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Overview
 Applications of Interest: Tomography, Topology Optimization, 

PDE-Constrained Optimization
 Forward Problem and High Computational cost
 More General Look at the Discrete Problems to Solve
 How to Solve/Optimize/Invert/Sample Faster?
 (Interpolatory) Parametric Model Reduction 
 Randomization to efficiently compute ROMs
 Experimental Results
 Cheap updated ROMs with stochastic accuracy estimate
 Summary and Future Work



Why Tomography?



Diffuse Optical Tomography (DOT)
 Tissue illuminated by near infra-red, freq. modulated, light
 Light detected in arrays
 Tumors different optical properties than surrounding tissue
 Recover images of optical properties             and              in 

 Problem ill-posed, underdetermined, and noisy
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Forward Model & High Computational Costs
DOT forward problem typically solved in frequency domain 
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Newton-type methods: extra 
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n n  3D PDE solves for transpose/adjoint 

So, computational costs are very large 


DOT forward problem typically solved in frequency domain
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For  sources and  frequencies, solve  large 3D PDEs per step





Jacobian:		 



Newton-type methods: extra  3D PDE solves for transpose/adjoint

So, computational costs are very large

oleObject3.bin



image4.wmf

(


)


(


)


(


)


2


2


1


T


F


F


RpCsEApBD


-


=--




oleObject4.bin



image5.wmf

s


n




oleObject5.bin



image6.wmf

f


n




oleObject6.bin



image7.wmf

sf


nn




oleObject7.bin



image8.wmf

(


)


(


)


(


)


(


)


(


)


11


T


Ap


CsEApsEApB


p


--


¶


---


¶




oleObject8.bin



image9.wmf

df


nn




oleObject9.bin



image1.wmf

(


)


(


)


(


)


;;


j


i


DxpxpIb


w


hmh


n


æö


÷


ç


-Ñ×Ñ++=


÷


ç


÷


ç


÷


ç


èø


%




oleObject1.bin



image2.wmf

(


)


(


)


1


T


CsEApB


-


-




oleObject2.bin



image3.wmf

T


C






More General Look at Discrete Problems
 Many problems lead to minimizations of the form

 Require approximations of bilinear and quadratic forms 
involving linear inverse

 Approximations of more general bilinear forms

 Can be approximated by combinations of methods discussed 
and Krylov subspace approximation techniques

 Tomography, topology optimization (structural design), 
optimization of QOI using error transport/sensitivity 
equations, …

   or                       
2

1 1
traceT T
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C A p B D F K p F
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 ( )TC f A p B



How to Solve Problems Faster?
 Reduce parameter space: PaLS [Aghasi, Kilmer, Miller SIIMS'11]

 Better optimization steps – faster convergence, especially useful 
in inverse problems: TREGS [dS, Kilmer SISC'11]

 Make each step faster
 Exploit slowly changing systems – faster convergence & better 

initial guess
 Krylov recycling / Recycling preconditioners      [Parks, dS et 

al '06; Kilmer, dS '06; Feng et al '09&'13; Soodhalter et al '14; …]

 Model reduction for inversion    [Druskin et al SISC'13; Borcea et al'13; 
dS et al SISC'15], more for optimization/UQ: [Sachs et al; Bui et al'08 (2x), …]

 Simultaneous random sources [Haber et al SIOPT'12; Roosta et al'14
and '15]

 Random and optimized src/dets [Aslan,dS,Kilmer SISC'19]

 Randomization for cheap ROMs  [Aslan, dS, Gugercin (prep); Aslan 
thesis'18]

 Estimate bilinear forms directly   [many people]



Parameterized Tomography



Radial Basis Functions and Level Sets



What’s in the box?



Interpolatory Parametric Model Reduction
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Dynamical system     and     



and transfer function:   
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Recipe for Interpolatory Parametric ROM

Theorem (under mild assumptions) 



 Given                                         and                                             ,  setting

guarantees that

for

 Shows that space(s) count; not the bases (numerically does)  
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[Bauer, Beattie, Benner, 
Gugercin SISC'11]



Reconstruction Example

True 
image

Reconstruction  
using full order 
model - exact misfit

Reconstruction 
using ROM -
approximate misfit

 36 src/det, 5 interpolation points, 1 freq: 360 basis vectors

 Full problem: 1120 systems of  160K x 160K

 ROM: 1216 systems of  250 x 250

 Initial cost: 360 systems of  160801 x 160801

[de Sturler, Gugercin, Kilmer, Chaturantabut, Beattie, O’Connell SISC'15]



Randomization to Reduce Global Basis Cost 
 Model reduction very effective, but global basis too expensive

 Generate many more vectors than needed
 Rank revealing factorization may reduce set of candidate 

basis vectors from many 100s or few 1000s to modest nr
 Unnecessary costs:

 Too many expensive linear solves
 Expensive rank revealing factorization

 Can we generate the same space at lower cost?
 Standard candidate basis low rank
 Approximate basis using randomization/sampling 
 Only needs modestly larger number of vectors than rank

 [Halko, Martinsson, Tropp SIREV'11]

 Reduces solver cost and rank revealing  factorization cost
 Easily be combined with step-wise update     [O’Connel et al '17]

 Also opportunity for block-wise parallelization



Low-Rank Candidate Bases and Princ. Angles



Randomization for Candidate Basis
 Replace standard candidate basis by sampled (randomized) one

 where

 has small fraction of number of columns in candidate basis 

 Each element of        drawn independently from      with 
equal probability  (other distributions possible)

 Solve set of                                                    (for all         )

1 2 1 2K K
V V V V V V           

   
1 1

1 J
k k k
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V E A p B E A p B

 
 

                     
 



   
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k k
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E A p B






       
,j k



  1,1



Theoretical considerations
 Can consider this as using random tangential interpolation
 Alternative would be optimal tangential interpolation

 Bauer, Beattie, Benner, Gugercin 2009

 Expensive iteration, but possibly fewer basis vectors 

 After few steps, changes in absorption image small
 ∆𝐴𝐴 diagonal with modest number nonzeros
 Small changes in absorption image suggest low rank 

changes to matrix of candidate basis vectors
 In general, change is low rank and small
 Also modest change in reachable and observable states

 Use to analyze required number of samples (a priori number)



Theory – Perturbation Basis Mat.s and Gramians
Assume small anomalies and modest changes per step

Consider change in candidate basis vectors from one parameter 
vector to next 

is diagonal with modest nr nonzeros

Then                                 is low rank and

Where        is solution for       , which corresponds to no anomaly. 

Proof by exploiting structure          and expansion into eigenvector 
basis  for  

Similar results for reachability and observability Gramians
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Angles Spans of Candidate Bases Matrices 



Hankel Singular Values 



2D Reconstruction – Experiment 1

Experiment 1 – 2D Reconstruction
#sources = #detectors = 32, 2 freq.s, 25 CSRBFs, 4 sample points
32 x 32 x 32 mesh, 12 random sample vectors



3D Reconstruction – Experiment 2

Experiment 2 – 3D Reconstruction
#sources = #detectors = 225, 3 freq.s, 27 CSRBFs, 4 sample points
32 x 32 x 32 mesh, 50 random sample vectors



3D Reconstruction – Experiment 3

Experiment 3 – 3D Reconstruction
#sources = #detectors = 225, 4 freq.s, 27 CSRBFs, 3 sample points
32 x 32 x 32 mesh, 50 random sample vectors



Results: Reduction of Large Linear Solves



Conclusions and Future Work
 Significant efficiency improvements using model reduction
 Reduce cost of global basis computation

 Randomization very effective (tangential interpolation links)
 Make online ROM building/updating more efficient
 Subspace angle-based methods to further reduce cost

 Randomization
 Important how to select right information
 Make SA methods more robust (at least for Top. Opt.)

 Many problems have similar structure, block bilinear/quadratic 
form, hence are suitable for these methods 

 Interesting opportunities for Krylov methods to efficiently 
estimate these bilinear/quadratic forms



Some Good Reading
 Randomization for the efficient computation of reduced order models – Aslan, de 

Sturler, Gugercin – arXiv very soon
 Randomized approach to nonlinear inversion combining random and optimized 

simultaneous sources and detectors, Aslan, de Sturler, Kilmer, SISC 2019
 Stochastic sampling for deterministic structural topology optimization with 

many load cases: density-based and ground structure approaches, Zhang, de 
Sturler, Paulino, Computer Methods in Applied Mechanical Eng., 2017

 Nonlinear parametric inversion using interpolatory model reduction, de Sturler, 
Gugercin, Kilmer, Chaturantabut, Beattie, O’Connell, SISC 2015

 Computing reduced order models via inner-outer Krylov recycling in Diffuse 
Optical Tomography, O’Connell, Kilmer, de Sturler, Gugercin, SISC 2017

 An effective method for parameter estimation with PDE constraints with 
multiple rhs, Haber, Chung, Herrmann, SIOPT 2012

 Stochastic algorithms for inverse problems involving PDEs and many 
measurements, Roosta-Khorasani, van den Doel, Ascher, SISC 2014

 Assessing stochastic algorithms for large-scale nonlinear least-squares 
problems, Roosta-Khorasani, Szekely, Ascher, …, SIAMUQ 2015
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