Learning the Invisible: Limited Angle Tomography, Shearlets and Deep Learning

Tatiana A. Bubba

Department of Mathematics and Statistics, University of Helsinki tatiana.bubba@helsinki.fi

Modern Challenges in Imaging In the Footsteps of Allan MacLeod Cormack On the Fortieth Anniversary of his Nobel Prize

Tufts University, 5-9 August 2019

Limited Angle Tomography	Shearlets Come into Play	Learning the Invisible	Results	Conclusions		
0000	0000	0000000000	000	000		
Collaboratora						

Collaborators

Department of Mathematics and Statistics, University of Helsinki:

- Prof. Matti Lassas, PhD
- Prof. Samuli Siltanen, PhD

Department of Mathematics, Technische Universität Berlin:

- Prof. Gitta Kutyniok, PhD
- Maximilian März, MSc

Dept. of Video Coding and Analytics, Fraunhofer Heinrich Hertz Institute, Berlin:

- Wojciech Samek, PhD
- Vignesh Srinivasan, MSc

Shearlets Come into Play 0000 Learning the Invisible

Results 000 Conclusions

Computed Tomography

Mathematically, a CT scanner samples the **Radon transform**:

$$\mathcal{R}f(\boldsymbol{\theta},s) = \int_{L(\boldsymbol{\theta},s)} f(\boldsymbol{x}) dS(\boldsymbol{x}),$$

where
$$\theta \in [-\pi/2, \pi/2)$$
, $s \in \mathbb{R}$ and
 $L(\theta, s) := \{ \boldsymbol{x} \in \mathbb{R}^2 : x_1 \cos(\theta) + x_2 \sin(\theta) = s \}.$

Task: Recover the scanned object f from the given data $\mathcal{R}f(\theta, s)$. **Difficulties:** Challenging inverse problem when θ and s scarcely sampled.

Limited	Angle	Tomography
0000		

Shearlets Come into Play 0000 Learning the Invisible

Results 000 Conclusions

Linear Discrete Model

For $oldsymbol{f}_{ extsf{gt}} \in \mathbb{R}^{n^2}$ obtain the linear model

$$\boldsymbol{y} = \boldsymbol{\mathcal{R}} \boldsymbol{f}_{gt} + \boldsymbol{\epsilon},$$
 (1)

where $\mathcal{R} \in \mathbb{R}^{m \times n^2}$ (discretized line integrals) and $\|\epsilon\|_2 \leq \eta$ (noise).

Limited	Angle	Tomography	
0000			

Shearlets Come into Play 0000 Learning the Invisible

Results 000 Conclusions

Linear Discrete Model

For $oldsymbol{f}_{ extsf{gt}} \in \mathbb{R}^{n^2}$ obtain the linear model

$$\boldsymbol{y} = \boldsymbol{\mathcal{R}} \boldsymbol{f}_{gt} + \boldsymbol{\epsilon}, \tag{1}$$

where $\mathcal{R} \in \mathbb{R}^{m \times n^2}$ (discretized line integrals) and $\|\epsilon\|_2 \leq \eta$ (noise).

The resulting ill-posed/ill-conditioned inverse problem is usually solved using *filtered backprojection* (FBP), iterative reconstruction, or **regularization**:

$$\underset{\boldsymbol{f} \ge 0}{\operatorname{argmin}} \left\{ \frac{1}{2} \| \boldsymbol{\mathcal{R}} \boldsymbol{f} - \boldsymbol{y} \|_{2}^{2} + R(\boldsymbol{f}) \right\},$$
(2)

where R is chosen for instance as

• $R(f) = ||\mathbf{L}f||_2^2$: (Generalized) Tikhonov,

• $R(f) = ||\mathbf{L}f||_1$: "compressed sensing" or sparse regularization.

where \mathbf{L} is a suitable operator.

Shearlets Come into Play

Learning the Invisibl

Results 000 Conclusions

Limited Angle Tomography

Sample $\mathcal{R}f(\cdot,s)$ on $[-\phi,\phi] \subset [-\pi/2,\pi/2)$, denoted by $\mathcal{R}_{\phi}f = \mathcal{R}f_{|[-\phi,\phi] \times \mathbb{R}}$.

Shearlets Come into Play 0000 Learning the Invisible

Results 000 Conclusions

Limited Angle Tomography

Sample $\mathcal{R}f(\cdot,s)$ on $[-\phi,\phi] \subset [-\pi/2,\pi/2)$, denoted by $\mathcal{R}_{\phi}f = \mathcal{R}f_{|[-\phi,\phi] \times \mathbb{R}}$.

 $\phi = 90^{\circ}$, filtered backprojection (FBP)

Shearlets Come into Play 0000 Learning the Invisible

Results 000 Conclusions

Limited Angle Tomography

Sample $\mathcal{R}f(\cdot,s)$ on $[-\phi,\phi] \subset [-\pi/2,\pi/2)$, denoted by $\mathcal{R}_{\phi}f = \mathcal{R}f_{|[-\phi,\phi] \times \mathbb{R}}$.

 $\phi = 75^{\circ}$, filtered backprojection (FBP)

Shearlets Come into Play 0000 Learning the Invisible

Results 000 Conclusions

Limited Angle Tomography

Sample $\mathcal{R}f(\cdot,s)$ on $[-\phi,\phi] \subset [-\pi/2,\pi/2)$, denoted by $\mathcal{R}_{\phi}f = \mathcal{R}f_{|[-\phi,\phi] \times \mathbb{R}}$.

 $\phi = 60^{\circ}$, filtered backprojection (FBP)

Shearlets Come into Play

Learning the Invisible

Results

Conclusions

Limited Angle Tomography

Sample $\mathcal{R}f(\cdot,s)$ on $[-\phi,\phi] \subset [-\pi/2,\pi/2)$, denoted by $\mathcal{R}_{\phi}f = \mathcal{R}f_{|[-\phi,\phi] \times \mathbb{R}}$.

 $\phi = 45^{\circ}$, filtered backprojection (FBP)

Shearlets Come into Play 0000 Learning the Invisible

Results

Conclusions

Limited Angle Tomography

Sample $\mathcal{R}f(\cdot,s)$ on $[-\phi,\phi] \subset [-\pi/2,\pi/2)$, denoted by $\mathcal{R}_{\phi}f = \mathcal{R}f_{|[-\phi,\phi] \times \mathbb{R}}$.

 $\phi = 30^{\circ}$, filtered backprojection (FBP)

Shearlets Come into Play

Learning the Invisible

Results 000 Conclusions

Limited Angle Tomography

Sample $\mathcal{R}f(\cdot,s)$ on $[-\phi,\phi] \subset [-\pi/2,\pi/2)$, denoted by $\mathcal{R}_{\phi}f = \mathcal{R}f_{|[-\phi,\phi] \times \mathbb{R}}$.

 $\phi = 15^{\circ}$, filtered backprojection (FBP)

Observations:

- only certain boundaries/features seem to be "visible",
- missing wedge creates artifacts,
- highly ill-posed inverse problem!

Limited Angle Tomography	Shearlets Come into Play	Learning the Invisible	Results	Conclusions
0000	0000	000000000	000	000

Visibility in CT: Microlocal Analysis & Wavefront Sets

"visible": singularities tangent to sampled lines

"invisible": singularities not tangent to sampled lines

Main literature for limited data CT:

- characterization in sinogram: Quinto (1993)
- characterization in FBP, reduction of artifacts: Frikel & Quinto (2013)

- Analogous continuous setting with parameters $a \in \mathbb{R}_+$, $s \in \mathbb{R}$, $t \in \mathbb{R}^2$.
- Many more evolved constructions (cone-adapted, bandlimited, compactly supported, ...).

G. Kutyniok and D. Labate, *Shearlets: Multiscale Analysis for Multivariate Data*, 1st ed. New York: Springer Verlag, 2012.

Limited	Angle	Tomography	
0000			

Shearlets Come into Play

Learning the Invisible

Results 000 Conclusions 000

Shearlets and Wavefront Sets

By using continuous shearlets theory:

- f is smooth in t_0 and shearing direction s_0
 - \implies fast decay of shearlet coefficients \implies sparsity!
- wavelets only characterize *singular support* of *f* (*i.e.*, no directional information)

Shearlets Come into Play

Learning the Invisible

Results 000 Conclusions

*-lets and Limited Angle Tomography I

• Forward problem carefully analyzed by Frikel (2013) for curvelets

The index set of curvelets can be split into a part that is "visible" under \mathcal{R}_{ϕ} and a part that is "invisible", *i.e.*, $\mathcal{R}_{\phi} \psi_{j,k,l} = 0$ (via *Fourier slice theorem*).

J. Frikel, Sparse regularization in limited angle tomography, Appl. Comp. Harm. Anal. 34 (1), 117–141, 2013.

Shearlets Come into Play

Learning the Invisible

Results 000 Conclusions

*-lets and Limited Angle Tomography I

• Forward problem carefully analyzed by Frikel (2013) for curvelets

The index set of curvelets can be split into a part that is "visible" under \mathcal{R}_{ϕ} and a part that is "invisible", *i.e.*, $\mathcal{R}_{\phi} \psi_{j,k,l} = 0$ (via *Fourier slice theorem*).

• Holds for shearlets and other directional representation systems as well

J. Frikel, Sparse regularization in limited angle tomography, Appl. Comp. Harm. Anal. 34 (1), 117–141, 2013.

Shearlets Come into Play

Learning the Invisible

lesults

Conclusions

*-lets and Limited Angle Tomography II

Obtain

$$\begin{split} f &= \sum_{(j,k,l) \in \mathcal{I}_{vis}} \langle f, \psi_{j,k,l} \rangle \, \psi_{j,k,l} + \sum_{(j,k,l) \in \mathcal{I}_{inv}} \langle f, \psi_{j,k,l} \rangle \, \psi_{j,k,l} \\ &= f_{vis} + f_{inv}. \end{split}$$

Use in:

$$\operatorname{SH}_{\psi}^{T}\left(\operatorname*{argmin}_{\boldsymbol{z}} \|\boldsymbol{z}\|_{1,\boldsymbol{w}} + \frac{1}{2} \|\boldsymbol{\mathcal{R}}_{\boldsymbol{\phi}}\operatorname{SH}_{\psi}^{T}(\boldsymbol{z}) - \boldsymbol{y}\|_{2}^{2} \right)$$

Tatiana Bubba

Limited	Angle	Tomography	
0000			

Shearlets Come into Play

Learning the Invisible

esults 00 Conclusions

*-lets and Limited Angle Tomography II

Obtain

$$\begin{split} f &= \sum_{(j,k,l) \in \mathcal{I}_{vis}} \langle f, \psi_{j,k,l} \rangle \, \psi_{j,k,l} + \sum_{(j,k,l) \in \mathcal{I}_{inv}} \langle f, \psi_{j,k,l} \rangle \, \psi_{j,k,l} \\ &= f_{vis} + f_{inv}. \end{split}$$

Use in:

$$\mathrm{SH}_{\psi}^{T}\left(\operatorname*{argmin}_{\boldsymbol{z} \in \mathcal{I}_{\mathsf{vis}}} \|\boldsymbol{z}\|_{1,\boldsymbol{w}} + \frac{1}{2} \|\boldsymbol{\mathcal{R}}_{\boldsymbol{\phi}} \operatorname{SH}_{\psi}^{T}(\boldsymbol{z}) - \boldsymbol{y}\|_{2}^{2} \right)$$

• dimension reduction

Limited	Angle	Tomography	
0000			

Shearlets Come into Play

Learning the Invisible

esults 00 Conclusions

*-lets and Limited Angle Tomography II

Obtain

$$\begin{split} f &= \sum_{(j,k,l) \in \mathcal{I}_{vis}} \langle f, \psi_{j,k,l} \rangle \, \psi_{j,k,l} + \sum_{(j,k,l) \in \mathcal{I}_{inv}} \langle f, \psi_{j,k,l} \rangle \, \psi_{j,k,l} \\ &= f_{vis} + f_{inv}. \end{split}$$

Use in:

$$\mathrm{SH}_{\psi}^{T}\left(\operatorname*{argmin}_{\boldsymbol{z} \in \mathcal{I}_{\mathsf{vis}}} \|\boldsymbol{z}\|_{1,\boldsymbol{w}} + \frac{1}{2} \|\boldsymbol{\mathcal{R}}_{\boldsymbol{\phi}} \, \mathrm{SH}_{\psi}^{T}(\boldsymbol{z}) - \boldsymbol{y}\|_{2}^{2} \right)$$

- dimension reduction
- drawbacks: no positivity constraint, synthesis formulation

Limited Angle Tomography 0000	Shearlets Come into Play 0000	Learning the Invisible ●000000000	Results 000	Conclusions 000
	The	e Idea		
Facts:				\wedge

- parts of the WF are available only "here and there".
- shearlets are proven to resolve the WF

Idea: use shearlet coefficients to fill in the missing parts of the wavefront set.

Limited Angle Tomography 0000	Shearlets Come into Play 0000	Learning the Invisible •000000000	Results 000	Conclusions 000		
The Idea						
Facts:				\wedge		

- parts of the WF are available only "here and there".
- shearlets are proven to resolve the WF

Idea: use shearlet coefficients to fill in the missing parts of the wavefront set.

 ℓ^1 -minimization reconstruction

Limited Angle Tomography 0000	Shearlets Come into Play	Learning the Invisible	Results 000	Conclusions 000
	The	e Idea		
Facts: • parts of the WF	are available	\uparrow		7

- only "here and there".
- shearlets are proven to resolve the WF

Limited Angle Tomography 0000	Shearlets Come into Play 0000	Learning the Invisible	Results 000	Conclusions 000
	The	dea		
Facts: • parts of the value (here as a series)	WF are available	\uparrow		7

• shearlets are proven to resolve the WF

Limited Angle Tomography 0000	Shearlets Come into Play 0000	Learning the Invisible •000000000	Results 000	Conclusions 000
	The	e Idea		
Facts:		\wedge		\wedge
 parts of the V only "here an 	VF are available Id there".			

 shearlets are proven to resolve the WF

Learning the Invisible 000000000

Shearlet Cube

Numerically, the shearlet transform does the following:

 $\boldsymbol{f} \in \mathbb{R}^{n \times n} \longmapsto \boldsymbol{F} \in \mathbb{R}^{n \times n \times L}$

 $F \in \mathbb{R}^{n \times n \times L}$

- Each subband F(:,:,i) corresponds to the inner products $\langle f, \psi_{i,k,\cdot} \rangle$,
- F is referred to as the *shearlet coefficients cube* of f.

Igle Tomography Shearlets Come into Play Learning the Invisible Results

"Candy-wrap" Structure

Due to the sorting, shearlets coefficients follow a specific structure in each scale:

mited Angle Tomography	Shearlets Come into Play	Learning the Invisible	Results	Conclusions
000	0000	00000000	000	000

"Candy-wrap" Structure

Due to the sorting, shearlets coefficients follow a specific structure in each scale:

Invisibility of limited angle tomography "creates" holes in it:

Limited Angle CT, Shearlets & Deep Learning

Shearlets Come into Play 0000 Learning the Invisible

Results 000 Conclusions

"Candy-wrap" Prior?

First Idea

Handcraft a prior that promotes this specific "candy–wrap" structure of the shearlet coefficients: enforce continuity of WF.

Too complicated?

Shearlets Come into Play 0000 Learning the Invisible

Results 000 Conclusions

"Candy-wrap" Prior?

First Idea

Handcraft a prior that promotes this specific "candy–wrap" structure of the shearlet coefficients: enforce continuity of WF.

Too complicated?

- "messy" shearlet coefficients
- easy rule for the human eye, hard to grasp mathematically

(a) shearlet cube for Shepp-Logan

(b) "cleaned" shearlet cube

Shearlets Come into Play 0000 Learning the Invisible

Results

Conclusions

"Candy-wrap" Prior?

First Idea

Handcraft a prior that promotes this specific "candy–wrap" structure of the shearlet coefficients: enforce continuity of WF.

Too complicated?

- "messy" shearlet coefficients
- easy rule for the human eye, hard to grasp mathematically

(a) shearlet cube for Shepp-Logan

(b) "cleaned" shearlet cube

Idea

Train a deep neural network to fill in the gaps of the WF.

Limited Angle CT, Shearlets & Deep Learning

Limited	Angle	Tomography	
0000			

Results 000 Conclusions

Some Literature on DL for Inverse Problems

- on FBP:
 - Kang et al. (2017): contourlets of FBP + U-net, 2nd place Mayo low-dose challenge & many more works from this group!
 - Zhang et al. (2016): 2-layer network on FBP
 - Jin et al. (2017): U-Net on FBP
- incorporating forward model via optimization scheme:
 - Hammernik et al. (2017): learning weights for FBP, then filtering
 - Meinhardt et al. (2017): learning proximal operators
 - Adler et al. (2017): learned primal dual

The Closest Method: Gu & Ye (2017)

"Based on the observation that the artifacts from limited angles have some directional property and are globally distributed, we propose a novel multi-scale wavelet domain residual learning architecture, which compensates for the artifacts."

Limited Angle CT, Shearlets & Deep Learning

imited Angle Tomography	Shearlets Come into Play	Learning the Invisible	Results	Conclusions
000	0000	000000000	000	000

Some Observations

Concerning "denoising" of the FBP (or its coefficients) with DL:

- missing theory, unclear what the NN really does:
 - entire image is processed
 - which features are modified?
 - lack of a clear interpretation (?)

• NN needs to learn a lot of streaking artifacts (+ noise)

imited Angle Tomography	Shearlets Come into Play	Learning the Invisible	Results	Conclusions
0000	0000	000000000	000	000

Some Observations

Concerning "denoising" of the FBP (or its coefficients) with DL:

- missing theory, unclear what the NN really does:
 - entire image is processed
 - which features are modified?
 - lack of a clear interpretation (?)

• NN needs to learn a lot of streaking artifacts (+ noise)

We can do better (in limited angle CT)!

- only the invisible boundaries need to be learned
- shearlets help to access them
- the coefficients follow the "candy-wrap" structure

Limited Angle Tomography	Shearlets Come into Play	Learning the Invisible	Results	Conclusions
0000	0000	0000000000	000	000

Our Approach

Step 1, "recover the visible": best available classical solution (little artifacts, denoised)

$$oldsymbol{f}^* := \operatorname*{argmin}_{oldsymbol{f} \geqslant 0} \|\operatorname{SH}_\psi(oldsymbol{f})\|_{1,w} + rac{1}{2} \|oldsymbol{\mathcal{R}}_\phi oldsymbol{f} - oldsymbol{y}\|_2^2$$

Allows to access WF via sparsity prior on shearlets:

- for $(j, k, l) \in \mathcal{I}_{inv}$: $SH_{\psi}(f^*)_{(j,k,l)} \approx 0$
- for $(j,k,l) \in \mathcal{I}_{vis}$: $SH_{\psi}(\boldsymbol{f^*})_{(j,k,l)}$ reliable and near perfect

Step 2, "learn the invisible": supervised learning of invisible coefficients

$$\mathcal{NN}_{\boldsymbol{\theta}}: \operatorname{SH}_{\psi}(\boldsymbol{f^*})_{\mathcal{I}_{\operatorname{inv}}} \longrightarrow F\left(\stackrel{!}{\approx} \operatorname{SH}_{\psi}(\boldsymbol{f}_{\operatorname{gt}})_{\mathcal{I}_{\operatorname{inv}}}\right)$$

Step 3, "combine":

$$\boldsymbol{f}_{\texttt{LtI}} = \operatorname{SH}_{\psi}^{T} \left(\operatorname{SH}_{\psi}(\boldsymbol{f^*})_{\mathcal{I}_{\texttt{vis}}} + \boldsymbol{F} \right)$$

Limited Angle CT, Shearlets & Deep Learning

Shearlets Come into Play

Learning the Invisible

Results

Conclusions 000

Our Approach

Shearlets Come into Play 0000 Learning the Invisible

esults

Conclusions

Our Approach – Step 2: CNN PhantomNet

Convolutional Neural Network that minimizes over the empirical risk:

$$\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{j=1}^{N} \| \mathcal{N} \mathcal{N}_{\boldsymbol{\theta}}(\mathrm{SH}(\boldsymbol{f}_{j}^{*})) - \mathrm{SH}(\boldsymbol{f}_{j}) \boldsymbol{\mathcal{I}}_{\mathrm{inv}} \|_{\boldsymbol{w},2}^{2}.$$

Limited Angle CT, Shearlets & Deep Learning

Shearlets Come into Play 0000 Learning the Invisible

Results 000 Conclusions

Learning the Invisible

Model based & data driven: only learn what needs to be learned!

Possible advantages:

- faithfulness by learning only what is not visible in the data
- better performance due to better input
- NN does not process entire image
 - less blurring by U-net
 - fewer unwanted artifacts
- better generalization

T.A. Bubba, G. Kutyniok, M. Lassas, M. März, W. Samek, S. Siltanen and V. Srinivasan, *Learning the Invisible: a hybrid deep learning-shearlets framework for limited angle computed tomography*, Inverse Problems **35**, 064002.

Shearlets Come into Play 0000 Learning the Invisible

Results

Conclusions

Learning the Invisible

Model based & data driven: only learn what needs to be learned!

Possible advantages:

- faithfulness by learning only what is not visible in the data
- better performance due to better input
- NN does not process entire image
 - less blurring by U-net
 - fewer unwanted artifacts
- better generalization

Disadvantage:

 \bullet speed: dominated by $\ell^1\text{-minimization}$

T.A. Bubba, G. Kutyniok, M. Lassas, M. März, W. Samek, S. Siltanen and V. Srinivasan, *Learning the Invisible: a hybrid deep learning-shearlets framework for limited angle computed tomography*, Inverse Problems **35**, 064002.

Limited Angle Tomography	Shearlets Come into Play	Learning the Invisible	Results	Conclusions
0000	0000	0000000000	•00	000

Setup

• Experimental Scenarios:

- Mayo Clinic⁴: human abdomen scans provided by the Mayo Clinic for the AAPM Low-Dose CT Grand Challenge.
 - 10 patients (2378 slices of size 512×512 with thickness 3mm)
 - 9 patients for training (2134 slices) and 1 patient for testing (244 slices)
 - Mayo-60°: missing wedge of 60°
 - Mayo- 75° : missing wedge of 30°
- Lotus Root: real data measured with the μ CT in Helsinki
 - to check generalization properties of our method (training is on Mayo-60°)
 - Lotus- 60° : missing wedge of 60°
 - Lotus-75°: missing wedge of 30°

• Operators:

- \mathcal{R}_{ϕ} : Astra toolbox (fanbeam geometry fits lotus root's acquisition setup)
- SH $_{\psi}$: α -shearlet transform toolbox (bandlimited shearlets with 5 scales, *i.e.*, 59 subbands of size 512 × 512)

⁴We would like to thank Dr. Cynthia McCollough, the Mayo Clinic, the American Association of Physicists in Medicine (AAPM), and grant EB01705 and EB01785 from the National Institute of Biomedical Imaging and Bioengineering for providing the Low-Dose CT Grand Challenge data set.

Shearlets Come into Play

Learning the Invisible

Results 000

Conclusions 000

Mayo-60°

Shearlets Come into Play

Learning the Invisible

Results

Conclusions 000

Mayo-60°

 $\textbf{\textit{f}}_{\rm FBP}:~{\rm RE}=0.50,~{\rm HaarPSI}{=}0.35$

Shearlets Come into Play

Learning the Invisible

Results

Conclusions 000

Mayo-60°

 $\boldsymbol{f}_{\scriptscriptstyle \mathrm{TV}}:~\mathsf{RE}=0.21$, HaarPSI=0.41

Shearlets Come into Play

Learning the Invisible

Results

Conclusions 000

Mayo-60°

 f^* : RE = 0.19, HaarPSI=0.43

Shearlets Come into Play

Learning the Invisible

Results

Conclusions 000

Mayo-60°

 $\boldsymbol{f}_{\rm gt}$

 $\textbf{\textit{f}}_{[\mathsf{Gu}~\&~\mathsf{Ye},~2017]}\text{:}~\mathsf{RE}=0.22\text{, HaarPSI}{=}0.40$

Shearlets Come into Play

Learning the Invisible

Results

Conclusions 000

Mayo-60°

 ${f_{
m gt}}$

 $\mathcal{NN}_{m{ heta}}(m{f}_{ ext{FBP}})$: RE = 0.16, HaarPSI=0.53

Shearlets Come into Play

Learning the Invisible

Results

Conclusions 000

Mayo-60°

 $f_{\rm gt}$

 $\mathcal{NN}_{\theta}(\mathrm{SH}(\boldsymbol{f}_{\mathtt{FBP}}))$: RE = 0.16, HaarPSI=0.58

Shearlets Come into Play

Learning the Invisible

Results

Conclusions 000

Mayo-60°

 ${f_{
m gt}}$

 $\textbf{\textit{f}}_{\text{\tiny LtI}}: \; \text{RE} = 0.09 \text{, } \text{HaarPSI}{=}0.76$

Shearlets Come into Play

Learning the Invisible

Results

Conclusions 000

Lotus- 60°

Tatiana Bubba

Shearlets Come into Play

Learning the Invisible

Results

Conclusions

Lotus-60°

Shearlets Come into Play

Learning the Invisible

Results

Conclusions 000

Lotus- 60°

Shearlets Come into Play

Learning the Invisible

Results

Conclusions

Lotus- 60°

Shearlets Come into Play

Learning the Invisible

Results

Conclusions

Lotus- 60°

 $\boldsymbol{f}_{\text{[Gu & Ye, 2017]}}: \text{ RE} = 0.42 \text{, HaarPSI}{=}0.56$

Shearlets Come into Play

Learning the Invisible

Results

Conclusions

Lotus- 60°

 $\mathcal{NN}_{\theta}(\mathrm{SH}(\mathbf{\textit{f}}_{\mathtt{FBP}}))$: RE = 0.27, HaarPSI=0.63

Shearlets Come into Play

Learning the Invisible

Results 000 Conclusions 000

Lotus- 60°

 $f_{ ext{ltr}}$: RE = 0.15, HaarPSI=0.74

Limited	Angle	Tomography
0000		

Shearlets Come into Play

Learning the Invisible

Results 000 Conclusions

Conclusions

- limited angle CT is a special inverse problem
 - visible and invisible features
- ℓ^1 -minimization with shearlets
 - access visible part of WF
 - negligible invisible part
- learn the invisible parts with a deep NN
 - 3D "inpainting" problem
 - regularity assumptions on f
- faithful approach: limit influence of DL
 - no explanation of DL
 - but clearer concept what is happening!

Limited Angle Tomography	Shearlets Come into Play	Learning the Invisible	Results	Conclusions
0000	0000		000	O●O

Future Perspectives

- Consider smaller visible wedges (e.g., in breast CT $\phi = 20^{\circ}$ with 11 sampled angles)
- Optimize over a more sophisticated loss function:
 - by adding additional regularizers
 - by defining the loss function over the image domain
- Apply the same machinery to other limited or scarce data CT problems:
 - region of interest or exterior tomography
 - real life applications where most of the data are not acquired in the measurements

Thank you!