Single and paired shifted Funk transforms

Mark Agranovsky, Boris Rubin

Bar-Ilan University and Holon Institute of Technology; Louisiana State University

International Conference "Modern Challenges in Imaging, in honor of Allan Cormak; August 4-9, 2019

The Funk-Minkowski-Radon transform

Funk transform evaluates the integrals over the great (n-2) – dim spheres in S^{n-1} :

$$F: C(S^{n-1}) \to C(S^{n-1}),$$

$$Ff(\omega) = \int_{x \in S^{n-1} \cap \{\langle x, \omega \rangle = 0\}} f(x) \, dA^{n-1}(x),$$

where $\omega \in S^{n-1}$, and dA^{n-2} is Lebesgue surface area measure.

The classical Funk transform

Paul Funk (1911). Applications: diffusion MRI ...

• ker $F = C_{-}(S^{n-1})$ - the subspace of odd functions.

The restriction on even functions:

$$F_+: C_+(S^{n-1}) \to C_+(S^{n-1})$$

is surjective and injective.

• Helgason's inversion formula (n = 3):

$$(F_{+}^{-1}g)(x) = \frac{1}{2\pi} \left[\frac{d}{ds} \int_{0}^{\infty} (F^{*}g) (\arccos v, x) v (s^{2} - v^{2})^{-\frac{1}{2}} dv \right]|_{s=1},$$
$$(F^{*}g)(p, x) = \frac{1}{2\pi cosp} \int_{|u|=1, \langle x, u \rangle = sin p} g(u) \ du.$$

3/21

► F_+^{-1} reconstructs the even parts: $f_+ = F_+^{-1}Ff$ for any $f \in C(S^{n-1})$.

Shifted Funk transform

Integration over non-central cross-sections

Definition

Let $a \in \mathbb{R}^n$. The (shifted) Funk transform with the center a is defined on $f \in C(S^{n-1})$ by

$$(F_a f)(\omega) = \int_{S^{n-1} \cap \{\langle x-a, \omega \rangle = 0\}} f(x) \ dA(x).$$

Y. Salman (2016, 2017).

The classical Funk transform is F_0 , (a = 0).

Shifted Funk transform, interior center

Questions: kernel, range, inversion

- ► The case |a| = 1: A. Aboulaz and R. Daher (1993), S. Helgason (2011), B. Rubin (2105).
- |a| < 1. Description of ker F_a. Link between the transforms F_a and F. Inversion of F_a. M. Quellmalz (2017) (n = 3); M. Quellmalz, B. Rubin (2018) (n ≥ 3).

Formulation of the problems:

- Single SFT: The case of arbitrary location of the center; kernel, reconstruction?
- Paired SFT. Whether / when two Funk data (F_a, F_b) are enough for the reconstruction of functions?
- Define the paired Funk transform

 $(F_a,F_b): C(S^{n-1}) \rightarrow C(S^{n-1}) \times C(S^{n-1}), \ (F_a,f_b)f = (F_af,F_bf).$

Describe

$$Ker(F_a, F_b) = Ker F_a \cap Ker F_b.$$

- For what pairs (a, b) the transform (F_a, F_b) is injective? Ker F_a ∩ Ker F_b = {0}?
- ▶ In the case (F_a, F_b) is injective, recover f from $(F_a f, F_b f)$.

Standard transforms

- The center at 0: the Funk transform $F = F_0$.
- The center at ∞ . The parallel slice Funk transform :

$$V_a f(\omega, t) = \int_{\langle x, \omega \rangle = t} f(x) \, dV_{n-1}(x),$$

where $\omega \perp a$. V_a integrates functions over the cross-sections of S^{n-1} , parallel to a.

$$V_a f = \lim_{\lambda \to +\infty} F_{\lambda a} = F_{\infty \cdot a}.$$

- Ker $V_a = \{f : f(x) = -f(\sigma_b x)\}, \ \sigma_b x = x 2\frac{\langle x, b \rangle}{|b|^2}b.$
- ► V_a is inverted on b- even functions, R. Hielscher and M. Quellmalz, (2016) (n = 3,) B. Rubin (2018).

Intertwining between SFT and FT

Theorem

$$\begin{split} F_{a}f(\omega) &= F_{0}\Big((f\circ\varphi_{a})J_{a}\Big)(\varphi_{a}^{*}\omega); \quad |a| < 1, \\ F_{a}f(\omega) &= V_{a}\Big((f\circ\varphi_{a^{*}})J_{a^{*}}\Big)(\varphi_{a^{*}}^{*}\omega); \quad |a| > 1, \\ \varphi_{a}x &= \frac{P_{a}(a-x) + \sqrt{1-|a|^{2}}Q_{a}(a-x)}{1-\langle x,a\rangle}, \quad \varphi_{a}^{*}\omega = \frac{P_{a}\omega + s_{a}Q_{a}\omega}{|P_{a}\omega + s_{a}Q_{a}\omega|}. \\ P_{a}x &= \frac{\langle x,a\rangle}{|a|^{2}}a, \quad Q_{a} = I - P_{a}\text{-orthogonal projections,} \\ J_{a}(x) &= \left(\frac{\sqrt{1-|a|^{2}}}{1-\langle x,a\rangle}\right)^{n-2}, \quad a^{*} = \frac{a}{|a|^{2}}. \end{split}$$

Ingredients of the proof of the intertwining relations

- ► The main tool: the group Aut(Bⁿ) of hyperbolic automorphisms.
- ► Fractional-linear extension of Aut(Bⁿ)|_{Sⁿ⁻¹} into Bⁿ. The extensions preserve affine cross-sections. The extended group coincides with the restriction Aut(Bⁿ_C|_{Bⁿ}) to the real space of biholo. Möbius automorphisms of the complex unit ball.
- ► φ_a : { hyperplanes containing a} \hookrightarrow { hyperplanes containing 0}, |a| < 1,
- ► φ_{a^*} : { hyperplanes containing a} \leq { hyperplanes parallel to a}, |a| > 1.
- Computing pull-back integration measures (Jacobians) on the cross-sections of Sⁿ by hyperplanes.

Kernel description

Theorem

Let $a \in \mathbb{R}^n$. Then $F_a f = 0$, $f \in C(S^{n-1})$ if and only if f is a-odd:

$$f(x) = -\rho_a(x)f(\tau_a x), \ x \in S^{n-1},$$

where

$$\rho_{\boldsymbol{a}}(\boldsymbol{x}) = \left(\frac{1-|\boldsymbol{a}|^2}{|\boldsymbol{a}-\boldsymbol{x}|^2}\right)^{n-2},$$

and $\tau_a x$ is the a-reflection: $\tau_a x \in S^{n-1} \cap L(x, a)$.

Proof: intertwining with the standard Funk transform and referring to the known description of $kerF_0$.

Injectivity of paired Funk transform

For any
$$a,b\in \mathbb{R}^n\setminus S^{n-1},$$
 define $\Theta(a,b)=rac{\langle a,b
angle-1}{\sqrt{(1-|a|^2)(1-|b|^2)}}.$

Theorem

Let $a, b \in \mathbb{R}^n$, $|a|, |b| \neq 1$. Then (F_a, F_b) fails to be injective, i.e., Ker $F_a \cap Ker F_b \neq \{0\}$, if and only if

- 1. $\Theta(a, b)$ is real,
- 2. $0 \le \Theta(a, b) < 1$,
- 3. $\operatorname{arccos} \Theta(a, b) = \frac{p}{q}\pi$, p, q are integer.

Geometric reformulation

Theorem (Equiv. geometric form)

The paired operator (F_a, F_b) is injective if and only if

- 1. $\langle a, b \rangle \neq 1$ and
- 2. The straight line through a and b meets S^{n-1} and if not then $\arccos \Theta(a, b) \neq \frac{p}{q}\pi$.

Reconstruction from the pairs of SFT

Reconstruction of the *a*-even part: if $F_a f = g_a$ then

$$f_a^+ = \frac{1}{2}(f + W_a f),$$

where $W_a f(x) = \rho_a(x) f(\tau_a x)$ and $\tau_a \in S^{n-1}$ is symmetric point to x w.r.t. $a, \rho_a(x)$ is the above defined weight function.

Let

$$(F_af,F_bf)=(g_a,g_b).$$

Find from the inversion formulas:

$$f_a^+ = F_a^{-1}g_a := h_a, \ \ f_b^+ = F_b^{-1}g_a := h_b.$$

Then write

$$f=2h_a-W_af,\ f=2h_b-W_bf,$$

or

f = h + Wf,

where $h = 2h_a - 2W_ah_b$ and $W = W_aW_b$. 13/21

Reconstructing series

Iterate: $f = h + Wf = f + W(h + Wf) = f + Wh + W^2f = ... = \sum_{k=0}^{N-1} W^k h + W^N f$. Convergence: when $W^N f \to 0, N \to \infty$.

Theorem

Let $L(a, b) \cap S^{n-1} \neq \emptyset$. Then

$$f = \sum_{k=0}^{\infty} (W_a W_b)^k h,$$

where $W_a f(x) = \frac{1-|a|^2}{|a-x|^2} f(\tau_a x)$, $W_b f(x) = \frac{1-|b|^2}{|b-x|^2} f(\tau_b x)$ and $h = 2(F_a^{-1}g_a - W_a F_b^{-1}g_b)$. The series converges

uniformly on compact subsets of Sⁿ⁻¹ \ {a} or of Sⁿ⁻¹ \ {b},
 in L^p(Sⁿ⁻¹) for 1 ≤ p < n/(n-1).

Injectivity of (F_a, F_b) : key steps of the proof

Step 1. *T*- automorphic functions. If $f \in KerF_a \cap KerF_b$ then:

 $f(x) = -\rho_a(x)f(\tau_a x), (1)$ $f(y) = -\rho_b(y)f(\tau_b y). (2)$

Substitute (1) to (2):

 $f(x) = \rho(x)f(Tx),$

where $Tx = \tau_b \tau_a x$ the double reflection, $T : S^{n-1} \to S^{n-1}$ and $\rho(x) = \rho_b(\tau_a x) \rho_a(x), \ \rho_a(x) = \left(\frac{1-|a|^2}{|a-x|^2}\right)^{n-2}$.

Thus, Ker $F_a \cap$ Ker F_b consists of *T*-automorphic functions

The billiard $T: S^{n-1} \rightarrow S^{n-1}$

Step 2. The dynamics of the mapping T

- ► Reduction to the dynamics on the circle S^1 : The iterations $T^k x$, $k = 0, 1, ..., Tx = \tau_b \tau_a x$, belong to span(x, a, b).
- $T: S^1 \to S^1$ extends to a Moebius transformation $M_T \in SL(2, \mathbb{C}).$
- ► *T*-automorphic fnctns on *S*^{*n*-1} reduce to those on *S*¹ :

$$f(z) = |M'(z)|^{n-2} f(M_T(z)), \ z \in S^1.$$

Types of the orbits

Computation shows:

det
$$M_{\mathcal{T}} = (|a|^2 - 1)(|b|^2 - 1), \; tr \; M_{\mathcal{T}} = 2 rac{\langle a, b
angle - 1}{\sqrt{(|a|^2 - 1)(|b|^2 - 1)}}.$$

The types of the dynamics (are determined by $tr M_T$):

- ► (1) Hyperbolic, parabolic, loxodromic: the orbits converge to an attractive fixed point on S¹.
- ▶ (2) Circular type: tr M_T = 0 : the mapping of order 2 (periodic orbits).
- ► (3) Elliptic type: either M_T is of finite order (periodic orbits), if the rotation number $\theta(a, b) = \frac{p}{q}\pi$, or the orbits are dense, if $\theta(a, b) \neq \frac{p}{q}\pi$.)

Final step. Translation in terms of a, b.

tr
$$M_T = rac{2\langle a,b
angle - 1}{\sqrt{(|a|^2 - 1)(|b|^2 - 1)}}.$$

Lemma

There are nonzero M_T - automorphic fnctns if and only if the orbits are periodic, i.e., $M_T^N = id$, which happens in the

- 1. circular case: tr $M_T=0$, i.e. a, b are dual: $\langle a,b\rangle=1$ and
- 2. elliptic case: tr $M_T \in (-1,1)$, rotation number $\arccos(\frac{1}{2}tr \ M_T) = \arccos\Theta(a,b) = \frac{p}{q}\pi$.

Theorem follows since, as we have shown before, $Ker(F_a, F_b)$ consists exactly of *T*-automorphic functions.

Injectivity cases

a and b are not dual: $\langle a, b \rangle \neq 1$

Thank you for your attention!