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The Funk-Minkowski-Radon transform

Funk transform evaluates the integrals over the great (n− 2)− dim
spheres in Sn−1 :

F : C (Sn−1)→ C (Sn−1),

Ff (ω) =

∫
x∈Sn−1∩{〈x ,ω〉=0}

f (x) dAn−1(x),

where ω ∈ Sn−1, and dAn−2 is Lebesgue surface area measure.
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The classical Funk transform

Paul Funk (1911). Applications: diffusion MRI ...

I ker F = C−(Sn−1)- the subspace of odd functions.

I The restriction on even functions:

F+ : C+(Sn−1)→ C+(Sn−1)

is surjective and injective.

I Helgason’s inversion formula (n = 3):

(F−1+ g)(x) =
1

2π

[ d

ds

∞∫
0

(F ∗g)(arccos v , x)v(s2−v2)−
1
2 dv
]
|s=1,

(F ∗g)(p, x) =
1

2πcosp

∫
|u|=1,〈x ,u〉=sin p

g(u) du.

I F−1+ reconstructs the even parts: f+ = F−1+ Ff for any
f ∈ C (Sn−1). 3 / 21



Shifted Funk transform

Integration over non-central cross-sections

Definition

Let a ∈ Rn. The (shifted) Funk transform with the center a
is defined on f ∈ C (Sn−1) by

(Faf )(ω) =

∫
Sn−1∩{〈x−a,ω〉=0}

f (x) dA(x).

Y. Salman (2016, 2017).

The classical Funk transform is F0, (a = 0).
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Shifted Funk transform, interior center

Questions: kernel, range, inversion

I The case |a| = 1: A. Aboulaz and R. Daher (1993), S.
Helgason (2011), B. Rubin (2105).

I |a| < 1. Description of ker Fa. Link between the transforms
Fa and F . Inversion of Fa. M. Quellmalz (2017) (n = 3); M.
Quellmalz, B. Rubin (2018) (n ≥ 3).
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Formulation of the problems:

I Single SFT: The case of arbitrary location of the center;
kernel, reconstruction?

I Paired SFT. Whether / when two Funk data (Fa,Fb) are
enough for the reconstruction of functions?

I Define the paired Funk transform

(Fa,Fb) : C (Sn−1)→ C (Sn−1)× C (Sn−1), (Fa, fb)f = (Faf ,Fbf ).

I Describe
Ker(Fa,Fb) = Ker Fa ∩ Ker Fb.

I For what pairs (a, b) the transform (Fa,Fb) is injective?
Ker Fa ∩ Ker Fb = {0}?

I In the case (Fa,Fb) is injective, recover f from (Faf ,Fbf ).
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Standard transforms

I The center at 0: the Funk transform F = F0.

I The center at ∞. The parallel slice Funk transform :

Vaf (ω, t) =

∫
〈x ,ω〉=t

f (x) dVn−1(x),

where ω ⊥ a. Va integrates functions over the cross-sections
of Sn−1, parallel to a.

I Vaf = lim
λ→+∞

Fλa = F∞·a.

I Ker Va = {f : f (x) = −f (σbx)}, σbx = x − 2 〈x ,b〉|b|2 b.

I Va - is inverted on b- even functions, R. Hielscher and M.
Quellmalz, (2016) (n = 3,) B. Rubin (2018).
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Intertwining between SFT and FT

Theorem

Faf (ω) = F0

(
(f ◦ ϕa)Ja

)
(ϕ∗aω); |a| < 1,

Faf (ω) = Va

(
(f ◦ ϕa∗)Ja∗

)
(ϕ∗a∗ω); |a| > 1,

ϕax =
Pa(a− x) +

√
1− |a|2Qa(a− x)

1− 〈x , a〉
, ϕ∗aω =

Paω + saQaω

|Paω + saQaω|
.

Pax = 〈x ,a〉
|a|2 a, Qa = I − Pa-orthogonal projections,

Ja(x) =

(√
1−|a|2

1−〈x ,a〉

)n−2

, a∗ = a
|a|2 .
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Ingredients of the proof of the intertwining relations

I The main tool: the group Aut(Bn) of hyperbolic
automorphisms.

I Fractional-linear extension of Aut(Bn)|Sn−1 into Bn. The
extensions preserve affine cross-sections. The extended group
coincides with the restriction Aut(Bn

C|Bn) to the real space of
biholo. Möbius automorphisms of the complex unit ball.

I ϕa : { hyperplanes containing a} � { hyperplanes
containing 0}, |a| < 1,

I ϕa∗ : { hyperplanes containing a} � { hyperplanes
parallel to a}, |a| > 1.

I Computing pull-back integration measures (Jacobians) on the
cross-sections of Sn by hyperplanes .
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Kernel description

Theorem

Let a ∈ Rn. Then Faf = 0, f ∈ C (Sn−1) if and only if f is a-odd:

f (x) = −ρa(x)f (τax), x ∈ Sn−1,

where

ρa(x) =

(
1− |a|2

|a− x |2

)n−2

,

and τax is the a-reflection: τax ∈ Sn−1 ∩ L(x , a).

Proof: intertwining with the standard Funk transform and referring
to the known description of kerF0.
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Injectivity of paired Funk transform

For any a, b ∈ Rn \ Sn−1, define Θ(a, b) = 〈a,b〉−1√
(1−|a|2)(1−|b|2)

.

Theorem

Let a, b ∈ Rn, |a|, |b| 6= 1. Then (Fa,Fb) fails to be injective, i.e.,
Ker Fa ∩ Ker Fb 6= {0}, if and only if

1. Θ(a, b) is real,

2. 0 ≤ Θ(a, b) < 1,

3. arccos Θ(a, b) = p
qπ, p, q are integer.
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Geometric reformulation

Theorem (Equiv. geometric form)

The paired operator (Fa,Fb) is injective if and only if

1. 〈a, b〉 6= 1 and

2. The straight line through a and b meets Sn−1 and if not then
arccos Θ(a, b) 6= p

qπ.
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Reconstruction from the pairs of SFT

Reconstruction of the a-even part: if Faf = ga then

f +
a =

1

2
(f + Waf ),

where Waf (x) = ρa(x)f (τax) and τa ∈ Sn−1 is symmetric point to
x w.r.t. a, ρa(x) is the above defined weight function.

Let
(Faf ,Fbf ) = (ga, gb).

Find from the inversion formulas:

f +
a = F−1a ga := ha, f +

b = F−1b ga := hb.

Then write
f = 2ha −Waf , f = 2hb −Wbf ,

or
f = h + Wf ,

where h = 2ha − 2Wahb and W = WaWb. 13 / 21



Reconstructing series

Iterate: f = h + Wf = f + W (h + Wf ) = f + Wh + W 2f = ... =
N−1∑
k=0

W kh + W N f . Convergence: when W N f → 0, N →∞.

Theorem

Let L(a, b) ∩ Sn−1 6= ∅. Then

f =
∞∑
k=0

(WaWb)kh,

where Waf (x) = 1−|a|2
|a−x |2 f (τax), Wbf (x) = 1−|b|2

|b−x |2 f (τbx)

and h = 2(F−1a ga −WaF−1b gb). The series converges

1. uniformly on compact subsets of Sn−1 \ {a} or of Sn−1 \ {b},
2. in Lp(Sn−1) for 1 ≤ p < n

n−1 .
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Injectivity of (Fa,Fb): key steps of the proof

Step 1. T - automorphic functions. If f ∈ KerFa ∩ KerFb then:

f (x) = −ρa(x)f (τax), (1)

f (y) = −ρb(y)f (τby). (2)

Substitute (1) to (2):

f (x) = ρ(x)f (Tx),

where Tx = τbτax the double reflection, T : Sn−1 → Sn−1 and

ρ(x) = ρb(τax)ρa(x), ρa(x) =
(
1−|a|2
|a−x |2

)n−2
.

Thus, Ker Fa ∩ Ker Fb consists of T -automorphic functions
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The billiard T : Sn−1 → Sn−1
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Step 2. The dynamics of the mapping T

I Reduction to the dynamics on the circle S1 : The iterations
T kx , k = 0, 1, ..., Tx = τbτax , belong to span(x , a, b).

I T : S1 → S1 extends to a Moebius transformation
MT ∈ SL(2,C).

I T -automorphic fnctns on Sn−1 reduce to those on S1 :

f (z) = |M ′(z)|n−2f (MT (z)), z ∈ S1.
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Types of the orbits

Computation shows:

det MT = (|a|2 − 1)(|b|2 − 1), tr MT = 2
〈a, b〉 − 1√

(|a|2 − 1)(|b|2 − 1)
.

The types of the dynamics (are determined by tr MT ):

I (1) Hyperbolic, parabolic, loxodromic: the orbits converge to
an attractive fixed point on S1.

I (2) Circular type: tr MT = 0 : the mapping of order 2
(periodic orbits).

I (3) Elliptic type: either MT is of finite order (periodic orbits),
if the rotation number θ(a, b) = p

qπ, or the orbits are dense, if

θ(a, b) 6= p
qπ.)
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Final step. Translation in terms of a, b.

tr MT =
2〈a, b〉 − 1√

(|a|2 − 1)(|b|2 − 1)
.

Lemma

There are nonzero MT− automorphic fnctns if and only if the
orbits are periodic, i.e., MN

T = id , which happens in the

1. circular case: tr MT = 0 , i.e. a, b are dual: 〈a, b〉 = 1 and

2. elliptic case: tr MT ∈ (−1, 1) , rotation number
arccos(12 tr MT ) = arccos Θ(a, b) = p

qπ.

Theorem follows since, as we have shown before, Ker (Fa,Fb)
consists exactly of T -automorphic functions.
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Injectivity cases
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Thank you for your attention!
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