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Hybrid magnetic modalities: motivation

Imaging of electric conductivity is of high interest for cancer diagnostics.

Conductivity in tumors is much higher than that in healthy tissues
=⇒ conductivity imaging can yield high contrast.

Electrical impedance tomography (EIT) and other electromagnetic only
modalities lead to strongly non-linear and ll-posed inverse problems

Idea: Use hybrid techniques, couple electromagnetism with either ultra-
sound or magnetic resonance (MRI).



Hybrid magnetic modalities: a short list

Below the better known modalities are listed first:

MRI based hybrids:
Magnetic resonance electrical impedance tomography (MREIT)
Current density impedance imaging (LF-CDII and RF-CDII)
Magnetic resonance electrical properties tomography (MREPT)

Ultrasound hybrids:
Magnetoacoustic Tomography with Magnetic Induction (MAT-MI)
Magnetoacoustoelectric Tomography (MAET aka LFEI)
Magnetoacoustic Tomography with Current Injection (MAT-CI)
Magnetoacoustoelectric Tomography with Coil Pickup (MAET-MI)

Nice review:
"Hybrid tomography for conductivity imaging"
T. Widlak and O. Scherzer, Inverse Problems 28 (2012) 08400



Currents and fields in MRI-based modalities tissues

The object is placed in an MRI scanner.

Current J(t,x) is generated in the object either by applying a potential on
the boundary, or (recently) by a coil exciting eddy currents ...

There are no sinks or sources of charges inside the object, so
∇ · J(t,x) = 0.

The current excites a (weak) magnetic field B1(t,x)
(under quasistatic approximation)

∇×B1(t,x) = µ0J(t,x),

where µ0 is magnetic permitivity (assumed constant in R3).

Or (by Biot-Savart law),

B1(t,x) =
µ0

4π

∫
J(y, t)× x− y

|x− y|3
dy, x ∈ R3.



Data acquisition in MREIT, MREPT, and CDI

In the scanner, there isa strong constant magnetic field B0(x) = (0, 0, B0(x)).
produced by the main coil of the machine, with B0 � B1

The normal MRI scan is conducted. Then it is repeated with J(x) replaced
by −J(x).

Without the current, the MRI machine would produce a structural image of
the object. The induced magnetic field B1 distorts the image. By subtracting
the measurements obtained with J(x) and −J(x) one is able to recover
spatial distribution of ~e3 ·B1 ( a vertical component of B1).

By rotating the object in the MRI machine, one can get the whole B1 and
hence J(x) (CDI). But it would be nice to avoid the rotation!!!

Alternatively, one repeats the measurements with different currents J(k)(x),

k = 1, 2, ... to obtain ~e3 ·B(k)
1 , k = 1, 2, ...



Acoutic coupling: MAT-CI
(Magnetoacoustic Tomography with Current Injection)

MRI machine is too expensive!
Instead, generate an acoustic wave in the object and record the pressure.
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The source of the acoustic wave is the Lorentz force.



MAT-CI (continued)

Current = free charges moving in a magnetic field B0.

Lorentz force for a single charge q: F = qV ×B0.

Lorentz force for a current J(t,x): F(t,x) = J(t,x)×B0.

For the pressure p(t,x) the Euler equation + mass conservation yield

∆p(t,x)− 1

c2

∂2

∂t2
p(t,x) = ∇ ·F(t,x) = ∇ · [J(t,x)×B0] = B0 · ∇×J(t,x).

I.e. the source term is a projection on B0 of the curl ∇×J(t,x).

If the current is pulsed, i.e. J(t,x) = δ
′
(t)J(x), Cauchy problem:

∆p(t,x)− 1

c2

∂2

∂t2
p(t,x) = 0, p(0,x) = B0 · ∇×J(x), pt(0,x) = 0,

where p(t, z) is measured at all z ∈ Σ (a measurement surface)



MAT-CI (continued)

Reconstructing B0 · ∇×J(x) from p(t, z), z ∈ Σ is the inverse source
problem similar to TAT/PAT (thermo- and photo- acoustic tomography)!!!

In order to obtain enough data the transducer should move along Σ.

Good news:
one can simultaneously use several transducers or a transducer array.

In order to obtain curl ∇×J(x) one has to repeat measurements at least two
times with a rotated object or rotated B0.

In order to reconstruct several curls ∇×J(k)(x), k = 1, ..3 one has to repeat
measurements with different injected currents J(k)(x).



MAET (Magnetoacoustoelectric Tomography)
MAET = MAT-CI in reverse.
The transducer is transmitting ultrasound pulses.
The Lorentz force generates an electric current.

The resulting electric potential is measured on the boundary.



Physics & mathematics of MAET

Charges vibrating with velocity V (t,x) produce Lorentz currents JL(t,x):
JL(t,x) = σ(x)V(t,x)×B0

The total current J is a sum of JL and the Ohmic current JO = σ(x)∇u(t,x):
J = JO + JL,

where u(t,x) is the electric potential.

Since ∇ · J = 0,

∇ · σ(x)∇u(t,x) = −∇ · (σ(x)V(t,x)×B0) .

BC: there is no current throught the boundary, n · J(t, z) = 0 for z ∈ ∂Ω.

Potential u(t,x) is measured at several points on the boundary.
However, only difference of potentials makes a physical sense.



Reciprocity

Suppose we are measuring the difference of potentials
M(t) ≡ u(z2, t)− u(z1, t), for z1, z2 ∈ ∂Ω.

Consider a virtual current JLead(x) that would flow in the object if a unit
current were injected at the point z2 and extracted at the point z1.

Using the second Green’s identity (= reciprocity principle) one can show

M(t) ≡ u(z2, t)− u(z1, t) =

∫
Ω

B0 · JLead(x)×V(t,x)dx.

In MAET the measurement tests a virtual current JLead(x) as opposed to real
currents in MAT-CI.



More on MAET

Assume that speed of sound c and density ρ are constant.

Then, velocity is the gradient of the velocity potential ϕ(t,x):

V(t,x) =
1

ρ
∇ϕ(t,x),

where velocity potential ϕ(t,x) is the time anti-derivative of pressure p(t,x):

p(t,x) =
∂

∂t
ϕ(t,x).

This leads to
M(t) ≡ u(z2, t)− u(z1, t) =

1

ρ
B0 ·

∫
Ω

ϕ(t,x)∇× JLead(x)dx

Since ϕ(t,x) solves the wave equation, the problem of finding
B0 · (∇× JLead(x)) is the same inverse source problem as before.

Mathematically, MAT-CI and MAET are identical. However...



MAET vs MAT-CI

In MAET, one can measure several potential differences simultaneously,
and obtain the data to recover B0 · (∇× J

(k)
Lead(x)), k = 1, 2, 3, ..

However, only one acoustic field can be utilized at a time.

In MAT-CI one can use several receiving transducers, but only one current
J(k)(x) at a time.

A significant practical problem in MAT-CI is the need for a relatively strong
current = safety issue. Very few experimental works exist at the time...



MAT-MI (Magnetoacoustic tomography with magnetic induction)

MAT-MI is like MAT-CI but: ... instead of injecting a current, an eddy
current is induced by a strong magnetic pulse.
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More on MAT-MI

Similarly to MAT-CI, the acoustic pressure p(t,x) solves the Cauchy
problem:

∆p(t,x)− 1

c2

∂2

∂t2
p(t,x) = 0, p(0,x) = B0 · ∇×J(x), pt(0,x) = 0,

with p(t, z) measured at all z ∈ Σ (a measurement surface).

One solves the inverse source problem, gets B0 · ∇×J(x).

However, the eddy current J(x) is mostly circular.
It is difficult to generate several sufficiently different currents J(x).

The current J(x) must be strong = a safety issue!

Advantages: no need for the electrodes.
Could work if the surface of the object is non-conductive...
Quite popular among the experimentalists.



MAET-MI (Magnetoacoustic tomography with coil pickup)

MAET-MI is like MAT-MI in reverse:
the transducer is transmitting ultrasound, and the coil picks up small
magnetic fields resulting from the Lorentz and Ohmic currents...
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More on MAET-MI

Due to the reciprocity, the mathematics of MAET-MI is identical to that of
MAT-MI.

One solves the inverse source problem, gets B0 · ∇×J(x), where J(x) is
now the virtual current, that would flow if the object were subjected to an
inductive pulse with a certain strength...

Popular among engineers who only do modeling but not real experiments

In reality, the inductive signal is very weak. There is only one (?) succesful
experimental work...



From currents to conductivity

In all magnetic modalities, one or several currents (or their components) are
reconstructed/measured on the first (acoustic or MRI) step.

In MREIT and CDII one obtains ~e3 · B1 where 1
µ0
∇ × B1(t,x) = J(t,x).

With additional measurements can obtain B1(t,x) then J(t,x).
With more measurements one can get several currents J(k)(t,x).

In magnetoacoustic modalities one obtains B0 · ∇× J(t,x). With additional
measurements one can get ∇× J(t,x) then J(t,x).
More measurements→ several currents J(k)(t,x). This is cheap in MAET.

Let us consider a situation when one or several currents J(k)(t,x) are known.
We want to find the conductivity.



ODE for conductivity

Assume J is known, and so is curl C ≡∇× J.

In modalities with electrodes (MAET, MAT-CI, MREIT, CDII)
J = σ∇u, and C =∇× J = ∇σ ×∇u = ∇ lnσ × J

For simplicity, in 2D, let C =(0, 0, C3), J =(J1(x1, x2), J2(x1, x2), 0).
Then we have a transport equation for lnσ:

J2
∂

∂x1
lnσ − J1

∂

∂x2
lnσ = C3.

The ODE d
dsx(s) =

(
J2

−J1

)
(x(s)) yields lines of equal potential x = x(s).

Conductivity σ(x(s0)) is known at a boundary point x(s0). Solve the ODE
d ln(σ(x(s))

ds
= C3(x(s)).

and find ln(σ(x(s)) along the characteristics x = x(s).



MAET or MREIT or MAT-CI, 2D, one current

Conductivity (log) Current lines Curl

The curl is zero everywhere, except the boundaries of the inclusions!



One current, 2D simulation, adding noise

Curl Curl + 50 % noise



Reconstruction from one current

Phantom Reconstruction

The error propagates along the characteristics = equipotential lines



The advantage of having additional currents

Suppose more measurements are done and a second current is known.

Conductivity (log) Current #2 lines Curl #2 + 50% noise



Reconstruction from the second current

Phantom Reconstruction



Two currents = infinitely many currents!
By linearity, any linear combination of two currents is also a current.

Reconstruction for current #1 Recontruction for current #2

Reconstruction for current #1 + #2 Reconstruction for current #1 - #2



Reconstruction from two currents by linearity

128 new corrents were generated from the two measured currents,
128 reconstructions were computed. Then the average was obtained.

Phantom Average over 128 reconstructions



Two currents as a basis

If we have two currents J(k)(x) and curls C(k)(x), k = 1, 2, then{
∇ lnσ(x)× J(1)(x) = C(1)(x)
∇ lnσ(x)× J(2)(x) = C(2)(x)

.

At each x, assuming the currents are not parallel, this is a system of 6 linear
equations of rank at least 3.

At each x, solve it for ∇ lnσ(x).
Compute div(∇ lnσ) = ∆ lnσ.
Solve the Poisson equation to find lnσ.

This is much faster than averaging, and yields a similarly good result.
However, having non-parallel currents at each x is not guaranteed in 3D.

"A reconstruction formula and uniqueness of conductivity in MREIT using two internal current distributions"

(2004) J.-Y. Lee, Inverse Problems 20(3)



More advanced techniques

Harmonic BZ algorithm
B1 = (B1,x,B1,y,B1,z)(x). No object rotation. Reconstruction from B1,z only.
J. J. Liu et al "On The Convergence Of The Harmonic BZ Algorithm In Magnetic Resonance Electrical

Impedance Tomography" (2007) SIAM J. Appl Math 67 (5) 1259–82

J-substitution algorithm
Reconstruction from |J1| and |J2|, J1 ∦ J2

Y.J Kim et al "Uniqueness and convergence of conductivity image reconstruction in magnetic resonance
electrical impedance tomography" (2003) Inverse Problems 19 1213–25

Recovering conductivity from one current magnitude |J| in 2D
A. Nachman, A. Tamasan A and A. Timonov "Recovering the conductivity from a single measurement of
interior data" (2007) Inverse Problems 25 035014

... using |J| instead of J? Why? No clear answer found ...



Example of MREIT (shamelessly borrowed)
Topical Review R17

(a) (b) (c) (d)

Figure 9. Biological tissue phantom imaging using an 11 T MRI scanner (Sadleir et al 2006). (a)
MR magnitude image of a tissue phantom including chunks of turkey and pork and (b) reconstructed
conductivity image of (a) using the harmonic Bz algorithm. (c) MR magnitude image of a tissue
phantom including a lower part of a rat and (d) reconstructed conductivity image of (c) using the
harmonic Bz algorithm.

goals were to produce high-resolution conductivity images of white and gray matter in situ
and to enhance experimental techniques to undertake in vivo animal imaging studies to be
followed. They restricted conductivity image reconstructions only within the brain region to
avoid technical difficulties related to the skull. Since the harmonic Bz algorithm cannot handle
the tissue anisotropy, they introduced the concept of the equivalent isotropic conductivity to
interpret the reconstructed conductivity images. Reconstructed conductivity images with a
pixel size of 1.4 × 1.4 mm2 showed a clear conductivity contrast between gray and white
matter. Figure 10 shows reconstructed conductivity images of the intact animal.

Lately, Jeong et al (2008) proposed a thin and flexible carbon-hydrogel electrode shown in
figure 1(c) to replace the bulky and rigid recessed electrode. They found that the new electrode
produces a negligible amount of artifacts in MR and conductivity images and significantly
simplifies the experimental procedure. The electrode can be fabricated in different shapes
and sizes. Adding a layer of conductive adhesive, one can easily attach the electrode on
an irregular surface with an excellent contact. Using a pair of carbon-hydrogel electrodes
with a large contact area, the amplitude of an injection current can be increased primarily
due to a reduced average current density underneath the electrodes. Minhas et al (2008)
evaluated the performance of the new electrode by conducting MREIT imaging experiments
of five postmortem swine legs. Reconstructed equivalent isotropic conductivity images of a
swine leg in figure 11 show a good contrast among different muscles and bones. From the
reconstructed images, we can observe spurious spikes in the outer layers of bones primarily
due to the MR signal void there.

5.4. In vivo animal imaging

Kim et al (2008a) described an in vivo animal imaging experiment using a 3 T MRI scanner.
They injected 5 mA currents into the head of an anesthetized dog. They imaged the canine
brain before and after sacrificing it. Figure 12 compares in vivo and postmortem conductivity
images of a canine brain. Though the in vivo conductivity image is noisier than the postmortem
image primarily due to the reduced amplitude of injection currents, the in vivo image clearly
shows a contrast among white matter, gray matter and other brain tissues. They also conducted
in vivo imaging experiments of canine brains without and with a regional brain ischemia. As
shown in figure 13, the ischemia produced noticeable conductivity changes in reconstructed
images.

R. Sadleir et al "High field MREIT: setup and tissue phantom imaging at 11T"
(2006) Physiol. Meas. 27 S261–70



This is about as much as I presented at the conference ...


