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Collaborations and support
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Electrical Impedance Tomography

Low frequency, low amplitude current is applied on electrodes.

The voltage is measured and
the conductivity and permit-
tivity distributions inside are
computed with mathematical
algorithms.

The inverse problem is to determine these distributions from
the voltage measurements on the electrodes.

The plotted conductivity and permittivity distributions results in
images.



Intro to EIT Reconstruction Algorithms Modern Advances Clinical results

Medical Applications of EIT

EIT has a potentially important niche to fill:

High temporal resolution: 50 frames/s is acheivable
Continuous/ as needed patient monitoring
Situations where CT and MRI are inaccessible

Examples:
• Patients with spinal cord or head injury often cannot be
moved to the CT scanner
• Continuous monitoring
• Ambulances or remote locations
• During pulmonary procedures
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Some Medical Applications of EIT

Monitoring ventilation and perfusion in ARDS patients
Diagnosis of atelectasis, pnuemothorax, lung collapse and
hyperdistension, and pleural effusion
Visualization and quantitative measures from pulmonary
function tests (PFT’s)
Identifying regions of obstruction or consolidation in
children with cystic fibrosis (CF)

In the ICU:
• Patients with spinal cord or head injury often cannot be
moved to the CT scanner
• Small pneumothoraces and atelectasis are not visible with
portable x-rays
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Governing Equations

Let γ(x) = σ(x) + iωε(x). Then

∇ · (γ(x)∇u(x)) = 0, x ∈ Ω

Knowledge of all voltage patterns on the boundary arising from
all possible current density patterns on the boundary:

Rγ : γ
∂u
∂ν
|∂Ω → u|∂Ω Neumann-to-Dirichlet map

Λγ : u|∂Ω → γ
∂u
∂ν
|∂Ω Dirichlet-to-Neumann map



Intro to EIT Reconstruction Algorithms Modern Advances Clinical results

Ill-posedness

EIT is an ill-posed problem since the solution does not depend
continuously on the data Λσ.
This means given any ε > 0 and any δ > 0, there exist
conductivity distributions σ1(z) and σ2(z) such that

‖Λσ1 − Λσ2‖H1/2(∂Ω)→H−1/2(∂Ω) < δ

but
‖σ1 − σ2‖L∞(Ω) > ε.

This is evident in
• The classic example by Alessandrini
• Analysis of simulated or experimental data
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Alessandrini’s example

Consider the two conductivity distributions on the unit disk Ω

σ1(r , θ) = 1, σ2(r , θ) =

{
1 + A, 0 ≤ r ≤ R
1, R < r ≤ 1

satisfying

∇ · (σ1∇u1) = 0, in Ω ∇ · (σ2∇u2) = 0, in Ω

u1|δΩ = φ u2|δΩ = φ

σ1 = 1

Ω
r = 1

σ2 = 1

σ2 = 1 + A
Ω

r = 1R
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Alessandrini’s example

The solution of the forward problem can be found by separation
of variables and the current on the boundary can be computed
(by hand).

As a result, the difference of the DN maps applied to φ is

(Λσ1 − Λσ2)φ =
∞∑

n=−∞
|n|

(
−2AR2|n|

2 + A(1− R2|n|)

)
φneinθ
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Alessandrini’s example

Since ∣∣∣∣∣ −2AR2|n|

2 + A(1− R2|n|)

∣∣∣∣∣ ≤ AR,

we have the bound

‖Λσ1 − Λσ2‖H1/2(∂Ω)→H−1/2(∂Ω) ≤ AR,

which can be made arbitrarily small, depending on the choice
of R. However, independent of R,

‖σ1 − σ2‖L∞(Ω) = A,

which can be chosen greater than ε.
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An example from simulated data

Consider two phantoms: One representing
healthy lungs and the other with a pneu-
mothorax (ptx) in one lung:

At right are the first three voltages aris-
ing from trignometric CPs on 32 electrodes
with 1 mA current amplitude
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An example from simulated data

This is the difference in the DN maps for the
two cases (z axis scale is 10−4)
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Further difficulties

In addition to the inherent ill-posedness of the problem:
Measurements are finite precision and contain noise
There is uncertainty/error in the electrode placement
The domain shape may be imperfectly known/changing
The skin-electrode effect (contact impedance) must be
modeled

These provide challenges and opportunities for
mathematicians!
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Reconstruction Algorithms

Existing Reconstruction Algorithms fall into several categories:
Least-squares algorithms
Statistical inversion
Linearization algorithms
D-bar methods

State of the art typically includes modeling of errors, inclusion
of priors, and attention to real-time capabilities
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Least-squares Algorithms
Iteratively solve

min
σi
‖V− U‖2

2 + α‖~σ − ~σpr‖2
2

The forward problem must be solved at each iteration

Describe the conductivity as a vector of piecewise constant values over the N
mesh elements

σ(x) ≈
N∑

n=1

σnχ(En)

State of the art: The size of the FEM mesh can be reduced by applying the
approximation error theory [Kaipio and Somersalo, 2004], using Bayesian
modeling to treat approximation and modeling errors.
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Least-squares Algorithms

Using the generalized Tikhonov regularization theory

F (ρ) =
1
2

(φq
m − φq

e(ρ))T (φq
m − φq

e(ρ)) + λ2(ρ− ρ∗)T LT L(ρ− ρ∗)

Statistical priors such as an anatomical atlas can be used in the
regularization, replacing it by

γ2(ρ− ρ̄sw )T Γ−1
sw (ρ− ρ̄sw ) + λ2(ρ− ρ̄sw )T F T F (ρ− ρ̄sw )

ρ̄sw is the expected values vector, Γsw is the covariance matrix of the
anatomical atlas. Assume the probability density function of the resistivity
distribution in the swine thorax, π(ρsw ), can be described as a Gaussian
distribution:

π(ρsw ) ∝ e−
1
2 (ρ−ρ̄sw )T Γ−1

sw (ρ−ρ̄sw ) (1)
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Least-squares Algorithms

This was demonstrated in [Camargo, 2013] using a set of 39 CT scans of pig
chests from 25 animals. For each CT scan, 5 images at different levels were
used (center, ±20mm and ±40mm), generating a 3-dimensional image.
Five different tissues – bones, aerated lungs, atelectasis, heart and muscles
– were identified according to their characteristics concerning grey levels.

A Gaussian distribution of resistivity was assigned to each segmented tissue
of the tomographic images.
Source: Erick D.L.B. Camargo, In: A review of electrical impedance tomography in lung applications: Theory and

algorithms for absolute images, Martins et al, Annual Reviews in Control, 2019
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Gauss-Newton

Top: Five CT scan slices of a pig ventilated with PEEP of 5cmH2O. The aorta is marked in light red. Bottom: EIT
resistivity images computed with the G-N method using an anatomical atlas. (Scale 1.5 ≤ ρ ≤ 3.5Ω− m)

Source: Erick D.L.B. Camargo, In: A review of electrical impedance tomography in lung applications: Theory and

algorithms for absolute images, Martins et al, Annual Reviews in Control, 2019
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Kalman filter
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Human in vivo resistivity estimation using dual estimation with the unscented Kalman filter in parallel with the

parameters in a two compartment evolution model of lung mechanics. Top: representative images from inspiration

(I) and expiration (E). Bottom: average resistivity in each lung as a function of time.

Source: Fernando Moura, In: A review of electrical impedance tomography in lung applications: Theory and

algorithms for absolute images, Martins et al, Annual Reviews in Control, 2019
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Calderón’s method

Calderón’s method solves the linearized problem by direct inversion:

γ̂(k) = − 1
2|k |2

∫
∂Ω

eπi(k·x)+π(a·x)Λγ(eπi(k·x)−π(a·x))ds + R(k)

= F̂ (k) + R(k), a, z ∈ Rn with |a| = |z| and a · z = 0.

Truncation of the integral in the inverse Fourier transform regularizes the
solution R=0.0075 R=0.009

Images computed by Kwancheol Shin, CSU
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Calderón’s method

Calderón’s method with a second order correction term and priors improves
spatial resolution

γ̂(k) =


F̂ (k), |k | ≤ R1

γ̂pr (k), R1 < |k | ≤ R2

0, |k | > R2

,

R=0.0075 R=0.009
Images computed by Kwancheol Shin, CSU
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General Overview: D-bar Methods for EIT

? D-bar reconstruction methods capitalize on the direct
relationship between the conductivity and CGO solutions to a
PDE related to the inverse conductivity problem

Λσ ψ(z, k) t(k) µ(z, k) σ(z)

They are
Nonlinear
Mesh independent
Trivially parallelizable
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Equations of the D-bar Method based on [N, 1996]

Λσ ψ(z, k) t(k) µ(z, k) σ(z)

Change of variables:
q(z) = ∆

√
σ(z)/

√
σ(z), ψ(z) =

√
σ(z)u(z)

Schrödinger Eqn: (−∆ + q)ψ = 0 in R2

Lippmann-Schwinger Eqn: µ = 1− gk ∗ qµ where
µ = e−ikzψ

and gk is fund. soln. for −∆− 4ik ∂̄

ψ(z, k)|∂Ω = eikz |∂Ω−
∫
∂Ω Gk (z − ζ)(Λσ −Λ1)ψ(·, k)ds(ζ)

where Gk = eikzgk

t(k) =
∫
R2 ei k̄ z̄q(z)ψ(z, k)dz

Nonlinear Fourier transform of q

t(k) =
∫
∂Ω ei k̄ z̄(Λσ − Λ1)ψ(z, k)ds(z)

Relates Λσ to ψ

∂̄kµ(z, k) = t(k)

4πk̄
e−i(zk+z̄k̄)µ(z, k)

µ(z, k) = 1 + 1
(2π)2

∫
R2

t(k ′)
(k−k ′)k̄ ′

e−i(zk ′+z̄k̄ ′)µ(z, k ′)dk ′

σ(z) = µ2(z,0)
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Equations of the D-bar Method based on [N, 1996]
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σ(z) = µ2(z,0)
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Scattering transform encodes data non-intuitively

Source: Michael Capps, PhD thesis, Colorado State University, 2019
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Convolutional neural network

Question: Could machine learning be used in the characterization of the
scattering transform to identify where the boundaries are?

A convolutional neural network was trained on 200,000 scattering transforms
computed from numerically simulated data sets.
Two “base” sets of internal boundaries were used:

Network input: Two-channel greyscale images: one channel for <(t(k)) and
one channel for =(t(k)).

Network output: a vector of points in R2 corresponding to points on the
boundaries of internal structures.
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Training data

The following parameters in each numerically simulated data set were
randomized:

Boundary scale (55%-105%)

Conductivities of each organ (± 50% from base conductivities of 2 S/m
and 0.5 S/m for the heart and lungs)

Truncation radius (4 ≤ R ≤ 8)

Simulated organ injuries (25% chance of having the bottom 20%-70%
of the organ removed)

Mollification factor

t(k) was evaluated on a 16 × 16 grid and the internal boundaries were
sampled at 52 points.
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Results on simulated data
The network was applied to 50 examples of scattering transforms not used in
training, some corresponding to multiple lung injuries:

Blue: true boundaries, Red: Network predicted boundaries

Source: Michael Capps, PhD thesis, Colorado State University, 2019
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Results on tank data

Agar “heart” 238 mS/m and agar “lungs” 136 mS/m were placed in saline 190
mS/m in a 32 electrode tank
Data was collected at 125 kHz with current amplitude 3.3 mA

Blue: true boundaries, Red: Network predicted boundaries

Source: Michael Capps, PhD thesis, Colorado State University, 2019
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Cystic Fibrosis

CF is a genetic disease characterized by lung congestion and
infection and malabsorption of nutrients by the pancreas
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Cystic Fibrosis

The lungs exhibit air trapping and consolidation due to mucus
plugging and airway thickening
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An A Priori D-bar Algorithm

Define a piecewise scattering transform to use in place of the usual t(k):

tR1,R2 (k) :=


t(k), |k | ≤ R1

tpr(k), R1 < |k | ≤ R2

0, |k | > R2

,

To compute tpr, we use the definition:

tpr(k) =

∫
R2

ei k̄ z̄qpr(z)ψpr(z, k)dz,

This avoids having to numerically simulate data using FEM.

Solve the constrained nonlinear optimization problem

minimize
c∈Rn

F (c) := ‖tvec
pr (c)− tvec‖2

2, subject to `i ≤ ci ≤ ui , 1 ≤ i ≤ n
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D-bar method with a prior
Three time snapshots during exhalation of a CF subject:

Peak inhalation partial exhalation further exhalation

Inspiratory CT scan Expiratory CT scan

Alsaker, M., Murthy, J. of Comp. and Appl. Math. 362, 2019
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D-bar method with a prior

The dynamic prior:

Peak inhalation partial exhalation further exhalation
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Air-trapping findings
• EIT-derived ventilation-perfusion V̇/Q̇ index maps were computed from three subjects at Children’s Hospital
Colorado
• Subjects A and B were cystic fibrosis patients with significant air trapping (AT) in their lungs. Subject B exhibited
the most AT. The radiologist reported “extensive regions of air trapping, regional to the lung areas affected by the
bronchial and alveolar plugging which appears to be approximately 50% of both lungs.”
• Dark blue regions in the EIT V̇/Q̇ index maps represent regions well-perfused but poorly ventilated (AT)

• Global and regional V̇/Q̇ indices are computed by summing over the ROI

Subject V̇/Q̇ global V̇/Q̇ left lung V̇/Q̇ right lung
Healthy Control 0.4625 0.4870 0.4172
CF Subject A 0.3377 0.1999 0.4209
CF Subject B 0.1024 0.0665 0.1148

DICOM orientation (left lung on viewer’s right)

EIT V̇/Q̇ index maps from healthy control (left), CF subject A (center), and CF subject B (right)

M., Muller, Mellenthin, Murthy, Capps, Alsaker, Deterding, Sagel, DeBoer, Phys. Meas., 39 2018
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Conclusions

What does the future of EIT hold?

Need to address challenges such as partial boundary data
3-D algorithms are needed for accurate volume
computations
Clinical studies must be performed with the best hardware
and software
Priors will surely be part of clinical algorithms
It will be filling the niches that CT and MRI cannot fill
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Thank you!!
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