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TAT/PAT set up

Thermo-acoustic tomography

Short EM pulse is sent
⇒ EM energy is absorbed

⇒ Tissues heat and expand

⇒ Acoustic wave propagates

⇒ Acoustic pressure is measured

PAT: uses laser beams (TAT uses radio frequency pulses).

Inverse source problem of TAT/PAT:
Find initial pressure from the measured pressure



TAT/PAT mathematical model

Acoustic pressure p(t, x) satisfies the wave equation
Assume c(x) ≡ 1, no reflection, absorption, dispersion.

{
ptt = ∆p, x ∈ Rn

pt(0, x) = 0, p(0, x) = f (x)

Measurements g(t, y) ≡ p(t, y) done on S .

TAT/PAT inverse source problem reconstructs f (x) from g(t, y).



Solving the wave equation

Acoustic pressure p(t, x) satisfies the wave equation{
ptt = ∆p, x ∈ Rn

pt(0, x) = 0, p(0, x) = f (x)

Solution

p(t, y) ≡ ∂

∂t

∫
Ω−

f (x)Φn(t, x − y)dx , where

Φ2(t, x) =
H(t − |x |)

2π
√
t2 − |x |2

,Φ3(t, x) =
δ(t − |x |)

4π|x |

are Green functions of the free-space wave equation.
In particular, g(t, y) ≡ p(t, y).



Known inversion formulas for various surfaces S

S is a plane: multiple works
”Universal formula” in 3D: a sphere, a plane, a cylinder (Xu &

Wang)
Spheres (Finch et al; Kunyansky; Nguyen)
Ellipsoids and paraboloids (Natterer; Haltmeier; Palamodov;Salman)
Limiting cases of ellipsoids and paraboloids (Haltmeier & Pereverzyev

Jr.)
More complicated curves and surfaces (Palamodov)
Triangles, squares, cubes, and some tetrahedra (Kunyansky)
Corner-like domains in 3D, a segment of Coxeter cross in 2D
(Kunyansky)
Less explicit: series techniques (Kunyansky; Haltmeier et al)

All of these works either requires closed or unbounded S .
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Motivation

Why reduced data?

1 Limited data in space: practical reasons (bounded observation
surface, detectors not surrounded from all sides)

2 Truncated data in time: increase accuracy (reflection,
scattering)

Simply applying known formulas on truncated data? Artifacts!

Approximate and iterative techniques exist.



Our goal

To obtain explicit, theoretically exact inversion formulas that use
temporally truncated data measured on open surface S .



Our tools and approach

Radon projection of f (x)

Rf (ω, τ) =

∫
ω·x=τ

f (x)dx
0

w
f(x){

w
t

t

x .
=

Rf (ω, τ) = Rf (−ω,−τ)

A filtered backprojection inversion formula

f (x) =
1

4π
R∗H ∂

∂t
Rf ,

where

(R∗h)(x) ≡
∫
S1

h(x · ω, ω)dω – backprojection,

(Hu) (p) ≡ p.v.
1

π

∫
R

u(s)

p − s
ds,H ∂

∂t
– filtration.
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Our tools and approach

Instead of f (x) we reconstruct its Radon transform Rf

Rf (ω, τ) =

∫
ω·x=τ

f (x)dx =

∫
Ω−

f (x)δ(−ω · x + τ)dx

We want to represent the plane wave δ as a retarded single layer

potential.

δ(−ω · x + τ) =

τ∫
T0(ω)

∫
Γ

Φn(τ − t, x − y)ϕω(t, y)dydt

using scattering theory!



Layer potentials and scattering theory

Consider an incoming wave uinc = u−. There will be a unique
density ϕ(t, y) defined on R× Γ such that

u±(τ, x) =

τ∫
T0(ω)

∫
Γ

Φn(τ − t, x − y)ϕ(t, y)dydt, x ∈ Ω±,

W
W +
- u

scat

incu

G

where u± solves the wave equation and u+ solves the soft
scattering problem, i.e. satisfies the jump conditions on Γ

u+(t, y) = u−(t, y),

∂u−(t, y)

∂n
− ∂u+(t, y)

∂n
= ϕ(t, y).



Scattering problem for plane wave

Now for uinc = δ(τ − ω · x) one obtains

δ(τ − ω · x) =

τ∫
T0(ω)

∫
Γ

Φn(τ − t, x − y)ϕω(t, y)dydt,

Plane wave δ is causal: uinc(τ, x) = 0 if τ < ω · x .

Due to the finite speed of propagation, both u− = uinc , and
u+ = uscat are 0 in front of the line ω · x = t.

Therefore, ϕω(t, y) is also causal.

The sparse support of
ϕω(t, y) is crucial.

x

t

0
Support of 

w(t,y)
w

j

G
-W



Back to the inverse source problem

Measurements g(t, y) ≡ p(t, y) on S are given by:

g(t, y) =
∂

∂t
G (t, y),G (t, y) ≡

∫
Ω−

f (x)Φn(t, x − y)dx , y ∈ S ⊂ Γ.

We want to recover the Radon projections of f (x) defined as

Rf (ω, τ) ≡
∫

Ω−

f (x)δ(τ − ω · x)dx .



Rf (ω, τ) =

∫
Ω−

f (x)δ(−ω · x + τ)dx

=

∫
Ω−

f (x)

 τ∫
T0

∫
Γ

Φn(τ − s, x − y)ϕω(s, y)dyds

dx
=

τ−T0∫
0

∫
Γ

∫
Ω−

f (x)Φn(t, x − y)dx

ϕω(τ − t, y)dydt

=

τ−T0∫
0

∫
Γ

G (t, y)ϕω(τ − t, y)dydt

Do this for all ω ∈ Sn−1, τ ∈ T (ω), obtain Rf (ω, τ).



Spatially limited data

Rf (ω, τ) =

∫
Ω−

f (x)δ(−ω · x + τ)dx

=

∫
Ω−

f (x)

 τ∫
T0

∫
Γ

Φn(τ − s, x − y)ϕω(s, y)dyds

dx
G\S

0W

(t-w x)

w

ErrorError

S

U

G

d

G\S

0W
w

ErrorError

S

U

G

(t-w x)d

supp(Er(δ(τ, ω)) =
⋃

y∈Γ\S

B(y , τ − ω · y)



Inversion formula

Depending on ω, there is interval of values τ, for which equation

Rf (ω, τ) =

τ−T0∫
0

∫
S

G (t, y)ϕω(τ − t, y)dydt

is exact.
Theorem: For the following truncated acquisition geometry

a(     )-a,b

a

G\S

0W

b(    )a,b

x1

x2

S

U

G

we can reconstruct all Radon projections explicitly and exactly
using temporally truncated data measured on an open surface S .



Circular and spherical acquisition surfaces

Note that

e iρω·x =

∫
R

δ(t − ω · x)e iρtdt

We represent e iρω·x by a time harmonic single layer potential

e iρω·x =

∫
Sn−1

ϕ̂ω(ρ, ŷ)Φ̂n(ρ, x − ŷ)dŷ

Take inverse Fourier transform, one obtain

δ(t − ω · x) =

∫
Sn−1

∫
R
ϕω(t, ŷ)Φn(τ − t, x − ŷ)dtdŷ

The densities are defined through their Fourier transforms.



Circular geometry in 2D

Polar coord: y = (R, ψ), and ω = (cos$, sin$)

Define ϕω through its Fourier transform ϕ̂ω:

ϕ̂ω(ρ, ŷ(ψ)) =


∞∑

k=−∞

2i |k|e ik($−ψ)

πiH
(1)
|k| (ρ)

, ρ ≥ 0

ϕ̂ω(−ρ, ŷ), ρ < 0



Truncated circular geometry

Consider the following truncated
circular acquisition geometry:

S

0

45

G\S

n

d(t-w x)
w

Theorem: For the truncated circular geometry, formula

Rf (ω, τ) =

τ−T0∫
0

∫
S1

G̃ (t, y)ϕω(τ − t, y)dydt.

holds for all ω 6= (0,−1) and τ lying within the intervals

τ ∈
{ (
−1,− cos

(
π
4 − ν

)
+ sin π

4

)
, ν ∈

(
0, π2

]
,(

−1,− cos
(
π
4 + ν

)
− sin π

4

)
, ν ∈

[
π
2 , π

]
.

All Radon projections can be reconstructed exactly and explicitly
from data measured on the open S acquiring in a reduced temporal
range of [0, 2− 1/

√
2] ≈ [0, 1.3] instead of the standard [0, 2].



Simulation, circular geometry, 2D

Our phantom is a collection of
slightly smoothed characteristic
functions of circles.
S is the acquisition surface.

S S

Solve wave equation Truncated g(t, ω(θ + π))
find g(t, ω(θ + π))

q
p p

1

2

0
0 2

t
0.80

0.40

0.00

-0.40

-0.80

q
p p

1

1.3

2

0
0 2

t
0.80

0.40

0.00

-0.40

-0.80



Reconstruction results, truncated circular geometry
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Number of ”detectors” = 512, number of time samples= 257,
reconstruction time = 0.4 sec., relative L∞ error ≈ 5.E-4.



Reconstructing f (x), truncated circular geometry

Phantom Reconstruction Error(not to scale)

Relative error in f (x) measured in L2(Ω) ≈ 0.6 %



Next simulation, circular geometry with 50% noise (in L2)
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Noisy data g(t, ω(θ + π)) Reconstruction from noisy data

Noisy data g(t, ω(0)) vs exact Reconstructed Rf (τ, ω(0)) vs exact

Relative L2 error in the reconstructed Rf (ω, τ) is ≈ 7%.



Reconstructing f (x) from data with 50% noise

Phantom Reconstruction Error(not to scale)

Relative error in f (x) measured in L2(Ω) ≈ 28%



Spherical geometry

Polar coord: y = (R, ψ), and ω = (cos$, sin$)

Define ϕω through its Fourier transform ϕ̂ω:

ϕ̂ω(ρ, ŷ(ψ)) =


4π
iρ

∞∑
k=0

k∑
m=−k

ikYm
k (ω)Ym

k (ŷ)

h
(1)
k (ρ)

, ρ ≥ 0

ϕ̂ω(−ρ, ŷ), ρ < 0



Truncated spherical geometry

Consider the following truncated
spherical acquisition geometry:

S

0

45

G\S

n

d(t-w x)
w

Theorem: For the truncated spherical geometry, formula

Rf (ω, τ) =

τ−T0∫
0

∫
S2

G̃ (t, y)ϕω(τ − t, y)dydt.

holds for all ω 6= (0, 0,−1) and τ lying within the intervals

τ ∈
{ (
−1,− cos

(
π
4 − ν

)
+ sin π

4

)
, ν ∈

(
0, π2

]
,(

−1,− cos
(
π
4 + ν

)
− sin π

4

)
, ν ∈

[
π
2 , π

]
.



Simulation, spherical geometry, 3D
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g̃(...)

j

t

0.5p p

1

-1

0

0

0.90

0.45

0.00

-0.45

-0.90

j

t

0.5p p

1

-1

0

0

0.90

0.45

0.00

-0.45

-0.90

j

t

0.5p p

1

-1

0

0

2.4e-4

1.2e-4

0.0

-1.2e-4

-2.4e-4

Exact Rf (τ, ω(θ0, ϕ)), θ0 ≈ 69◦ R̃f (τ, ω(θ0, ϕ)) Final error in Rf (...)



Short discussion

Our approach is quite general and is only explicit result for open
and bounded acquisition surfaces.

We rely on the scattering problem by closed surfaces. For such
surfaces there is a significant body of work on finding the density
of single layer potentials and/or solving the scattering problem.

For certain surfaces reconstruction can be done analytically and
results in fast algorithms.

Theoretically Ω− can have larger support, reconstruction is stable
and unique (thanks to the visibility condition)



Thank you!


