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Prologue

Q: Why must we implement backprojection B ?
A: Otherwise we cannot implement FBP – doh!

Q: Why do we implement (forward) projection R (the Radon transform)?
A1: For simulation studies, to generate artificial data.
A2: To implement algebraic iterative reconstruction methods.

By definition, B = adjoint(R).
So who in their right mind would write software where B 6= adjoint(R)?

All good HPC-programmers!

Today we will study the implications of this fact.

Modern Challenges in Imaging Convergence and Non-Convergence Tufts, August 2019 2 / 22



Linear Least Squares Problems (familiar stuff )

We consider noisy, ill-conditioned systems of linear equations

Ax ' b , A ∈ Rm×n , b ∈ Rm ,

where A is a discretization of the forward projection R.

We focus on the least squares problem minx f (x) with

f (x) = 1
2‖Ax − b‖2M = 1

2 (Ax − b)TM (Ax − b)

∇f (x) = ATM (Ax − b) , M = SPD weight matrix.

We use first-order iterative methods (Landweber/Cimmino/etc.) with steps

xk+1 = xk − ωk∇f (xk) = xk + ωkA
TM (b − Axk) , k = 1, 2, 3, . . .
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Convergence (more familiar stuff )

The first-order method

xk+1 = xk + ωk∇f (xk) , k = 1, 2, 3, . . .

converges to a local minimum if

ωk <
1
L
, L ≡ sup

‖∇f (x)−∇f (y)‖2
‖x − y‖2

= Lipschitz constant.

If A has full rank then f (x) = 1
2‖Ax − b‖2M is convex, L = ‖ATM A‖2,

and the method converges to the unique weighted least squares solution

xLS = (ATM A)−1ATM b .

The convergence rate is linear, i.e., ‖xk − xLS‖2 ≤ constk ‖x0 − xLS‖2

Modern Challenges in Imaging Convergence and Non-Convergence Tufts, August 2019 4 / 22



Interpretation of A and its transpose AT

The step xk+1 = xk + ωkA
TM (b − Axk) involves to basic operations:

Multiplication with A ! (forward) projector.

Multiplication with AT ! backprojector.

But many software packages implement the backprojector in such a way
that it is not the exact transposed of the projector (→ appendix slide).

Philosophy: different discretization schemes may be appropriate for
projection and backprojection.

Practicality: HPC software should make the most efficient use of
multi-core processors, GPUs and other hardware accelerators.

Today: Study the influence of unmatched projector/backprojector pairs
on the computed solutions and the convergence of the iterations.
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Convergence Analysis for Unmatched Pairs

To set the stage we consider the generic BA Iteration

xk+1 = xk + ω B (b − Axk) , ω > 0

Generally not related to solving a minimization problem!

It is a fixed-point iteration whose convergence depends on the product BA.

Any fixed point x∗ satisfies BAx∗ = Bb (unmatched normal eq.).
If BA is invertible then x∗ = (BA)−1Bb.

Shi, Wei, Zhang (2011); Elfving, H (2018)

The BA Iteration converges to a solution of BAx = Bb if and only if

0 < ω <
2Reλj
|λj |2

and Reλj > 0, {λj} = eig(BA) .
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Dong, H, Hochstenbach, Riis (2019) – for the nerds

The following requirements for a unique fixed point are equivalent:

1 BA : R(B)→ R(B) is nonsingular.
2 For every b ∈ Rm, BAx = Bb has a unique solution x ∈ R(B).
3 R(B) ∩N (BA) = {0}.
4 N (BAB) = N (B).
5 R(BAB) = R(B).
6 rank(BAB) = rank(B).
7 A is nonsingular on R(B) and B is nonsingular on R(AB).
8 R(B) ∩N (A) = {0} and R(AB) ∩N (B) = {0}.

Here R(·) = range and N (·) = null space.
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Convergence Analysis: Split the Error

Let x̄k and x̄∗ denote the iterates and the fixed point, respectively, for a
noise-free right-hand side. We consider:

xk − x̄∗︸ ︷︷ ︸
reconstruction error

= xk − x̄k︸ ︷︷ ︸
noise error

+ x̄k − x̄∗︸ ︷︷ ︸
iteration error

We expect the iteration error to decrease and the noise error to increase.
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Iteration Error and Noise Error

Elfving, H (2018)

The iteration error is given by

x̄k − x̄∗ = T k(x̄0 − x̄) , x̄0 = initial vector , T = I − ωBA ,

and it follows that we have linear convergence:

‖x̄k − x̄‖2 ≤ ‖T k‖2 ‖x̄0 − x̄‖2 ≤ ‖T‖k2 ‖x̄0 − x̄‖2.

With b = A x̄ + e the noise error satisfies

‖xk − x̄k‖2 ≤ (ω c‖B‖2) k ‖e‖2

where we define the constant c by: supj ‖(I − ωBA) j‖2 ≤ c .
I.e., the upper bound grows linearly with the number of iterations k .
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Example
Cimmino’s method.

Test problem

B 64× 64 phantom
B 180 projections at

1◦, 2◦, 3◦, . . . , 180◦

B m = 16 380
B n = 4 096
B Reλj(BA) > 0 ∀j

Iteration error: both versions converge to x̄ ; the one with B 6= AT is slower.
Noise error: the one for B 6= AT increases faster.
Total error: semi-convergence, the iteration with B 6= AT reaches the min.
error ◦ 1.181 after 1314 iterations. This error is 48% larger than the min.
error ◦ 0.796 for the iterations with AT , achieved after 3225 iterations.
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The Challenge: Eigenvalues with Negative Real Parts

Parallel-beam CT, unmatched pair from ASTRA, 64× 64 Shepp-Logan
phantom, 90 projection angles, 60 detector pixels, minReλj = −6.4 · 10−8.

No asymptotic convergence
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What To Do?

1 Ask the software developers to change their implementation of
B and/or R? → Significant loss of comput. efficiency.

2 Use mathematics to fix the nonconvergence.

Take inspiration from the Tikhonov problem

min
x

{
‖Ax − b‖22 + α ‖x‖22

}
,

for which a gradient step takes the form

xk+1 = xk − ω (AT (b − Ax) + α xk)

= (1− αω) xk + ω AT (b − Axk) .

Note the factor (1− αω).
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The Shifted BA Iteration

Many thanks to Tommy Elfving
for originally suggesting this.

We define the shifted version of the BA Iteration:

xk+1 = (1− αω) xk + ω B (b − Axk) , ω > 0

with just one extra factor (1− αω); simple to implement.

This Shifted BA Iteration is equivalent to applying the BA Iteration with
the substitutions

A→
[

A√
α I

]
, B →

[
B ,
√
α I
]
, b →

[
b
0

]
.

Hence it is “easy” to perform the convergence analysis . . .
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Convergence Results

Dong, H, Hochstenbach, Riis (2019)

Let λj denote those eigenvalues of BA that are different from −α.
Then the Shifted BA Iteration converges to a fixed point if and only if α
and ω satisfy

0 < ω < 2
Reλj + α

|λj |2 + α (α + 2Reλj)
and Reλj + α > 0 .

The fixed point x∗α satisfies

(BA + α I ) x∗α = Bb .

This result tells us how to choose the shift parameter α:

Just large enough that Reλj + α > 0 for all j .
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“Perturbation” Result

How much do we perturb the solution when we introduce α > 0?

Dong, H, Hochstenbach, Riis (2019)

Assume that BA+α I is nonsingular and the right-hand side is noise-free
with b̄ = A x̄ . Then the corresponding fixed point x̄∗α satisfies

x̄ − x̄∗α = α (BA + α I )−1x̄ .

Notice the factor α.

With a small α – just large enough to ensure convergence – we compute a
slightly perturbed solution (instead of computing nothing).
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Eigenvalue Estimates (See Paper for Details)

We need to compute an estimate of the leftmost eigenvalue of BA, i.e.,
the eigenvalue with the minimal real part.

In our paper we discuss five different iterative algorithms:
Matlab’s eigs(_,_,’smallestreal’) (calls ARPACK):
baseline algorithm.
Algorithms by Meerbergen and coauthors:
robust but need too many matrix-vector multiplications.
Krylov-Schur method by Stewart (∼ implicitly restarted Arnoldi):
30% faster than Matlab’s eigs.
Jacobi-Davidson:
slower than Krylov-Schur.
Our own “field-of-values approximation algorithm”:
competitive with Krylov-Schur.
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Numerical Results – Divergence and Convergence

Parallel-beam CT, 90 projections in the range 0◦–180◦, 80 detector pixels;
128× 128 Shepp-Logan phantom; m = 7 200 and n = 16 384.
Both A and B are generated with the GPU-version of the ASTRA toolbox.

ρ(BA) = 1.76 · 104

α = 1.85

The BA Iteration diverges from x̄∗ = (BA)−1Bb.
The Shifted BA Iteration converges to fixed point x̄∗α = (BA + α I )−1Bb.
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Numerical Results – Reconstruction Errors

The BA Iteration diverges from the ground truth x̄ .
The Shifted BA Iteration

Without noise: converges to a solution x̄∗α that approximates x̄ .
With noise: first semi-convergence, then convergence to x∗α.
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Does It Matter?

For noisy data, the solutions at semi-convergence are almost the same.
But is this always the case? More research is necessary.
Also, we prefer iterative methods that converge with or without noise.
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Conclusions

We studied the influence of an unmatched pair of matrices for which
backprojection 6= adjoint(projection).

Focus on SIRT method; also a concern for Karzmarz-type methods.

Iterative methods based on unmatched pairs do not solve an
optimization problem, but may still converge to a fixed point.

The main criterion for convergence is that all eigenvalues of the
iteration matrix must have positive real part.

If violated, we introduce a small shift that ensures convergence . . .

to a fixed point that is a slightly perturbed solution (∼ Tikhonov).

The shift is computed via estimation of the leftmost eigenvalue.

Numerical results confirm our convergence results.
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Appendix: Kaczmarz and Block Sequential Iteration?

Kaczmarz (aTi = row of A):

xk+1 = xk + ω
bi − aTi x

k

‖ai‖22
ai .

Here aTi x
k is backprojection, multiplication with ai is forward projection.

Block Sequential Iteration (R` = block row of A):

xk+1 = xk + ω RT
` M` (b` − R` x

k) .

Here we clearly see forward and back projections with blocks.

Hence our concerns from the first-order gradient methods
carry over to the Karzmarz-type methods.
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Appendix: ASTRA’s Discretization Methods

Forward projection uses Joseph’s model, also known as the interpolation
model. It is identical to using the simple line model on an artificial pixel
whose value is obtained by linear interpolation of two neighbouring pixels.

Backprojection projects the location of the pixel center to the detector,
interpolates between the values of the two closest detector pixels, and
assigns this value to the image pixel weighted by the projection line’s
length within the pixel. The interpolation is done on the GPU and is
restricted to 256 values.

Thanks to W. J. Palenstein
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