Towards the numerical quantification of source conditions

Daniel Gerth

Chemnitz University of Technology

Modern Challenges in Imaging Tufts University, Medford, MA August 5, 2019

Overview

Introduction

The Kurdyka-Łojasiewicz property

Observable lower bounds

 \Box Estimating μ

Numerical results

Setting

Solve

$$Ax = y$$

where:

- X, Y Hilbert spaces (unless specified otherwise)
- $A: X \to Y$ a linear, compact operator
- $\mathcal{R}(A) \neq \overline{\mathcal{R}(A)}$, A^{\dagger} unbounded
- \blacksquare exact data $y=Ax^{\dagger}\in Y$, $x^{\dagger}\in X$
- \blacksquare available data $y^{\delta},\, ||y-y^{\delta}|| \leq \delta,\, \delta > 0.$

practical task: from A, y^{δ} , find "good" approximation x^{δ} to x^{\dagger} theoretical task: find φ such that $||x^{\delta} - x^{\dagger}|| \leq \varphi(\delta)$.

Classical regularization theory

- \blacksquare in general no such φ exists
- \blacksquare have to restrict possible solutions x^\dagger
- classical approach: source condition

$$x^{\dagger} \in \mathcal{R}((A^*A)^{\mu}), \quad \mu > 0, \qquad (SC)$$

 \blacksquare then $\varphi_{\mu}(\delta) \sim \delta^{\frac{2\mu}{2\mu+1}},$ namely

$$\sup\{||x - x^{\dagger}||: ||Ax - y|| \le \delta, ||x||_{\mu} \le \varrho\} \le \delta^{\frac{2\mu}{2\mu+1}} \varrho^{\frac{1}{2\mu+1}}.$$

Regularization

classical Tikhonov regularization

$$x_{\alpha}^{\delta} = \operatorname{argmin} ||Ax - y^{\delta}||^{2} + \alpha ||x||^{2}.$$

If (SC) with $0 < \mu \leq 1$ and

$$\alpha \sim \delta^{\frac{2}{2\mu+1}},$$

then
$$||x_{\alpha}^{\delta} - x^{\dagger}|| \leq c\varphi_{\mu}(\delta)$$
.
If (SC) with $0 < \mu \leq \frac{1}{2}$ and
 $\alpha \quad \text{s.t.} \quad ||Ax_{\alpha}^{\delta} - y^{\delta}|| \sim \delta$,
then $||x_{\alpha}^{\delta} - x^{\dagger}|| \leq c\varphi_{\mu}(\delta)$.

Regularization

classical Tikhonov regularization

$$x_{\alpha}^{\delta} = \operatorname{argmin} ||Ax - y^{\delta}||^{2} + \alpha ||x||^{2}.$$

If (SC) with $0 < \mu \leq 1$ and

$$\alpha \sim \delta^{\frac{2}{2\mu+1}},$$

then
$$||x_{\alpha}^{\delta} - x^{\dagger}|| \leq c\varphi_{\mu}(\delta)$$
.
If (SC) with $0 < \mu \leq \frac{1}{2}$ and
 $\alpha \quad \text{s.t.} \quad ||Ax_{\alpha}^{\delta} - y^{\delta}|| \sim \delta$,
then $||x_{\alpha}^{\delta} - x^{\dagger}|| \leq c\varphi_{\mu}(\delta)$.

Parameter choice requires knowledge of μ .

D. Guith
12. \$1\$.1111

Regularization, ctd.

Landweber method: pick $x_0 \in X$. Iterate

$$x_{k+1} = x_k + \beta A^* (Ax_k - y^\delta),$$

 $\beta \leq \frac{2}{||A||}\text{, until STOP. Then if (SC) for } \mu > 0$ and

$$k_{stop} \sim \delta^{-\frac{2}{2\mu+1}}$$

or k_{stop} such that

$$||Ax_{k_{stop}} - y^{\delta}|| \sim \delta,$$

then $||x_{\alpha}^{\delta} - x^{\dagger}|| \leq c\varphi_{\mu}(\delta).$

IF $x^{\dagger} \in \mathcal{R}((A^*A)^{\mu}).$

The typical situation in practice

given: $A\in\mathbb{R}^{m\times n},$ ONE sample $y^{\delta}\in\mathbb{R}^m,$ δ unknown, μ unknown Questions/Tasks:

- How to choose *α*?
- How large is δ ?
- How large is μ ?
- Are the (infinite dimensional) source conditions relevant in a discretized setting?

Consider X-ray Tomography:

D. Gerth	TU Chemnitz

6/31

The typical situation in practice

given: $A \in \mathbb{R}^{m \times n}$, ONE sample $y^{\delta} \in \mathbb{R}^m$, δ unknown, μ unknown Questions/Tasks:

- How to choose *α*?
- How large is δ ?
- How large is μ ?
- Are the (infinite dimensional) source conditions relevant in a discretized setting?

Consider X-ray Tomography:

D. Gerth	TU Chemnitz	6 / 31

The typical situation in practice

given: $A\in\mathbb{R}^{m\times n}$, ONE sample $y^{\delta}\in\mathbb{R}^m$, δ unknown, μ unknown Questions/Tasks:

- How to choose α ? not the focus of this talk
- How large is δ ? known algorithms / ongoing research
- How large is μ ? This talk. (example below: $\mu \approx 0.22$)
- Are the (infinite dimensional) source conditions relevant in a discretized setting? Yes.

Consider X-ray Tomography:

Overview

Introduction

□ The Kurdyka-Łojasiewicz property

Observable lower bounds

 \Box Estimating μ

Numerical results

Introduction

 \blacksquare S. Łojasiewicz, 1960s: Let f be a real-analytic function. Then

$$\exists \theta \in [0,1): |f - f(\bar{x})|^{\theta} ||\nabla f||^{-1}$$

remains bounded around any critical point $ar{x}$

• K. Kurdyka, 1998: $f \neq C^1$ function on a Hilbert space, then there is $\varphi \in \mathcal{K}(0, r_0)$, $\mathcal{K}(0, r_0) :=$ $\{\varphi : [0, r_0) \to \mathbb{R} \in C[0, r_0) \cap C^1(0, r_0), \varphi(0) = 0, \varphi'(x) > 0\}$

 $||\nabla(\varphi\circ(f-\min f))||\geq 1$

Introduction

 \blacksquare S. Łojasiewicz, 1960s: Let f be a real-analytic function. Then

$$\exists \theta \in [0,1): |f - f(\bar{x})|^{\theta} ||\nabla f||^{-1}$$

remains bounded around any critical point $ar{x}$

• K. Kurdyka, 1998: $f \neq C^1$ function on a Hilbert space, then there is $\varphi \in \mathcal{K}(0, r_0)$, $\mathcal{K}(0, r_0) :=$ $\{\varphi : [0, r_0) \to \mathbb{R} \in C[0, r_0) \cap C^1(0, r_0), \varphi(0) = 0, \varphi'(x) > 0\}$

$$||\nabla(\varphi \circ (f - \min f))|| \ge 1$$

- this is the Kurdyka-Łojasiewicz (KL) inequality or -property
- applications in, e.g., asymptotic analysis of nonlinear heat equation (Łojasiewicz), PDE analysis, nonsmooth analysis, neural networks, complexity analysis,.... Inverse Problems?

KL can be connected directly to regularization theory. Let $T_{\alpha}(x) := ||Ax - y||^2 + \alpha J(x)$, $J : X \to \mathbb{R}$ a stabilizing penalty term, X a Banach space.

Theorem (D.G., S. Kindermann, 2019)

The following statements are equivalent: There are index functions $\Psi_1, \Psi_2, \Psi_3, \Psi_4, \Psi_5, \varphi$, that are all related, such that (a) (*J*-rate) $J(x^{\dagger}) - J(x_{\alpha}) \leq \Psi_1(\alpha)$ for all $\alpha > 0$. (b) (*T*-rate) $\frac{1}{\alpha} \left(T_{\alpha}(x^{\dagger}) - T_{\alpha}(x_{\alpha}) \right) \leq \Psi_2(\alpha)$ for all $\alpha > 0$. (c) (Variational inequality) $J(x^{\dagger}) - J(x) < \Psi_3(||Ax^{\dagger} - Ax||)$ for all $x \in X$. (d) (Distance function) $D(\frac{1}{r}) < \Psi_4(r)$ $\forall r > 0$ where $D(r) := \sup_{x \in X} \left(J(x^{\dagger}) - J(x) - r \|Ax - Ax^{\dagger}\| \right).$ (e) (Dual T-rate) $J^*(A^*z) - J(x^*) - (x^{\dagger}, A^*z - x^*)_{X,X^*} + \alpha \frac{1}{2} ||z||^2 \le \Psi_5(\alpha).$ (f) (*KL-inequality*) $\left\| \partial \left(\varphi \circ \left(T_{\alpha}(x^{\dagger}) - T_{\alpha}(x_{\alpha}) \right) \right) \right\| \geq \frac{1}{k}.$

Theorem

Let any of the equivalent assumptions hold. Define $\Theta(\alpha) := \sqrt{\alpha \Psi_2(\alpha)}$. Then with the choice

$$\alpha = \Theta^{-1} \left(\frac{\delta^2}{2} \right)$$

we obtain the convergence rates

$$B_{\xi_{\alpha}^{\delta}}(x_{\alpha}^{\delta}, x^{\dagger}) \leq 2\Psi_{2}\left(\Theta^{-1}\left(\frac{\delta}{\sqrt{2}}\right)\right)$$

in the Bregman distance

$$B_{\xi}(z,x) := J(x) - J(z) - \langle \xi, x - z \rangle \ge 0, \quad x \in X, \quad \xi \in \partial J(z) \subset X^*$$

Theorem

Let any of the equivalent assumptions hold. Define $\Theta(\alpha) := \sqrt{\alpha \Psi_2(\alpha)}$. Then with the choice

$$\alpha = \Theta^{-1}\left(\frac{\delta^2}{2}\right) \sim \frac{1}{\partial \varphi(\delta^2)}$$

we obtain the convergence rates

$$B_{\xi_{\alpha}^{\delta}}(x_{\alpha}^{\delta},x^{\dagger}) \leq 2\Psi_{2}\left(\Theta^{-1}\left(\frac{\delta}{\sqrt{2}}\right)\right) \sim \partial\varphi(\delta^{2})\delta^{2}$$

in the Bregman distance

$$B_{\xi}(z,x) := J(x) - J(z) - \langle \xi, x - z \rangle \ge 0, \quad x \in X, \quad \xi \in \partial J(z) \subset X^*$$

A connection between a KL inequality and convergence rates is general and well-known in the optimization community:

Proposition, J. Bolte et. al., 2010, Cor. 7

Let X be a metric space, $f:X\to\mathbb{R}\cup\{\infty\}$ be lower semicontinuous. Then the following assumptions are equivalent:

• $\varphi \circ f$ is k-metrically regular on $[0 < f < r_0] \times (0, \varphi(r_0))$,

• for all
$$r_1, r_2 \in (0, r_0)$$
 it is

$$D([f = r_1 - \inf f], [f = r_2 - \inf f]) \le k |\varphi(r_1 - \inf f) - \varphi(r_2 - \inf f)|,$$

• for all
$$x \in [0 < f < r_0]$$
 it holds that

$$|\nabla(\varphi \circ f)|(x) \ge \frac{1}{k}.$$

D. Gertin

In Banach spaces X (generalizable to complete metric spaces)

Corollary

Let either A be injective or J be strictly convex. Then, for the Tikhonov functional $T_{\alpha}(x)$, the following are equivalent for a smooth index function $\varphi \in \mathcal{K}(0, \tilde{r})$, $x \in [T_{\alpha}(x_{\alpha}) \leq T_{\alpha}(x) \leq \tilde{r}]$, and $0 < k < \infty$.

$$\|x - x_{\alpha}\| \le k\varphi(T_{\alpha}(x) - T_{\alpha}(x_{\alpha})),$$
$$\varphi'(T_{\alpha}(x) - T_{\alpha}(x_{\alpha})) \|\partial T_{\alpha}(x)\|_{-} \ge \frac{1}{k}.$$

D. Gerth	TU Chemnitz	11 / 31

Bringing in the source condition

Theorem (D.G. 2018)

Let $x - x^{\dagger} = (A^*A)^{\mu}w$, $w \in X$, $f(x) = ||Ax - y||^2$. Then $\varphi'(f(x) - f(\bar{x}))||\nabla f(x)|| \ge \frac{1}{k}$. with $\varphi(t) = t^{\frac{\mu}{2\mu+1}}$ and $k = ||w||^{\frac{1}{2\mu+1}}$.

D. Gerth	TU Chemnitz	12 / 31

Bringing in the source condition

Theorem (D.G. 2018)

Let $x - x^{\dagger} = (A^*A)^{\mu}w$, $w \in X$, $f(x) = ||Ax - y||^2$. Then $\varphi'(f(x) - f(\bar{x}))||\nabla f(x)|| \ge \frac{1}{k}.$

with $\varphi(t) = t^{\frac{\mu}{2\mu+1}}$ and $k = ||w||^{\frac{1}{2\mu+1}}$.

• rewritten: $||Ax - y||^{-\frac{2\mu+2}{2\mu+1}}||A^*(Ax - y)|| \ge c$

• Let $\varrho := ||w||$ and x such that $||Ax - y|| \sim \delta$. Then $||x - x^{\dagger}|| \leq c_{\mu} \delta^{\frac{2\mu}{2\mu+1}} \varrho^{\frac{1}{2\mu+1}}$

proof of theorem: interpolation inequality

Overview

Introduction

The Kurdyka-Łojasiewicz property

Observable lower bounds

 \Box Estimating μ

Numerical results

Theorem (D.G. 2018)

Let $A: X \to Y$ be a linear operator between Hilbert spaces X and Y and $x^{\dagger} \in X$. Then, whenever $A^*(Ax - Ax^{\dagger}) \neq 0$, there holds for any $x \in X$

$$\frac{\|Ax - Ax^{\dagger}\|^2}{\|A^*(Ax - Ax^{\dagger})\|} \le \|x - x^{\dagger}\|.$$
 ¹

If additionally $x - x^{\dagger} = (A^*A)^{\mu}w$, $\|w\| < \infty$, then

$$\begin{split} \|Ax - Ax^{\dagger}\|^{\frac{2\mu}{2\mu+1}} \|w\|^{\frac{1}{2\mu+1}} &\leq \|x - x^{\dagger}\| \leq c_{\mu} \|Ax - Ax^{\dagger}\|^{\frac{2\mu}{2\mu+1}} \|w\|^{\frac{1}{2\mu+1}} \\ \text{with } c_{\mu} &= \frac{2\mu+1}{2\mu}. \end{split}$$

¹compare [Brezinski, Rodriguez, Seatzu 2008]

D. Gerth

TU Chemnitz

Overview

Introduction

- □ The Kurdyka-Łojasiewicz property
- □ Observable lower bounds
- \Box Estimating μ
- Numerical results

estimating μ : idea

- Lojasiewicz-property for $f(x) = ||Ax y||^2 \rightarrow \min_x$ relates ||Ax y|| and $||A^*(Ax y)||$
- \blacksquare consider Landwebers method. Let $x_0 \in X,$ iterate for $k=0,\ldots, \ \beta < 2/||A||^2$

$$x_{k+1} = x_k - \beta A^* (Ax - y)$$

residual and gradient are computed anyway, norms "for free":

$$R := (||Ax_1 - y||, ||Ax_2 - y||, ||Ax_3 - y||, \dots, ||Ax_K - y||)^T$$

$$G := (||A^*(Ax_1 - y)||, ||A^*(Ax_2 - y)||, \dots, ||A^*(Ax_K - y)||)^T$$

Regression

Lojasiewicz property:

$$\varphi'(R_i^2) \cdot G_i \ge c \quad \forall i = 1, \dots, k$$

from source condition: $\varphi(t) = ct^{\frac{\mu}{2\mu+1}}$ and $\varphi'(t) = ct^{-\frac{\mu+1}{2\mu+1}}$. Set $\gamma := \frac{2\mu+2}{2\mu+1}$. Then

$$\varphi'(R_i^2) = c(R_i^2)^{-\frac{\mu+1}{2\mu+1}} = cR_i^{-\gamma} \quad \forall i = 1, \dots, k,$$

and therefore we obtain

$$\frac{R_i^{\gamma}}{c} \le G_i \quad \forall i = 1, \dots, k.$$

• we have measured R_i and G_i , we find γ and c by linear regression. This immediately yields $\mu_k = \frac{2-\gamma}{2\gamma-2}$ and $c_k = \exp(\hat{c})$.

Overview

Introduction

- □ The Kurdyka-Łojasiewicz property
- □ Observable lower bounds
- \Box Estimating μ
- Numerical results

First try: diagonal operators

- $A: \ell^2 \to \ell^2$, $A: (x_1, x_2, \cdots) \mapsto (\sigma_1 x_2, \sigma_2 x_2, \dots)$ for $\sigma_i \in \mathbb{R}$, $i \in \mathbb{N}$
- let $\sigma_i = i^{-\beta}$ for some $\beta > 0$
- let x be given as $x_i = i^{-\eta}$ with $\eta > 0$
- Because for a compact linear operator A between Hilbert spaces X and Y with singular system {σ_i, u_i, v_i}[∞]_{i=1}

$$x \in \mathcal{R}((A^*A)^{\mu}) \quad \Leftrightarrow \quad \sum_{i=1}^{\infty} \frac{|\langle Ax, u_i \rangle|^2}{\sigma_i^{2+4\mu}} < \infty$$

we have $x\in \mathcal{R}((A^*A)^{\mu})$ for $\mu\leq \frac{2\eta-1}{4\beta}-\epsilon$ and $\epsilon>0$

Figure: Demonstration of the method for $\eta = 1$ and $\beta = 1.5$ (red, dash-dotted), with correct $\mu = 0.375$ (black, dotted), and for $\eta = 2$ and $\beta = 2$ (blue, solid), with correct $\mu = 0.175$ (black, dashed).

Figure: Reconstruction error (red, solid) for $\eta = 2$ and $\beta = 2$. The upper bound (dash-dotted, blue) and the observed lower bound (black, dashed) are parallel as expected.

Figure: Demonstration of the method for $\eta=2$ and $\beta=1$ with two discretization levels.

D. Gerth	TU Chemnitz	18 / 31

Figure: Demonstration of the method when the source condition holds for all $\mu > 0$ (solid, blue; diagonal setting with $\eta = 2$ and $\sigma_i = e^{-i}$), and when it fails for every $\mu > 0$ (dash-dotted, red; diagonal setting with $x_i = e^{-i}$ and $\beta = 1.5$).

D. Gerth	TU Chemnitz	19 / 31

Figure: Reconstruction error and observed lower bounds when the Hölder-type source condition is inadequate. In the first case, the SC holds for all $\mu>0$ (blue, solid: reconstruction error, black, dashed: observed lower bound). In the second case there is no $\mu>0$ such that the SC is fulfilled.

D. Gerth	TU Chemnitz	20 / 31

Examples from Regularization Tools

- Inversion Toolbox by P.C. Hansen, http://www.imm.dtu.dk/~pcha/Regutools/
- 14 linear inverse problems as examples
- after trying our algorithm: two positive results (tomo, $\mu \approx 0.2$, deriv2, $\mu \approx 0.13$), 12 failures

Figure: Demonstration of the method for the problems *deriv2* (solid, blue: μ ; black, dashed: the constant c) and *tomo* (dash-dotted, red: μ ; black, dotted: the constant c).

Figure: Reconstruction error (red, solid) and lower bounds (black, dashed) for the problems *deriv2* (left) and *tomo* (right).

Figure: Demonstration of the method for the *gravity* problem. Left: estimated μ and constant c. Right: reconstruction error and observed lower bound.

Final test: we compute SVD of all 14 problems for several discretization levels and estimate for which μ the sum

$$\sum_{i=1}^{\infty} \frac{|\langle Ax, u_i \rangle|^2}{\sigma_i^{2+4\mu}}$$

converges. It does only for tomo ($\mu \approx 0.2$) and deriv2 ($\mu \approx 0.1$).

Noisy data

Figure: Demonstration of the method for $\eta=2$ and $\beta=2$ with 1% and 0.1% relative data noise.

D. Gerth	TU Chemnitz	25 / 31

D. Gerth	TU Chemnitz	26 / 31

Now: real tomographic X-ray data of a carved cheese, a lotus root, and of a walnut which are freely available at http://www.fips.fi/dataset.php.

That means: no noise information, approximate forward operator, large system and not enough discretization for SVD analysis \Rightarrow our method is the only way

Figure: Demonstration of the method for the problems cheese (upper left), walnut (upper right), and lotus (lower row).

Figure: Observed lower bound for the three real data problems cheese (upper left), walnut (upper right), and lotus (lower row).

D. Gerth	TU Chemnitz	29 / 31

Conclusion: It is possible to extract source smoothness information given a single set of matrix A and data y. There are plenty open questions.

Implications/Future work:

- understand KL with noise
- understand relation between convergence in Bregman distance and in norm
- estimate δ simultaneously (a prototype is working)
- \blacksquare with μ and $\delta:$ parameter choice rules/stopping criteria
- a-posteriori error estimates may become feasible
- extension to other algorithms

- D.G. Using Landwebers iteration to quantify source conditions
 a numerical study, J. Inverse III-posed Probl., 2018 (available online ahead of print)
- D.G., S. Kindermann The Kurdyka-Łojasiewicz inequality as regularity condition, submitted
- S. Łojasiewicz Division d'une distribution par une fonction analytique de variables reeles C.R. Acad. Sci, Paris 246, 683–686, 1958
- C. Brezinski, G. Rodriguez and S. Seatzu Error estimates for linear systems with applications to regularization Numer. Algor. 104, 2008
- J. Bolte, A. Daniilidis, O. Ley and L. Mazet. Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity. T. Am. Math. Soc. 382(6):3319–3363, 2010

Thank you for your attention!

D. Gerth	TU Chemnitz	31 / 31