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Aside: In my home town of Whaley Bridge, Derbyshire
over this weekend



Bragg edge spectra

Each crystolagraphic plane produces one “edge”. When the crystal is

strained in the direction of the neutron beam the edge will move

proportionately. The average shift of the mid point of the derivative of

the spectrum gives the longitudinal ray transform of the strain. See talks

by Uhlamnn, Kishnan, Monard, Abhishek, Vashisth in this meeting for

more tensor tomography!



Beyond integrals

In conventional tomography we consider integrals along ray in
direction ξ

R(x , ξ) =

∞∫
−∞

f (x + tξ) dt

What if instead of the integral we knew the distribution or for
discrete measurement to histogram along rays.
Put simply for each x , ξ, and each y in the range of f the measure
of the set of t values for which f (x + tξ) < y is the cumulative
distribution Φf ,x ,ξ(y), and the distribution is φf ,x ,ξ(y) = Φ′f ,x ,ξ(y).



Illustration of distribution and cumulative distribution



We define the scalar histotomography transform

Hf (x , ξ) = φf ,x ,ξ



Moments

For a function of one variable f

f̄ =

∫
R
yφf (y) dy =

∫
Ω
f (x) dx

is the integral (rather than the mean in probability distributions).
We also define the k-th moment for k ∈ N as

mk f =

∫
R
ykφf (y) dy =

∫
Ω
f (x)k dx .

While the above is perhaps familiar for non-negative functions [2,
Cor. A.1.] proves it for functions that can take negative values.



Moment transform

We recover the Radon transform from the first moment of the
Histotomography transform

Rf (x , ξ) = Hf (x , ξ, ·).

We also have higher moments

mkHf (x , ξ, ·) = R(f k)(x , ξ).



For the scalar case each of the moments produce no more data
than the Radon transform and for a non-negative function exactly
the same data!
A non-negative bounded function is determined completely by its
moments [1] so the data are identical.
It is interesting to note however that while fitting a function f to
its histotomography data Hf is a non-linear problem, each of the
problems is linear



Level set reconstruction

Consider the sub level set (ie inside a contour)

Sf (y) := {x ∈ Rn|f (x) ≤ y}

Let χSf (y)(x) be the function that is 1 for x ∈ Sf (y) and 0
elsewhere. Then

RχSf (y)(x , ξ) = Φf ,x ,ξ(y)

so the cumulative distribution gives the Radon transform of the
sub level set (or the histogram bin gives a ‘fat’ contour)



Why?

Example: In infra-red chemical species tomography (CST)
suppose there is a species that absorbs strongly at one wavelength,
and suppose that wavelength depends monotonically on frequency.
The absorption spectrum then gives a histogram of the
temperature along the line.
In CST it is widely thought that because they measure a function
rather than a scalar along each line they should be able to do
tomography with fewer projections.
What we know is that for a full set of projections we have the
same data several times (each moment), and that with each bin of
the histogram we essentially get a contour.



Tensor ray transforms

Vector field v , second rank symmetric tensor field f define the
longitudinal ray transform (LRT) as

Iv(x , ξ) =

∞∫
−∞

ξ · v(x + tξ)dt

If (x , ξ) =

∞∫
−∞

ξ · f (x + tξ) · ξ dt

for x , ξ ∈ Rn, ξ 6= 0 where · denotes contraction.
Similarly rank for k.



The LRT has a null space consisting of potential tensor fields.
In the case of vector fields this is just the usual definition, f = ∇u
for a scalar u.
Potential rank-2 tensor fields are those that can be expressed as
f = (∇u +∇uT )/2 for some vector field u.
In general, following [12], we define the operator d from rank-k to
rank k + 1 formed by differentiation and symmetrization.
For n ≥ 2 there is an explicit reconstruction for f from If of
filtered back projection type, modulo this null space.



Let Pξ be the projection of a symmetric second rank tensor field on
to the plane perpendicular to ξ, then the transverse ray transform
is defined as

Jf (x , ξ) =

∞∫
−∞

Pξf (x + tξ) dt.

We consider the important case of dimension n = 3. For a
direction η ∈ R3,

η · Jf (x , ξ) · η =

∞∫
−∞

η · f (x + tξ) · η dt

so in any plane normal to η this is simply the Radon transform of
the component η · f · η. This means there is a simple
reconstruction for six suitably chosen[9] directions η.
Both these problems have histotomography version, in which data
is the distribution of ξ · f (x + tξ) · ξ or Pξf (x + tξ) respectively,
along the ray x + tξ.



A special case

In the case of the TRT with histogram data, one special case is
that we have the distribution of η · f · η along lines on a plane
normal to η. As this is a Radon transform we have reduced to the
scalar histotomography problem for this component on this plane.
This means we can use any of the limited data methods we have
for the scalar histotomography problem



Doppler velocimetry

As Schuster [11] explains Doppler velocity tomography data is
already understood as the distribution of velocity components
along a line, in the direction of a line.
What we call the HLRT of the velocity field. The first moment is
typically used and of course this gives only the solenoidal part of
the velocity leaving the potential part to be determined by other
means.



Potential part from the moment data

However consider the second moment which is the integral of
(v .ξ)2 along the line. Suppose the solenoidal part of v has already
been recovered from the first moment and subtracted from the
data, so without loss of generality v = du for a scalar u. We notice
the second moment is nothing but the LRT of the rank-2 tensor
du � du, from [12] we know we can recover the Saint-Venant
tensor, or equivalently the Kröner tensor [6]

Kmn = εmikεnj` (u,iu,j)k` = εmikεnj`u,iku,j`

where indices after commas denote differentiation



In 2D - a plane at a time

Consider now typical elements

K11 = u2
,23 − u,22u,33

while
K12 = 2(u,12u,33 − u,13u,23)

and the tensor K determines all the minors of the second derivative
matrix (d2u)ij = u,ij . Hence the adjugate matrix Adjd2u, and
hence d2u up to sign if det non zero . In particular
trace d2u = ∇2u is known and with suitable Dirichlet boundary
data for u, we know u.



If only we to do that for rank 2!

The LRT is interesting as occurs in Bragg edge neutron strain
tomography. Linear strain is a symmetric derivative ε = du where
u is the displacement vector field.
This is in the null space of the LRT . In practice this means the
LRT data can only measure the change in the shape of the exterior
of an object.
Of course one can use the finite element method to find u if the
elastic modulus is known.
But can more data be extracted from neutron spectra?



Bragg edge spectra

Each crystolagraphic plane produces one “edge”. When the crystal
is strained in the direction of the neutron beam the edge will move
proportionately. The LRT comes from the average shift of the mid
point of the derivative of the spectrum.



A new insight

Zoom in on one Bragg edge (needs sufficient resolution of neutron
wavelengths). The derivative of the spectrum gives the histogram
LRT data up to a constant.



Not so easy

Again from the histogram data we can deduce moments, and the
k-th moment is the LRT of the symmetric powers du � · · · � du=
du�k . These are not potential but they have a potential part. So
we can recover the Saint Venant tensor of these.
Unfortunately each is a non-linear partial differential equation for
u. Solving for u is more work than using the FEM method
mentioned above.
However if the FEM method us used with assumed elastic moduli
it is a way to check the solution is consistent with the full spectral
data for each edge.



Strain from diffraction pattern?

I Polycrystalline in a monochromatic x-rays beam give
Bragg-Scherer rings [9]. Deformed to concentric ellipses by
strain. Diffraction pattern in 2D but ellipses given by three
parameters so not exactly histo-TRT.

I Single crystal diffraction (x-ray, electron, neutron?) gives
diffraction spots blurred by strain, giving a distribution of
displacement vectors. Hence histo-TRT. See eg [7]

More on histogram tomography in my preprint[8].
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