\right)} U_{n}\left(\sin \left(\mathfrak{s}\left(\alpha_{-}\right)\right)\right) \mathfrak{s}^{\prime}\left(\alpha_{-}\right) d \theta \quad\left(U_{n}: \text { Cheb } 2\right)
\end{aligned}
$$

Note the following relation:

$$
\beta_{-}(\rho, \theta)+\mathfrak{s}\left(\alpha_{-}(\rho, \theta)\right)+\pi=\theta-\tan ^{-1}\left(\frac{\kappa \rho^{2} \sin (2 \theta)}{1+\kappa \rho^{2} \cos (2 \theta)}\right)=\theta^{\prime}(\rho, \theta)
$$

Now change variable $\theta \rightarrow \theta^{\prime}$ with $\frac{\partial \theta^{\prime}}{\partial \theta} \propto \frac{1-\kappa \rho^{2}}{1+\kappa \rho^{2}} \mathfrak{s}^{\prime}\left(\alpha_{-}(\rho, \theta)\right)$ :

$$
I_{0}^{*} \psi_{n, k}^{\kappa}\left(\rho e^{i \omega}\right) \propto e^{i(n-2 k) \omega} \frac{1+\kappa \rho^{2}}{1-\kappa \rho^{2}} \int_{\mathbb{S}^{1}} e^{i(n-2 k) \theta^{\prime}} U_{n}\left(-\frac{1-\kappa}{1-\kappa \rho^{2}} \rho \sin \theta^{\prime}\right) d \theta^{\prime}
$$

Now use Euclidean knowledge.

## Proof (ugly)

$\left(\beta_{-}, \alpha_{-}\right)(\rho, \theta)$ : coordinates of the unique curve through $\left(\rho e^{i 0}, \theta\right)$.

$$
\begin{aligned}
I_{0}^{*} \psi_{n, k}^{\kappa}\left(\rho e^{i \omega}\right) & \propto e^{i(n-2 k) \omega} \int_{\mathbb{S}^{1}} e^{i(n-2 k)\left(\beta_{-}+\mathfrak{s}\left(\alpha_{-}\right)\right)} \sqrt{\mathfrak{s}^{\prime}\left(\alpha_{-}\right)} \frac{e^{i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}+(-1)^{n} e^{-i(n+1) \mathfrak{s}\left(\alpha_{-}\right)}}{2 \cos \left(\alpha_{-}\right)} d \theta \\
& \propto e^{i(n-2 k) \omega} \int_{\mathbb{S}^{1}} e^{i(n-2 k)\left(\beta_{-}+\mathfrak{s}\left(\alpha_{-}\right)\right)} U_{n}\left(\sin \left(\mathfrak{s}\left(\alpha_{-}\right)\right)\right) \mathfrak{s}^{\prime}\left(\alpha_{-}\right) d \theta \quad\left(U_{n}: \text { Cheb } 2\right)
\end{aligned}
$$

Note the following relation:

$$
\beta_{-}(\rho, \theta)+\mathfrak{s}\left(\alpha_{-}(\rho, \theta)\right)+\pi=\theta-\tan ^{-1}\left(\frac{\kappa \rho^{2} \sin (2 \theta)}{1+\kappa \rho^{2} \cos (2 \theta)}\right)=\theta^{\prime}(\rho, \theta)
$$

Now change variable $\theta \rightarrow \theta^{\prime}$ with $\frac{\partial \theta^{\prime}}{\partial \theta} \propto \frac{1-\kappa \rho^{2}}{1+\kappa \rho^{2}} \mathfrak{s}^{\prime}\left(\alpha_{-}(\rho, \theta)\right)$ :

$$
I_{0}^{*} \psi_{n, k}^{\kappa}\left(\rho e^{i \omega}\right) \propto e^{i(n-2 k) \omega} \frac{1+\kappa \rho^{2}}{1-\kappa \rho^{2}} \int_{\mathbb{S}^{1}} e^{i(n-2 k) \theta^{\prime}} U_{n}\left(-\frac{1-\kappa}{1-\kappa \rho^{2}} \rho \sin \theta^{\prime}\right) d \theta^{\prime}
$$

Now use Euclidean knowledge.
At least 3 miracles along the way.

The X-ray transform on constant curvature disks

## Const. Curv. Disks: Singular Value Decomposition

## Visualization: $\left\{Z_{n, k}^{\kappa}\right\}_{0 \leq n \leq 5,0 \leq k \leq n}, \kappa=-0.8$



The X-ray transform on constant curvature disks

## Const. Curv. Disks: Singular Value Decomposition

## Visualization: $\left\{Z_{n, k}^{\kappa}\right\}_{0 \leq n \leq 5,0 \leq k \leq n}, \kappa=-0.4$



The X-ray transform on constant curvature disks

## Const. Curv. Disks: Singular Value Decomposition

## Visualization: $\left\{Z_{n, k}^{\kappa}\right\}_{0 \leq n \leq 5,0 \leq k \leq n}, \kappa=0$



The X-ray transform on constant curvature disks

## Const. Curv. Disks: Singular Value Decomposition

## Visualization: $\left\{Z_{n, k}^{\kappa}\right\}_{0 \leq n \leq 5,0 \leq k \leq n}, \kappa=0.4$



The X-ray transform on constant curvature disks

## Const. Curv. Disks: Singular Value Decomposition

## Visualization: $\left\{Z_{n, k}^{\kappa}\right\}_{0 \leq n \leq 5,0 \leq k \leq n}, \kappa=0.8$



## Conclusions

On the geodesic X-ray transform on constant curvature disks

- Range characterizations via either projection operators or moment conditions.
- SVD of $I_{0}$ for a special choice of weights on $M$ and $\partial_{+} S M$.


## Conclusions

On the geodesic X -ray transform on constant curvature disks

- Range characterizations via either projection operators or moment conditions.
- SVD of $I_{0}$ for a special choice of weights on $M$ and $\partial_{+} S M$.

Perspectives:

- tensor tomography, regularity of special invariant distributions,
- sharp Sobolev mapping properties for $I_{0}$.
- generalize to other (non-CC, non-symmetric) geometries.


## Conclusions

On the geodesic X -ray transform on constant curvature disks

- Range characterizations via either projection operators or moment conditions.
- SVD of $I_{0}$ for a special choice of weights on $M$ and $\partial_{+} S M$.

Perspectives:

- tensor tomography, regularity of special invariant distributions,
- sharp Sobolev mapping properties for $I_{0}$.
- generalize to other (non-CC, non-symmetric) geometries.

Thank you

Reference:

- R. K. Mishra, F. M., Range characterizations and Singular Value

Decomposition of the geodesic X-ray transform on disks of
constant curvature, preprint (2019) - arXiv:1906.09389


[^0]:    viewpoints.

