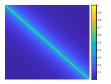
Hybrid projection methods with data driven covariance matrices for large-scale inverse problems

Taewon Cho $^{\dagger},$ Julianne Chung $^{\dagger\ddagger},$ and Jiahua Jiang †

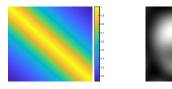
† Department of Mathematics, Virginia Tech ‡ Computational Modeling and Data Analytics Division, Virginia Tech

> Conference on Modern Challenges in Imaging August 6th, 2019



Prior Covariance matrices for inverse problem

Sharp Prior Covairance



(a) Q_1

(b) Reconstruction

(c) True

Smooth Prior Covariance

 Q_1 , Q_2 together?

(d) Q₂

(e) Reconstruction

 Instead of a single prior covariance, consider a weighted sum of covariances,

$$\omega Q_1 + (1-\omega)Q_2$$

- ▶ Get prior covariance matrices from training set
- \blacktriangleright Regularization parameter λ
- **b** By Generalized Golub-Kahan method and additional QR factorization, find ω and λ in subspace.
- Compare numerical results with hybrid methods and shrinkage method.

Thank you!