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Setting

Solve
Ax = y

where:

X,Y Hilbert spaces (unless specified otherwise)

A : X → Y a linear, compact operator

R(A) 6= R(A), A† unbounded

exact data y = Ax† ∈ Y , x† ∈ X
available data yδ, ||y − yδ|| ≤ δ, δ > 0.

practical task: from A, yδ, find “good” approximation xδ to x†

theoretical task: find ϕ such that ||xδ − x†|| ≤ ϕ(δ).
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Classical regularization theory

in general no such ϕ exists

have to restrict possible solutions x†

classical approach: source condition

x† ∈ R((A∗A)µ), µ > 0, (SC)

then ϕµ(δ) ∼ δ
2µ

2µ+1 , namely

sup{||x− x†|| : ||Ax− y|| ≤ δ, ||x||µ ≤ %} ≤ δ
2µ

2µ+1 %
1

2µ+1 .
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Regularization

classical Tikhonov regularization

xδα = argmin ||Ax− yδ||2 + α||x||2.

If (SC) with 0 < µ ≤ 1 and

α ∼ δ
2

2µ+1 ,

then ||xδα − x†|| ≤ cϕµ(δ).
If (SC) with 0 < µ ≤ 1

2 and

α s.t. ||Axδα − yδ|| ∼ δ,

then ||xδα − x†|| ≤ cϕµ(δ).

Parameter choice requires knowledge of µ.
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Regularization, ctd.

Landweber method: pick x0 ∈ X. Iterate

xk+1 = xk + βA∗(Axk − yδ),

β ≤ 2
||A|| , until STOP. Then if (SC) for µ > 0 and

kstop ∼ δ−
2

2µ+1

or kstop such that
||Axkstop − yδ|| ∼ δ,

then ||xδα − x†|| ≤ cϕµ(δ).

IF x† ∈ R((A∗A)µ).
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The typical situation in practice

given: A ∈ Rm×n, ONE sample yδ ∈ Rm, δ unknown, µ unknown
Questions/Tasks:

How to choose α?

not the focus of this talk

How large is δ?

known algorithms / ongoing research

How large is µ?

This talk. (example below: µ ≈ 0.22)

Are the (infinite dimensional) source conditions relevant in a
discretized setting?

Yes.

Consider X-ray Tomography:

yδ

x†
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Introduction

S.  Lojasiewicz, 1960s: Let f be a real-analytic function. Then

∃θ ∈ [0, 1) : |f − f(x̄)|θ||∇f ||−1

remains bounded around any critical point x̄

K. Kurdyka, 1998: f a C1 function on a Hilbert space, then
there is ϕ ∈ K(0, r0), K(0, r0) :=
{ϕ : [0, r0)→ R ∈ C[0, r0) ∩ C1(0, r0), ϕ(0) = 0, ϕ′(x) > 0}

||∇(ϕ ◦ (f −min f))|| ≥ 1

this is the Kurdyka- Lojasiewicz (KL) inequality or -property

applications in, e.g., asymptotic analysis of nonlinear heat
equation ( Lojasiewicz), PDE analysis, nonsmooth analysis,
neural networks, complexity analysis,.... Inverse Problems?
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KL can be connected directly to regularization theory.
Let Tα(x) := ‖Ax− y‖2 + αJ(x), J : X → R a stabilizing penalty
term, X a Banach space.

Theorem (D.G., S. Kindermann, 2019)

The following statements are equivalent: There are index functions
Ψ1,Ψ2,Ψ3,Ψ4,Ψ5, ϕ, that are all related, such that

(a) (J-rate) J(x†)− J(xα) ≤ Ψ1(α) for all α > 0.

(b) (T -rate) 1
α

(
Tα(x†)− Tα(xα)

)
≤ Ψ2(α) for all α > 0.

(c) (Variational inequality)
J(x†)− J(x) ≤ Ψ3(‖Ax† −Ax‖) for all x ∈ X.

(d) (Distance function) D(1r ) ≤ Ψ4(r) ∀r > 0
where D(r) := supx∈X

(
J(x†)− J(x)− r‖Ax−Ax†‖

)
.

(e) (Dual T -rate)
J∗(A∗z)− J(x∗)− (x†, A∗z − x∗)X,X∗ + α1

2‖z‖
2 ≤ Ψ5(α).

(f) (KL-inequality)
∥∥∂ (ϕ ◦ (Tα(x†)− Tα(xα)

))∥∥ ≥ 1
k .

D. Gerth TU Chemnitz 8 / 31



Theorem

Let any of the equivalent assumptions hold. Define
Θ(α) :=

√
αΨ2(α). Then with the choice

α = Θ−1
(
δ2

2

)

∼ 1

∂ϕ(δ2)

we obtain the convergence rates

Bξδα(xδα, x
†) ≤ 2Ψ2

(
Θ−1

(
δ√
2

))

∼ ∂ϕ(δ2)δ2

.

in the Bregman distance

Bξ(z, x) := J(x)−J(z)−〈ξ, x−z〉 ≥ 0, x ∈ X, ξ ∈ ∂J(z) ⊂ X∗.

D. Gerth TU Chemnitz 9 / 31



Theorem

Let any of the equivalent assumptions hold. Define
Θ(α) :=

√
αΨ2(α). Then with the choice

α = Θ−1
(
δ2

2

)
∼ 1

∂ϕ(δ2)

we obtain the convergence rates

Bξδα(xδα, x
†) ≤ 2Ψ2

(
Θ−1

(
δ√
2

))
∼ ∂ϕ(δ2)δ2.

in the Bregman distance

Bξ(z, x) := J(x)−J(z)−〈ξ, x−z〉 ≥ 0, x ∈ X, ξ ∈ ∂J(z) ⊂ X∗.

D. Gerth TU Chemnitz 9 / 31



A connection between a KL inequality and convergence rates is
general and well-known in the optimization community:

Proposition, J. Bolte et. al., 2010, Cor. 7

Let X be a metric space, f : X → R ∪ {∞} be lower
semicontinuous. Then the following assumptions are equivalent:

ϕ ◦ f is k-metrically regular on [0 < f < r0]× (0, ϕ(r0)),

for all r1, r2 ∈ (0, r0) it is

D([f = r1−inf f ], [f = r2−inf f ]) ≤ k|ϕ(r1−inf f)−ϕ(r2−inf f)|,

for all x ∈ [0 < f < r0] it holds that

|∇(ϕ ◦ f)|(x) ≥ 1

k
.
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In Banach spaces X (generalizable to complete metric spaces)

Corollary

Let either A be injective or J be strictly convex. Then, for the
Tikhonov functional Tα(x), the following are equivalent for a
smooth index function ϕ ∈ K(0, r̃), x ∈ [Tα(xα) ≤ Tα(x) ≤ r̃],
and 0 < k <∞.

‖x− xα‖ ≤ kϕ(Tα(x)− Tα(xα)),

ϕ′(Tα(x)− Tα(xα)) ‖∂Tα(x)‖− ≥
1

k
.
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Bringing in the source condition

Theorem (D.G. 2018)

Let x− x† = (A∗A)µw, w ∈ X, f(x) = ||Ax− y||2. Then

ϕ′(f(x)− f(x̄))||∇f(x)|| ≥ 1

k
.

with ϕ(t) = t
µ

2µ+1 and k = ||w||
1

2µ+1 .

rewritten: ||Ax− y||−
2µ+2
2µ+1 ||A∗(Ax− y)|| ≥ c

Let % := ||w|| and x such that ||Ax− y|| ∼ δ. Then

||x− x†|| ≤ cµδ
2µ

2µ+1 %
1

2µ+1

proof of theorem: interpolation inequality
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Theorem (D.G. 2018)

Let A : X → Y be a linear operator between Hilbert spaces X and
Y and x† ∈ X. Then, whenever A∗(Ax−Ax†) 6= 0, there holds
for any x ∈ X

‖Ax−Ax†‖2

‖A∗(Ax−Ax†)‖
≤ ‖x− x†‖. 1

If additionally x− x† = (A∗A)µw, ‖w‖ <∞, then

‖Ax−Ax†‖
2µ

2µ+1 ‖w‖
1

2µ+1 ≤ ‖x−x†‖ ≤ cµ‖Ax−Ax†‖
2µ

2µ+1 ‖w‖
1

2µ+1

with cµ = 2µ+1
2µ .

1compare [Brezinski, Rodriguez, Seatzu 2008]
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estimating µ: idea

Lojasiewicz-property for f(x) = ||Ax− y||2 → minx relates
||Ax− y|| and ||A∗(Ax− y)||
consider Landwebers method. Let x0 ∈ X, iterate for
k = 0, . . . , β < 2/||A||2

xk+1 = xk − βA∗(Ax− y)

residual and gradient are computed anyway, norms “for free”:

R : = (||Ax1 − y||, ||Ax2 − y||, ||Ax3 − y||, . . . , ||AxK − y||)T

G : = (||A∗(Ax1 − y)||, ||A∗(Ax2 − y)||, . . . , ||A∗(AxK − y)||)T .
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Regression

 Lojasiewicz property:

ϕ′(R2
i ) ·Gi ≥ c ∀i = 1, . . . , k

from source condition: ϕ(t) = ct
µ

2µ+1 and ϕ′(t) = ct
− µ+1

2µ+1 .

Set γ := 2µ+2
2µ+1 . Then

ϕ′(R2
i ) = c(R2

i )
− µ+1

2µ+1 = cR−γi ∀i = 1, . . . , k,

and therefore we obtain

Rγi
c
≤ Gi ∀i = 1, . . . , k.

we have measured Ri and Gi, we find γ and c by linear
regression. This immediately yields µk = 2−γ

2γ−2 and
ck = exp(ĉ).

D. Gerth TU Chemnitz 15 / 31



Overview

� Introduction

� The Kurdyka- Lojasiewicz property

� Observable lower bounds

� Estimating µ

� Numerical results

D. Gerth TU Chemnitz 15 / 31



First try: diagonal operators

A : `2 → `2, A : (x1, x2, · · · ) 7→ (σ1x2, σ2x2, . . . ) for σi ∈ R,
i ∈ N
let σi = i−β for some β > 0

let x be given as xi = i−η with η > 0

Because for a compact linear operator A between Hilbert
spaces X and Y with singular system {σi, ui, vi}∞i=1

x ∈ R((A∗A)µ) ⇔
∞∑
i=1

|〈Ax, ui〉|2

σ2+4µ
i

<∞

we have x ∈ R((A∗A)µ) for µ ≤ 2η−1
4β − ε and ε > 0
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Figure: Demonstration of the method for η = 1 and β = 1.5 (red,
dash-dotted), with correct µ = 0.375 (black, dotted), and for η = 2 and
β = 2 (blue, solid), with correct µ = 0.175 (black, dashed).
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Figure: Reconstruction error (red, solid) for η = 2 and β = 2. The upper
bound (dash-dotted, blue) and the observed lower bound (black, dashed)
are parallel as expected.
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Figure: Demonstration of the method for η = 2 and β = 1 with two
discretization levels.
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Figure: Demonstration of the method when the source condition holds
for all µ > 0 (solid, blue; diagonal setting with η = 2 and σi = e−i), and
when it fails for every µ > 0 (dash-dotted, red; diagonal setting with
xi = e−i and β = 1.5).
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Figure: Reconstruction error and observed lower bounds when the
Hölder-type source condition is inadequate. In the first case, the SC
holds for all µ > 0 (blue, solid: reconstruction error, black, dashed:
observed lower bound). In the second case there is no µ > 0 such that
the SC is fulfilled.
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Examples from Regularization Tools

Inversion Toolbox by P.C. Hansen,
http://www.imm.dtu.dk/~pcha/Regutools/

14 linear inverse problems as examples

after trying our algorithm: two positive results (tomo,
µ ≈ 0.2, deriv2, µ ≈ 0.13), 12 failures
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Figure: Demonstration of the method for the problems deriv2 (solid,
blue: µ; black, dashed: the constant c) and tomo (dash-dotted, red: µ;
black, dotted: the constant c).

D. Gerth TU Chemnitz 22 / 31



10
-5

10
-4

10
-3

10
-2

residual

10
-2

10
-1

re
c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r

Reconstruction error, lower bound, deriv2 problem

true reconstruction error

measured lower bound

10
-1

10
0

10
1

10
2

residual

10
0

10
1

re
c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r

Reconstruction error, lower bound, tomo problem

true reconstruction error

measured lower bound

Figure: Reconstruction error (red, solid) and lower bounds (black,
dashed) for the problems deriv2 (left) and tomo (right).
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Figure: Demonstration of the method for the gravity problem. Left:
estimated µ and constant c. Right: reconstruction error and observed
lower bound.

Final test: we compute SVD of all 14 problems for several
discretization levels and estimate for which µ the sum

∞∑
i=1

|〈Ax, ui〉|2

σ2+4µ
i

converges. It does only for tomo (µ ≈ 0.2) and deriv2 (µ ≈ 0.1).
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Noisy data
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Figure: Demonstration of the method for η = 2 and β = 2 with 1% and
0.1% relative data noise.
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Now: real tomographic X-ray data of a carved cheese, a lotus root,
and of a walnut which are freely available at
http://www.fips.fi/dataset.php.

That means: no noise information, approximate forward operator,
large system and not enough discretization for SVD analysis ⇒ our
method is the only way
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Figure: Demonstration of the method for the problems cheese (upper
left), walnut (upper right), and lotus (lower row).
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Figure: Observed lower bound for the three real data problems cheese
(upper left), walnut (upper right), and lotus (lower row).
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Conclusion: It is possible to extract source smoothness information
given a single set of matrix A and data y. There are plenty open
questions.

Implications/Future work:

understand KL with noise

understand relation between convergence in Bregman distance
and in norm

estimate δ simultaneously (a prototype is working)

with µ and δ: parameter choice rules/stopping criteria

a-posteriori error estimates may become feasible

extension to other algorithms
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Thank you for your attention!
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