Support Theorems For Some Integral Transforms On Real-Analytic Riemannian Manifolds

Anuj Abhishek

Department of Mathematics Drexel University, USA

August, 2019

Goal Establish **support theorems** for **integral transforms** like **T**ransverse **R**ay **T**ransform (**TRT**) and integral moments transform (of **G**eodesic **R**ay **T**ransform (**GRT**)) Goal Establish support theorems for integral transforms like Transverse Ray Transform (TRT) and integral moments transform (of Geodesic Ray Transform (GRT)) But, first...

Q1 What is an integral transform?

An integral transform maps a function (or, a tensor field) on a manifold to its integrals over a collection of submanifolds, e.g., X-Ray transform Q1 What is an integral transform?

An integral transform maps a function (or, a tensor field) on a manifold to its integrals over a collection of submanifolds, e.g., X-Ray transform

$$\begin{array}{c} x+t\xi \\ If = \int f(x+t\xi)dt \\ x \end{array}$$

- (M, g) represents a compact, simple, real-analytic Riemannian manifold of dimension n with smooth boundary
- For $x \in \partial M$, $\gamma_{x,\xi}(t)$ is the geodesic starting from x in the direction ξ and $l(\gamma_{x,\xi})$ is the value of t at which this geodesic hits the boundary again
- $K \subset M$ is said to be geodesically convex if for any two points $x \in K$ and $y \in K$, the geodesic connecting them lies entirely in the set K
- Will use Einstein summation convention (summing over repeated indices). Furthermore, we will use coordinate representations, an *m* tensor field f(x) will be written as $f_{i_1...i_m} dx^{i_1} \otimes \cdots \otimes dx^{i_m}$ where $f_{i_1...i_m}$ is the corresponding coordinate function for basis vector $dx^{i_1} \otimes \cdots \otimes dx^{i_m}$

- (M, g) represents a compact, simple, real-analytic Riemannian manifold of dimension n with smooth boundary
- For $x \in \partial M$, $\gamma_{x,\xi}(t)$ is the geodesic starting from x in the direction ξ and $l(\gamma_{x,\xi})$ is the value of t at which this geodesic hits the boundary again
- $K \subset M$ is said to be geodesically convex if for any two points $x \in K$ and $y \in K$, the geodesic connecting them lies entirely in the set K
- Will use Einstein summation convention (summing over repeated indices). Furthermore, we will use coordinate representations, an *m* tensor field f(x) will be written as $f_{i_1...i_m} dx^{i_1} \otimes \cdots \otimes dx^{i_m}$ where $f_{i_1...i_m}$ is the corresponding coordinate function for basis vector $dx^{i_1} \otimes \cdots \otimes dx^{i_m}$

- (M, g) represents a compact, simple, real-analytic Riemannian manifold of dimension n with smooth boundary
- For $x \in \partial M$, $\gamma_{x,\xi}(t)$ is the geodesic starting from x in the direction ξ and $l(\gamma_{x,\xi})$ is the value of t at which this geodesic hits the boundary again
- $K \subset M$ is said to be geodesically convex if for any two points $x \in K$ and $y \in K$, the geodesic connecting them lies entirely in the set K
- Will use Einstein summation convention (summing over repeated indices). Furthermore, we will use coordinate representations, an *m* tensor field f(x) will be written as $f_{i_1...i_m} dx^{i_1} \otimes \cdots \otimes dx^{i_m}$ where $f_{i_1...i_m}$ is the corresponding coordinate function for basis vector $dx^{i_1} \otimes \cdots \otimes dx^{i_m}$

- (M, g) represents a compact, simple, real-analytic Riemannian manifold of dimension n with smooth boundary
- For $x \in \partial M$, $\gamma_{x,\xi}(t)$ is the geodesic starting from x in the direction ξ and $l(\gamma_{x,\xi})$ is the value of t at which this geodesic hits the boundary again
- $K \subset M$ is said to be geodesically convex if for any two points $x \in K$ and $y \in K$, the geodesic connecting them lies entirely in the set K
- Will use Einstein summation convention (summing over repeated indices). Furthermore, we will use coordinate representations, an *m* tensor field f(x) will be written as $f_{i_1...i_m} dx^{i_1} \otimes \cdots \otimes dx^{i_m}$ where $f_{i_1...i_m}$ is the corresponding coordinate function for basis vector $dx^{i_1} \otimes \cdots \otimes dx^{i_m}$

• Consider \widetilde{M} to be a real analytic extension of M. Let \mathcal{A} be an open set of geodesics with endpoints in $\widetilde{M} \setminus M$ such that any geodesic in \mathcal{A} is homotopic, within the set \mathcal{A} , to a geodesic lying outside M. Set of points lying on the geodesics in \mathcal{A} is denoted by $M_{\mathcal{A}}$ i.e.

$$M_{\mathcal{A}} = \bigcup_{\gamma \in \mathcal{A}} \gamma$$

 Slight abuse of notation: *E'(M)* is the set of tensor fields with components that are compactly supported distributions in the int(*M*)

• Consider \widetilde{M} to be a real analytic extension of M. Let \mathcal{A} be an open set of geodesics with endpoints in $\widetilde{M} \setminus M$ such that any geodesic in \mathcal{A} is homotopic, within the set \mathcal{A} , to a geodesic lying outside M. Set of points lying on the geodesics in \mathcal{A} is denoted by $M_{\mathcal{A}}$ i.e.

$$M_{\mathcal{A}} = \bigcup_{\gamma \in \mathcal{A}} \gamma$$

Slight abuse of notation: \$\mathcal{E}'(\tilde{M})\$ is the set of tensor fields with components that are compactly supported distributions in the int(\tilde{M})\$

Support theorem for TRT

Transverse ray transform

• **Definition**: $f \in C_c^{\infty}(M)$ is an *m*- tensor field, $\gamma(t)$ is a geodesic, $\eta(t)$ is a vector field formed by parallel translation along $\gamma(t)$ and orthogonal to it, then TRT is defined by:

$$Jf(\gamma,\eta) = \int_0^{l(\gamma)} f_{i_1\dots i_m}(\gamma(t))\eta^{i_1}\dots \eta^{i_m} dt \quad (\eta(t) \in \gamma^{\perp}(t))$$

- Motivation: Polarization tomography [Sharafutdinov]
- The above definition can be extended to compactly supported distributions by duality, involves computation of adjoint J^* , see [A., 2019]

Transverse ray transform

• **Definition**: $f \in C_c^{\infty}(M)$ is an *m*- tensor field, $\gamma(t)$ is a geodesic, $\eta(t)$ is a vector field formed by parallel translation along $\gamma(t)$ and orthogonal to it, then TRT is defined by:

$$Jf(\gamma,\eta) = \int_0^{l(\gamma)} f_{i_1\dots i_m}(\gamma(t))\eta^{i_1}\dots \eta^{i_m} dt \quad (\eta(t) \in \gamma^{\perp}(t))$$

- Motivation: Polarization tomography [Sharafutdinov]
- The above definition can be extended to compactly supported distributions by duality, involves computation of adjoint J^{*}, see [A., 2019]

Transverse ray transform

• **Definition**: $f \in C_c^{\infty}(M)$ is an *m*- tensor field, $\gamma(t)$ is a geodesic, $\eta(t)$ is a vector field formed by parallel translation along $\gamma(t)$ and orthogonal to it, then TRT is defined by:

$$Jf(\gamma,\eta) = \int_0^{l(\gamma)} f_{i_1\dots i_m}(\gamma(t))\eta^{i_1}\dots \eta^{i_m} dt \quad (\eta(t) \in \gamma^{\perp}(t))$$

- Motivation: Polarization tomography [Sharafutdinov]
- The above definition can be extended to compactly supported distributions by duality, involves computation of adjoint J^* , see [A., 2019]

Support Theorem for TRT

Theorem 1 [A.,2019]

Let (M, g) be a simple real analytic Riemannian manifold of dimension $n \geq 3$ and \widetilde{M} be a real analytic extension of M. Let \mathcal{A} be any connected open set of geodesics as before. Let $f \in \mathcal{E}'(\widetilde{M})$ be a symmetric m- tensor field supported in M. If $Jf(\gamma, \eta) = 0$ for every $\gamma \in \mathcal{A}$ and for every $\eta \in \gamma^{\perp}$, then f = 0on $M_{\mathcal{A}}$.

Let $(x_0, \xi_0) \in T^*M \setminus 0$ and let γ_0 be a fixed simple geodesic through x_0 normal to ξ_0 .

Let $(x_0, \xi_0) \in T^*M \setminus 0$ and let γ_0 be a fixed simple geodesic through x_0 normal to ξ_0 . Let $Jf(\gamma, \eta) = 0$ for some symmetric *m*-tensor $f \in \mathcal{E}'(\widetilde{M})$ supported in *M* and for all $\gamma \in \text{nbd.}(\gamma_0)$ and for every $\eta \in \gamma^{\perp}$.

Anuj Abhishek, Drexel University Support Theorem For Integral Transforms

Let $(x_0, \xi_0) \in T^*M \setminus 0$ and let γ_0 be a fixed simple geodesic through x_0 normal to ξ_0 . Let $Jf(\gamma, \eta) = 0$ for some symmetric *m*-tensor $f \in \mathcal{E}'(\widetilde{M})$ supported in *M* and for all $\gamma \in \text{nbd.}(\gamma_0)$ and for every $\eta \in \gamma^{\perp}$. Then $(x_0, \xi_0) \notin WF_A(f)$.

Let $(x_0, \xi_0) \in T^*M \setminus 0$ and let γ_0 be a fixed simple geodesic through x_0 normal to ξ_0 . Let $Jf(\gamma, \eta) = 0$ for some symmetric *m*-tensor $f \in \mathcal{E}'(\widetilde{M})$ supported in M and for all $\gamma \in \text{nbd.}(\gamma_0)$ and for every $\eta \in \gamma^{\perp}$. Then $(x_0, \xi_0) \notin WF_A(f)$. Holman proved a similar result for 2-tensor case (2013).

Sato-Kawai-Kashiwara Theorem

Let $f \in \mathcal{D}'(M)$. Let $x_0 \in M$ and let U be a neighborhood of x_0 .

Sato-Kawai-Kashiwara Theorem

Let $f \in \mathcal{D}'(M)$. Let $x_0 \in M$ and let U be a neighborhood of x_0 . Assume that S is a C^2 submanifold of M such that: $x_0 \in \operatorname{supp}(f) \cap S$ and $\xi_0 \in N^*_{x_0}(S) \setminus 0$. Furthermore, let S divide U into two open connected sets and assume that f = 0 on one of these open sets.

Sato-Kawai-Kashiwara Theorem

Let $f \in \mathcal{D}'(M)$. Let $x_0 \in M$ and let U be a neighborhood of x_0 . Assume that S is a C^2 submanifold of M such that: $x_0 \in \operatorname{supp}(f) \cap S$ and $\xi_0 \in N^*_{x_0}(S) \setminus 0$. Furthermore, let S divide U into two open connected sets and assume that f = 0 on one of these open sets. Then $(x_0, \xi_0) \in WF_A(f)$.

• γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t

• γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t

• γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t

- γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t
- We chip away at the support using a "cone of geodesics" around γ_t; t ∈ [0, 1]

- γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t
- We chip away at the support using a "cone of geodesics" around γ_t; t ∈ [0, 1]

- γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t
- We chip away at the support using a "cone of geodesics" around γ_t; t ∈ [0, 1]

- γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t
- We chip away at the support using a "cone of geodesics" around γ_t; t ∈ [0, 1]

- γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t
- We chip away at the support using a "cone of geodesics" around γ_t ; $t \in [0, 1]$

- γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t
- We chip away at the support using a "cone of geodesics" around γ_t ; $t \in [0, 1]$

- γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t
- We chip away at the support using a "cone of geodesics" around γ_t ; $t \in [0, 1]$

- γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t
- We chip away at the support using a "cone of geodesics" around γ_t ; $t \in [0, 1]$

Contradiction!

- γ_0 can be continuously deformed to γ_1 while remaining within \mathcal{A} , intermediate geodesics in this deformation are γ_t
- We chip away at the support using a "cone of geodesics" around γ_t ; $t \in [0, 1]$
- Arguments of this kind go back to [Boman, Quinto (1987)]

Contradiction!

Remarks on proof of the microlocal proposition

- Writing in local co-ordinates, $(x_0,\xi_0) \notin WF_A(f) \equiv (x_0,\xi_0) \notin WF_A(f_{i_1...,i_m})$
- Use generalized **FBI Transform** characterisation for analytic wavefront sets: For $u \in \mathcal{D}'(\mathbb{R}^n)$, and $\phi(x, y)$ is holomorphic in a complex neighbourhood of $(x_0, y_0) \in \mathbb{C}^n \times \mathbb{R}^n$ such that:

 $\Im(\partial_y^2 \phi)(x_0, y_0) > 0; \quad (\det(\partial_x \partial_y) \phi)(x_0, y_0) \neq 0$

then

$$T^*(\mathbb{R}^n) \setminus 0 \ni (x_0, y_0) \notin WF_A(u)$$

iff

$$\int e^{i\phi(x,y)/h} u(y) dy = \mathcal{O}(e^{-\delta/h})$$

uniformly for (x, y) in a neighbourhood of (x_0, y_0) and as h > 0 goes to 0.

Anuj Abhishek, Drexel University Support Theorem For Integral Transforms

Remarks on proof of the microlocal proposition

• Writing in local co-ordinates, $(x_0,\xi_0) \notin WF_A(f) \equiv (x_0,\xi_0) \notin WF_A(f_{i_1...,i_m})$

٠

• Use generalized **FBI Transform** characterisation for analytic wavefront sets: For $u \in \mathcal{D}'(\mathbb{R}^n)$, and $\phi(x, y)$ is holomorphic in a complex neighbourhood of $(x_0, y_0) \in \mathbb{C}^n \times \mathbb{R}^n$ such that:

$$\Im(\partial_y^2 \phi)(x_0, y_0) > 0; \quad (\det(\partial_x \partial_y) \phi)(x_0, y_0) \neq 0$$

then

$$T^*(\mathbb{R}^n) \setminus 0 \ni (x_0, y_0) \notin WF_A(u)$$

 iff

$$\int e^{i\phi(x,y)/h}u(y)dy = \mathcal{O}(e^{-\delta/h})$$

uniformly for (x, y) in a neighbourhood of (x_0, y_0) and as h > 0 goes to 0.

Anuj Abhishek, Drexel University Support Theorem For Integral Transforms

• Starting with $Jf(\gamma, \eta_1, \ldots, \eta_m) = 0$ for γ near γ_0 , some algebraic manipulations later we get:

 $\iint e^{i\Phi(y,x,\xi,\upsilon)/h} a_N(x,\xi) f_{i_1\cdots_m}(x) b^{i_1}(x,\xi) \dots b^{i_m}(x,\xi) dx d\xi = 0$

 $\Phi = (x - y)\xi + i(\xi - v)^2/2, a_N, b \text{ are analytic in } (x, \xi)$

- Split the x-integral above into two parts- I_1 contains no critical points of Φ , and I_2 containing exactly one critical point of Φ (w.r.t ξ). I_1 is then analysed using an integration by parts argument and I_2 is estimated using stationary phase method.
- More algebraic manipulation later we get [A.,2018]: $\int e^{i\psi(x,\xi)/h} f_{i_1...i_m}(x) B^{i_1...i_m}(x,\xi;h) dx = \mathcal{O}(e^{-\delta/h}) \text{ where}$ $\psi(x,\xi) \text{ is a function with same properties as in the}$ definition of FBI transform and $B^{i_1...i_m}$ is a classical analytic symbol with $\sigma_p(B)^{ij}(0,\xi_0) = \eta^{i_1}...\eta^{i_m}$. This would prove the microlocal proposition.

• Starting with $Jf(\gamma, \eta_1, \ldots, \eta_m) = 0$ for γ near γ_0 , some algebraic manipulations later we get:

 $\iint e^{i\Phi(y,x,\xi,\upsilon)/h} a_N(x,\xi) f_{i_1\cdots i_m}(x) b^{i_1}(x,\xi) \dots b^{i_m}(x,\xi) dx d\xi = 0$

 $\Phi = (x - y)\xi + i(\xi - v)^2/2, a_N, b$ are analytic in (x, ξ)

- Split the x-integral above into two parts- I_1 contains no critical points of Φ , and I_2 containing exactly one critical point of Φ (w.r.t ξ). I_1 is then analysed using an integration by parts argument and I_2 is estimated using stationary phase method.
- More algebraic manipulation later we get [A.,2018]: $\int e^{i\psi(x,\xi)/h} f_{i_1...i_m}(x) B^{i_1...i_m}(x,\xi;h) dx = \mathcal{O}(e^{-\delta/h}) \text{ where}$ $\psi(x,\xi) \text{ is a function with same properties as in the}$ definition of FBI transform and $B^{i_1...i_m}$ is a classical analytic symbol with $\sigma_p(B)^{ij}(0,\xi_0) = \eta^{i_1}...\eta^{i_m}$. This would prove the microlocal proposition.

• Starting with $Jf(\gamma, \eta_1, \ldots, \eta_m) = 0$ for γ near γ_0 , some algebraic manipulations later we get:

 $\iint e^{i\Phi(y,x,\xi,\upsilon)/h} a_N(x,\xi) f_{i_1\cdots i_m}(x) b^{i_1}(x,\xi) \dots b^{i_m}(x,\xi) dx d\xi = 0$

 $\Phi = (x - y)\xi + i(\xi - v)^2/2, a_N, b \text{ are analytic in } (x, \xi)$

- Split the x-integral above into two parts- I_1 contains no critical points of Φ , and I_2 containing exactly one critical point of Φ (w.r.t ξ). I_1 is then analysed using an integration by parts argument and I_2 is estimated using stationary phase method.
- More algebraic manipulation later we get [A.,2018]: $\int e^{i\psi(x,\xi)/h} f_{i_1...i_m}(x) B^{i_1...i_m}(x,\xi;h) dx = \mathcal{O}(e^{-\delta/h}) \text{ where}$ $\psi(x,\xi) \text{ is a function with same properties as in the}$ definition of FBI transform and $B^{i_1...i_m}$ is a classical analytic symbol with $\sigma_p(B)^{ij}(0,\xi_0) = \eta^{i_1}...\eta^{i_m}$. This would prove the microlocal proposition.

• Starting with $Jf(\gamma, \eta_1, \ldots, \eta_m) = 0$ for γ near γ_0 , some algebraic manipulations later we get:

 $\iint e^{i\Phi(y,x,\xi,\upsilon)/h} a_N(x,\xi) f_{i_1\cdots i_m}(x) b^{i_1}(x,\xi) \dots b^{i_m}(x,\xi) dx d\xi = 0$

$$\Phi = (x - y)\xi + i(\xi - v)^2/2, a_N, b \text{ are analytic in } (x, \xi)$$

- Split the x-integral above into two parts- I_1 contains no critical points of Φ , and I_2 containing exactly one critical point of Φ (w.r.t ξ). I_1 is then analysed using an integration by parts argument and I_2 is estimated using stationary phase method.
- More algebraic manipulation later we get [A.,2018]: $\int e^{i\psi(x,\xi)/h} f_{i_1\dots i_m}(x) B^{i_1\dots i_m}(x,\xi;h) dx = \mathcal{O}(e^{-\delta/h}) \text{ where}$ $\psi(x,\xi) \text{ is a function with same properties as in the}$ definition of FBI transform and $B^{i_1\dots i_m}$ is a classical analytic symbol with $\sigma_p(B)^{ij}(0,\xi_0) = \eta^{i_1}\dots \eta^{i_m}$. This would prove the microlocal proposition.

Support theorem for integral moments of GRT

Support Theorem for integral moments of GRT

• q-th integral moment of a symmetric *m*-tensor field f, $I^q f$ is a function defined by $I^q f(x,\xi) = \int_0^{l(\gamma_{x,\xi})} t^q f_{i_1...i_m}(\gamma_{x,\xi}(t))\dot{\gamma}_{x,\xi}^{i_1}(t)\cdots\dot{\gamma}_{x,\xi}^{i_m}(t)dt$

Support theorem for integral moments [A.,Mishra (2017)]

Let f be a symmetric *m*-tensor field on a manifold as above with components in $\mathcal{E}'(\widetilde{M})$ where \widetilde{M} is an extension of M and K be a closed geodesically convex subset of M. If for each geodesic γ not intersecting K, we have that $I^q f(\gamma) = 0$ for $q = 0, 1, \ldots, m$ then $supp(f) \subset K$.

Why do we need integral moments of GRT?

Decomposition Theorem [Sharafutdinov]

Let M be a compact Riemannian manifold with boundary; let $k \geq 1$ and $m \geq 0$ be integers. For every field $f \in H^k(S^m(M))$, there exist uniquely determined $f^s \in H^k(S^m(M))$ and $v \in H^{k+1}(S^{m-1}(M))$ such that

$$f = f^s + dv, \qquad \delta f^s = 0, \qquad v|_{\partial M} = 0.$$

Here δ is the divergence operator and dv represents the symmetrised covariant derivative of v.

- Writing $u_{i_1...i_m}(\gamma(t))\dot{\gamma}^{i_1}\ldots\dot{\gamma}^{i_m} := \langle u(\gamma(t)),\dot{\gamma}^{\otimes m}\rangle$, we can verify the identity: $\frac{d}{dt}\langle v(\gamma(t)),\dot{\gamma}(t)^{\otimes m-1}\rangle = \langle (dv(\gamma(t))),\dot{\gamma}(t)^{\otimes m}\rangle$
- A tensor field of the form f = dv such that $v|_{\partial M} = 0$ lies in the kernel of I^0 . This indicates additional information (e.g., integral moments) is required to prove a support theorem.

Decomposition Theorem [Sharafutdinov]

Let M be a compact Riemannian manifold with boundary; let $k \geq 1$ and $m \geq 0$ be integers. For every field $f \in H^k(S^m(M))$, there exist uniquely determined $f^s \in H^k(S^m(M))$ and $v \in H^{k+1}(S^{m-1}(M))$ such that

$$f = f^s + dv, \qquad \delta f^s = 0, \qquad v|_{\partial M} = 0.$$

Here δ is the divergence operator and dv represents the symmetrised covariant derivative of v.

- Writing $u_{i_1...i_m}(\gamma(t))\dot{\gamma}^{i_1}\ldots\dot{\gamma}^{i_m} := \langle u(\gamma(t)),\dot{\gamma}^{\otimes m}\rangle$, we can verify the identity: $\frac{d}{dt}\langle v(\gamma(t)),\dot{\gamma}(t)^{\otimes m-1}\rangle = \langle (dv(\gamma(t))),\dot{\gamma}(t)^{\otimes m}\rangle$
- A tensor field of the form f = dv such that $v|_{\partial M} = 0$ lies in the kernel of I^0 . This indicates additional information (e.g., integral moments) is required to prove a support theorem.

Theorem 1 [A.,Mishra (2017)]

Let f be a symmetric m-tensor field with components in $\mathcal{E}'(\widetilde{M})$ and K be a closed geodesically convex subset of M. If for each geodesic γ not intersecting K, we have that $I^0 f(\gamma) = 0$, then we can find an (m-1)-tensor field v with components in $\mathcal{D}'(\operatorname{int}(\widetilde{M}) \setminus K)$ such that f = dv in $\operatorname{int}(\widetilde{M}) \setminus K$ and v = 0 in $\operatorname{int}(\widetilde{M}) \setminus M$. (Krishnan and Stefanov proved this for 2- tensor fields)

- Lemma [A.,Mishra]: For any $1 \le k \le m$, if f = dv with $v|_{\partial M} = 0$. Then $I^k f = -kI^{k-1}v$.
- By using the above two iteratively, we get: $I^m f(\gamma) = m! (-1)^m I^0 v_m(\gamma) = 0$, where v_m is distribution.

Theorem 1 [A.,Mishra (2017)]

Let f be a symmetric m-tensor field with components in $\mathcal{E}'(\widetilde{M})$ and K be a closed geodesically convex subset of M. If for each geodesic γ not intersecting K, we have that $I^0 f(\gamma) = 0$, then we can find an (m-1)-tensor field v with components in $\mathcal{D}'(\operatorname{int}(\widetilde{M}) \setminus K)$ such that f = dv in $\operatorname{int}(\widetilde{M}) \setminus K$ and v = 0 in $\operatorname{int}(\widetilde{M}) \setminus M$. (Krishnan and Stefanov proved this for 2- tensor fields)

• Lemma [A.,Mishra]: For any $1 \le k \le m$, if f = dv with $v|_{\partial M} = 0$. Then $I^k f = -kI^{k-1}v$.

• By using the above two iteratively, we get: $I^m f(\gamma) = m! (-1)^m I^0 v_m(\gamma) = 0$, where v_m is distribution.

Theorem 1 [A.,Mishra (2017)]

Let f be a symmetric m-tensor field with components in $\mathcal{E}'(\widetilde{M})$ and K be a closed geodesically convex subset of M. If for each geodesic γ not intersecting K, we have that $I^0 f(\gamma) = 0$, then we can find an (m-1)-tensor field v with components in $\mathcal{D}'(\operatorname{int}(\widetilde{M}) \setminus K)$ such that f = dv in $\operatorname{int}(\widetilde{M}) \setminus K$ and v = 0 in $\operatorname{int}(\widetilde{M}) \setminus M$. (Krishnan and Stefanov proved this for 2- tensor fields)

- Lemma [A.,Mishra]: For any $1 \le k \le m$, if f = dv with $v|_{\partial M} = 0$. Then $I^k f = -kI^{k-1}v$.
- By using the above two iteratively, we get: $I^m f(\gamma) = m! (-1)^m I^0 v_m(\gamma) = 0$, where v_m is distribution.

Theorem [Krishnan]

Assume (M, g) is a manifold as above and K is a geodesically convex subset of M. If for a distribution $u \in \mathcal{E}'(M)$, $I^0 u(\gamma) = 0$ for each geodesic γ not intersecting K, then u = 0 outside K.

Using these results, we get the proof for the support theorem for integral moments.

References

- Abhishek, A. Support theorem for transverse ray transform of tensor fields of rank m, (submitted).
- Abhishek, A. and Mishra, R.K. Support Theorems and an Injectivity Result for Integral Moments of a Symmetric m-Tensor Field, JFAA, 2018.
- Stefanov, P. and Uhlmann, G. Integral Geometry of Tensor Fields on a Class of Non-Simple Riemannian Manifolds. American Journal of Mathematics, vol. 130 no. 1, 2008, pp. 239-268.
- Stefanov, P., Uhlmann, G., Boundary rigidity and stability for generic simple metrics. J. Amer. Math. Society (2005)
- Boman, Jan and Quinto, Eric Todd Support theorems for real-analytic Radon transforms. Duke Math. J. 55 (1987), no. 4, 943–948.

References

- Krishnan, Venkateswaran P. and Stefanov, Plamen A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Probl. Imaging 3 (2009), no. 3, 453-464
- Krishnan, Venkateswaran P., A support theorem for the geodesic ray transform on functions. J. Fourier Anal. Appl. 15 (2009), no. 4, 515-520.
- Holman, S. , Generic Local Uniqueness and Stability in Polarization Tomography J. Geometric Analysis, 2013
- Sjöstrand, Johannes, Singularités analytiques microlocales (Microlocal analytic singularities) Astérisque, 95, 1-166
- Sharafutdinov, V. Integral geometry of tensor fields Inverse and Ill posed problems series (1994)

Thank You!