
9/19/19

1

1 of 40

FPGA Acceleration for 3D Low-Dose CT

Ming Jiang
Peking University
ming-Jiang@pku.edu.cn

MS 1 : Applied Mathematics in Tomography
Conference on Modern Challenges in

Imaging
2019.08.08

Presentation based on materials/comments from Jason Cong, Yong Cui, William
Hsu, Alfred Louis, Xiuhong Li, Yun Liang, Guojie Luo, Peter Maass, Thomas Page,
Linjun Qiao, Frank Natterer, Thomas Schuster, Wentai Zhang.

2 of 40

Outline
• Background & Motivation

o Energy-efficient computing with FPGA
• Asynchronous parallel iterative algorithms

o Communication model
• FPGA implementation

o Techniques for implementation
• Summary

3 of 40

Mumford-Shah functional as a regularization

for image reconstruction

! " # − % & + ()
*\,

-# & +. /

• Avoid computing derivatives cross edges

• Simultaneous reconstruction of image and its segmentation

• NP-hard when A is not the identity

• Geman and Geman [1984]

• Mumford and Shah [1989]

• Ambrosio [1989]

• De Giorgi, Carriero, and Leaci [1989]

• Vese, Chan [2000]

• Chan, Esedoglu and Nikolova [2004]

• Cai, Chan, Zeng [2013]

• Chan, Yang, Zeng [2014]

• Rondi and Santosa [2001]

• Rondi [2007]

• Alexeev, and Ward [2010]

• Fornasier, March, Solombrino [2011]

• Scherzer [2011, 2014]

• Ramlau, Ring [2010]

• Klann, Ramlau [2013]

• ………

• Jiang, Maass, Page [2014]

• Storath, Weinmann; Frikel, Unser [2015]

• Hohm, Storath, Weinmann [2015]

• Carriero, Leaci, Tomarelli [2015]

An incomplete list…..

4 of 40

https://en.wikipedia.org/wiki/Transistor_count

Dark silicon

5 of 40

Customization and Specialization

Based on Fred Pollack (Intel) and Michael Taylor (UCSD)

Adapt the architecture to
application domain

i386
i486

Pentium®
Pentium Pro®

nuclear reactor

Pentium II®
Pentium III®

Pentium® 4

hot plate

rocket
nozzle

sun’s surface

Parallelization
Customization

1.5µ 1.0µ 0.7µ 0.5µ 0.35µ 0.25µ 0.18µ 0.13µ 0.10µ 0.07µ
1

10

100

1000

W
at

ts
/c

m
2

Power consumption doubled every 4 years

Curtesy of Prof. Jason Cong

6 of 40

Energy-efficient computing with FPGA
• FPGA is another hardware accelerating approach

– Multi-core-CPU clusters, GPU and DSP,.
• FPGA (field-programmable gate array)

– function is defined by a user's program
– reconfigurable for computing
– Limited onboard memory vs others

• Xilinx Virtex-7 board VC707 at 100MHz
– 485K logic gates, 4.5MB onboard memory
– Transistor count: 6,800,000,000
– 4.5W (~consumer LED lamp)

• How to make the best use of it?

https://en.wikipedia.org/wiki/LED_lamp

9/19/19

2

7 of 40

Logical circuits of an 8-bit Adder

Gate-Level Diagram of an 8-bit Kogge-Stone Parallel Prefix Adder
http://venividiwiki.ee.virginia.edu/.......

8 of 40

FPGA Implementation of Mumford-Shah
Imaging Algorithm

XCT Reconstruction with Mumford-Shah: 200K LUT (logic look-up tables)

9 of 40

High-level Synthesis C->FPGA
• Energy-efficient accelerator-rich architecture
• Optimization under the performance, power, and cost

constraints
• Extensive use of accelerators (algorithmic blocks)
• Limited onboard memory with full control including

precision
– Extendable

• VivadoHLS of Xilinx
– https://www.xilinx.com/products/design-tools/vivado.html

• How to design algorithms for FPGA
– to enable the advantages of FPGA

Cong et al, High-Level Synthesis for FPGAs: From Prototyping to Deployment, 2011.

10 of 40

Outline

• Background & Motivation
o Energy-efficient computing with FPGA

• Asynchronous parallel iterative algorithms
o Communication model

• FPGA implementation
o Techniques for implementation

• Summary

11 of 40

Iterative methods
• Many algorithms have the structure

! " + 1 = & !(") , " = 0, 1, ⋯
!(") ∈ ℝ., &: ℝ. → ℝ..

• Component form
!2 " + 1 = &2 !3 " , ⋯ , !. " , 4 = 1,⋯ , 5.

• It can be parallelized by letting each one of 5
processors update a component !2 by &2,
– at each stage, the 4-th processor

§ has the value of all components of !(") on which &2 depends,
§ computes the new value !2 " + 1 ,
§ communicates it to other processors in order to start the next

iteration.

Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.

12 of 40

Block iterative methods
• A coarse-grained parallelization of iterative methods

with ! processors.

• Each iteration
• "#: ℝ& → ℝ&(, ∑#*+, -# = -,

/# 0 + 1 = "# / 0 , 4 = 1,⋯ , !.

• Each "# is updated by one of the ! processors.

• Reasons
§ there may be too few processors available.
§ block-parallelization reduces the communication

expense.

Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ClassECE6332Fall12Group-Fault-Tolerant_Reconfigurable_PPA
https://www.xilinx.com/products/design-tools/vivado.html

9/19/19

3

13 of 40

Jacobi and Gauss-Seidel Iterations
• Jacobi-type iteration
• all components, simultaneously, updated and made available for next iteration

!" # +1 = '" !(# ,⋯, !+ #

• Gauss-Seidel Iteration
• components are updated, one at a time, using the most recently computed values of

other components

!" # +1 = '" !(# +1 ,⋯, !",(# +1 , !" # ,⋯, !+ #

• updated in a cyclic order from 1 to - (or . for block iterative methods).
• One update of all components is a sweep.

Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.

14 of 40

Gauss-Seidel Iteration
• They incorporate the newest available

information.
• Hence, they sometimes converge faster than the

corresponding Jacobi-type algorithms.

• Gauss-Seidel algorithms can have different
updating orders for !".

• In addition to the cyclic order, there are other
orders.
Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.
Censor and Zenios, Parallel Optimization: Theory, Algorithms and Applications, 1997.

15 of 40

Parallelization of Jacobi and Gauss-
Seidel Iterations

• Jacobi-type iteration
• all components, simultaneously, updated with the current values and made

available for next iteration

• !" # +1 = '" !(# ,⋯, !+ # , # = 0, 1,⋯

• Synchronous update: next iteration waits until all updates are conducted

• Gauss-Seidel Iteration
• each update is computed with the latest available values of other components

!" # +1 = '" !(."(#)) , 0 ≤ ." # ≤ #, # = 0, 1,⋯

• The latest available may not be available, but earlier values, due to communication
delay.

• Asynchronous update: iterations starts as soon as any recent values are available.
Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.
Avron, et al, Revisiting asynchronous linear solvers: provable convergence rate through randomization, Journal

of ACM, 2015.

16 of 40

Stochastic gradient descent method
min
$
% & = (

)
%)(&)

• Instead of using full gradient, partial gradients of components are used.
• Its sequential version is

& , + 1 = /) & , = & , − 12%)(& ,)
/) : ℝ5 → ℝ5

• Its asynchronous version is
&(, + 1) = &(7)(,)) − 1(,)2%)(&(7)(,))),	7)(,) ≤ t.	

• Convex constraint leads extra projections onto convex sets.
• Incremental gradient descent
• Ordered-subset algorithm in engineering
• Block-iterative method in image reconstruction

Kiwiel, Convergence of approximate and incremental subgradient methods for convex optimization, SIAM J. Optim., 2004.
Liu, et al, An Asynchronous Parallel Stochastic Coordinate Descent Algorithm, J. of Machine Learning Research, 2015.
Hannah and Yin, More Iterations per Second, Same Quality – why Asynchronous Algorithms may Drastically Outperform

Traditional Ones, 2017. Preprint.

17 of 40

Kaczmarz Algorithm
• To	solve	systems	of	linear	equations,	

34 = 6

• find	(relaxed)	projections	onto	each	
hyperplane	iteratively,

4?@AB = 4?@ +D@3?,E
6E −3E4@

3E G

• It is an Gauss-Seidel iteration.
– Frank Natterer and Alfred Louis

• Also called the algebraic reconstruction
technique (ART)

4@AB = 4@ +D@
HIJ KI,LM

KI N
3EOP

3E4@AB = 3E4@ +D@
6E −3E4@

3E G
3E3EOP

= 3E4@ +D@ 6E −3E4@
= 6E, if D@ = 1.

18 of 40

Kaczmarz Algorithm
• It is a stochastic gradient descent.

! " = 12&'()

* +'" −-' .

+' .

/' " = 12
+'" −-' .

+' .

01/' " = +2,'
+'" −-'
+' .

"245) = "24 +74+2,'
-' −+'"4
+' .

Its sequential version converges under the diminishing condition.
Its asynchronous iteration is not well covered in literature.

9/19/19

4

19 of 40

X3

X XX2

X1

Schedule/
Partition

step

ART1

ART2

ART3
X3

X1

X2

Asynchronous Parallel Kaczmarz (I)
• Parallel Gauss-Seidel Iteration

20 of 40

Asynchronous Parallel Kaczmarz (II)

• Not the conventional Kaczmarz method.
• More accelerators, more asynchronous updates with conflicts.

• The hope is that later updates will resolve the conflicts, even slowly.
• The solution is to use small or diminishing relaxations,

!
" ∑!

" = +∞

X1

X2

X3

A

C

B

X1 A, C t1 A1, C1
X2 A, B t2 A2, B2
X3 C, B t3 C3, B3

In the next update of X1, will C1 or C3 be used?

21 of 40

Experiments – Kaczmarz method(I)
• !" = 0.05, !()" = *

+)",(,- = 1
• No noise.
• 10 iteration
• Display window not adjusted

Kaczmarz Asynchronous parallel Kaczmarz with 3 threads

22 of 40

Experiments – Kaczmarz method(IV)
• !" = 1.5
• Gaussian noise: 0.05
• 10 iteration
• Display window = [0 1]

Kaczmarz Asynchronous parallel Kaczmarz with 3 threads

23 of 40

Heuristics for Asynchronous Parallelism
• Heuristics

– ������
– Haste does not bring success.
– Haste makes waste.
– Eile mit Weile. (from Google translate)
– Immer mit der Ruhe. (from Thomas Schuster)

• Examples
– Lifting heavy object by a group people
– Painting a big picture by a group of painters

• My lessons
ü Do not use full strength, but do it slowly and slowly.
ü No waiting does not mean to be hash.

• Expected performance
– reconstruction images in early iterations even with small or diminishing

relaxation, as ordered-subset methods do.

Egyptian laborers lift the Stargate out of the
ground in 1928
http://stargate.wikia.com/wiki/Tau'ri

24 of 40

Convergence results (I)

• Linear	system	of	equations
01 = 3

• [C. M.] 0 symmetric and positive definite
– 4 0 < 1: convergence.
– 4 0 ≥ 1: no convergence.

• [L. W. S.] Consistent system under the same spectral
condition.

• Kaczmarz algorithm, or ART, does not fit.

Rosenfeld, A case study in programming for parallel-processors, Communications of the ACM, 1969. (research
report in 1967).

Chazan and Miranker, Chaotic relaxation, Linear Algebra and its Applications, 1969.
Liu, Wright, and Sridhar, An Asynchronous Parallel Randomized Kaczmarz Algorithm, 2014. Preprint.

http://stargate.wikia.com/wiki/Egypt
http://stargate.wikia.com/wiki/Stargate
http://stargate.wikia.com/wiki/1928
http://stargate.wikia.com/wiki/Tau'ri

9/19/19

5

25 of 40

Convergence results (II)
• !:ℝ$ → ℝ$ contraction.
• Components update

– !&:ℝ$ → ℝ$' , ∑&)*+ ,& = ,,
.& / + 1 = !& . /

• Extension of [C. M.]
• Convergence for consistent linear systems

– weakly diagonal dominated matrices
– irreducible nonnegative matrix and positive solutions.

• Kaczmarz does not fit.

Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.
Frommer, On asynchronous iterations, Journal of Computational and Applied Mathematics, 2000.
Frommer and Spiteri, On linear asynchronous iterations when the spectral radius of the modulus matrix is one.

Topics in numerical analysis, 2001.

26 of 40

One convergence result
• Asynchronous version

!(# + 1) = !(#) −)(#)*+,(!(-,(#)).	
• Convexity

• Diminishing relaxations

• Bounded delay

§)~ 1
23 , 5 ≤ 1.

§ # ≤ -, # + 7.

Nedić, Bertsekas, Borkar, Distributed asynchronous incremental subgradient methods, 2001.

27 of 40

Diversified convergence results
• Different asynchronous models

– Master or without master?
– Update all or partial solution vector?

• Different combinations of object functions
– Fidelity + regularization

• Different communication assumptions
– Mostly ambiguous
– Not well modelled w.r.t computing architecture.

• Different relaxations
– Fixed or diminishing?

• Deterministic or probabilistic convergence.
• Low precision implementation

– Big data applications typically requires low accuracy

Liu, Wright, et al, An Asynchronous Parallel Stochastic Coordinate Descent Algorithm, J. of Machine Learning Research,
2015.

Hannah and Yin, More Iterations per Second, Same Quality – why Asynchronous Algorithms may Drastically Outperform
Traditional Ones, 2017. Preprint.

De Sa, et al, Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent, ISCA'17, 2017.

28 of 40

CPU Operation vs Memory Access
• x86 CPU fast for

arithmetic operations
– ~1 cycle

• X86 bus architecture
slow for memory access
– ~10 cycle

• Memory Wall

http://courses.cs.vt.edu/cs2506/Fall2014/Notes/L16.CachePoliciesAndPerformance.pdf

Intel® 64 and IA-32 Architectures
Optimization Reference Manual,
2016.

Writing Cache Friendly Code…
Memory protection from CPU
instruction, to operating
systems. …

29 of 40

Asynchronous updates in data flow

CPU

System Cache

Main Memory FPGA/GPU

Registers

On-board Memory

Complicated multiple
asynchronous delays at

arrow ends

!(#) ← !(#) − '()* +
,# !

!(- + 1) = !(1#(-)) − '(-)),#(!(1#(-))),	1#(-) ≤ t.	

30 of 40

Outline
• Background & Motivation

o Energy-efficient computing with FPGA
• Asynchronous parallel iterative algorithms

o Communication model
• FPGA implementation

o Techniques for implementation
• Summary

9/19/19

6

31 of 40

High-level Synthesis C->FPGA
• Energy-efficient accelerator-rich architecture
• Can be optimized under the performance, power, and

cost constraints
• Extensive use of accelerators (algorithmic blocks)
• Limited onboard memory vs others

– Extendable

• VivadoHLS of Xilinx
– https://www.xilinx.com/products/design-tools/vivado.html

• How to design algorithms for FPGA?
Ø Asynchronous iterative parallel algorithms

32 of 40

Beam-based SGD for Mumford-shah
Regularization

! " # − % & + (!)& *# & ++!, *) & + (1 −))
&

4,

=2
3
#(4, %3) =2

3
#3(4)

• Gamma-approximation by edge indicator
• Beam-based gradient descent,

4(6) ← 4(6) − 89*:(;)#6 4(6)
• Alternative minimization algorithm for # and)

• Enable fine-grained parallelism, natural for CT
• Accelerators with minimum data communication
• Reduce communication latency and back-projection computation

FPGA Acceleration for 3D Low-Dose Tomographic Reconstruction, submitted to IEEE Transactions on
Parallel and Distributed Systems, 2019.

33 of 40

Implementation Techniques (I)
• Pipeline for streaming dataflow

• Achieve Load balance in the hardware
pipeline.

34 of 40

Tile-based memory optimization

• Frequent large sized I/O of image and projection data
in 3D.
– Memory intensive.

• Tile the image and projection data
– Prefetching and buffering strategy.
– Mathematical problem has not formulated.

• Achieve a high data reuse rate
• Save the memory bandwidth
• Increase performance

Linjun Qiao, Poster at this workshop.

35 of 40

FPGA for XCT with Mumford-Shah
36 of 40

Low-dose CT Experment

• CT ACR 464
phantom on the

• SOMATOM
Definition AS at
UCLA.

• Voltage: 120KV
• Current: 215, 150,

100, or 50mA.

https://www.xilinx.com/products/design-tools/vivado.html

9/19/19

7

37 of 40

Results (SSIM)

• 8.5 minutes to reconstruct a typical 3D lung
image with a quality comparable with the
vendor’s result.

38 of 40

Outline

• Background & Motivation
o Energy-efficient computing with FPGA

• Asynchronous parallel iterative algorithms
o Communication model

• FPGA implementation
o Techniques for implementation

• Summary

39 of 40

Summary

• Mumford-Shah regularization for XCT

– FPGA implementation with a quality comparable with the

vendor’s result.

• Asynchronous parallel computation is necessary for

architectures with rich computing units

– multi-core CPU/GPU

– accelerators rich FPGA

– multi-node supercomputer

• Algorithms with communication model

– Memory access/communication expense should not be

ignored

40 of 40

• Supported by
– National Science Foundation of China (61520106004).
– National Basic Research and Development Program of China (973 Program)

(2015CB351803).

Thank you for your attention.

