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Goal of the talk

Goal Establish support theorems for integral transforms
like Transverse Ray Transform (TRT) and integral
moments transform (of Geodesic Ray Transform (GRT))

I But, first...
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Q1 What is an integral transform?

I An integral transform maps a function (or, a tensor field)
on a manifold to its integrals over a collection of
submanifolds, e.g., X-Ray transform

x

x + tξ
If =

∫
f(x+ tξ)dt
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Q2 What is a support theorem?

I Let f be a function (or a tensor field) which is compactly
supported in a Riemannian manifold M (with smooth
boundary). Let If denote any particular integral transform,
e.g. an X-ray transform. Assume that If is zero over a
connected open set A of submanifolds Ξ of the manifold
M . One then tries to prove that f vanishes over

⋃
Ξ∈A

Ξ.

M

K
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Definitions and notations

• (M, g) represents a compact, simple, real-analytic
Riemannian manifold of dimension n with smooth
boundary

• For x ∈ ∂M , γx,ξ(t) is the geodesic starting from x in the
direction ξ and l(γx,ξ) is the value of t at which this
geodesic hits the boundary again

• K ⊂M is said to be geodesically convex if for any two
points x ∈ K and y ∈ K, the geodesic connecting them lies
entirely in the set K

• Will use Einstein summation convention (summing over
repeated indices). Furthermore, we will use coordinate
representations, an m- tensor field f(x) will be written as
fi1...imdx

i1 ⊗ · · · ⊗ dxim where fi1...im is the corresponding
coordinate function for basis vector dxi1 ⊗ · · · ⊗ dxim
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Definitions and notation

• Consider M̃ to be a real analytic extension of M . Let A be
an open set of geodesics with endpoints in M̃ \M such
that any geodesic in A is homotopic, within the set A, to a
geodesic lying outside M . Set of points lying on the
geodesics in A is denoted by MA i.e.

MA =
⋃

γ∈A
γ

• Slight abuse of notation: E ′(M̃) is the set of tensor fields
with components that are compactly supported
distributions in the int(M̃)
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Support theorem for TRT
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Transverse ray transform

• Definition: f ∈ C∞c (M) is an m- tensor field, γ(t) is a
geodesic, η(t) is a vector field formed by parallel translation
along γ(t) and orthogonal to it, then TRT is defined by:

Jf(γ, η) =

∫ l(γ)

0
fi1...im(γ(t))ηi1 . . . ηimdt (η(t) ∈ γ⊥(t))

• Motivation: Polarization tomography [Sharafutdinov]

• The above definition can be extended to compactly
supported distributions by duality, involves computation of
adjoint J∗, see [A., 2019]
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Support Theorem for TRT

M̃

M

K

Theorem 1 [A.,2019]

Let (M, g) be a simple real analytic Riemannian manifold of

dimension n ≥ 3 and M̃ be a real analytic extension of M . Let
A be any connected open set of geodesics as before. Let
f ∈ E ′(M̃) be a symmetric m- tensor field supported in M . If
Jf(γ, η) = 0 for every γ ∈ A and for every η ∈ γ⊥, then f = 0
on MA.
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Key steps in the proof

A microlocal proposition [A.,2018]

Let (x0, ξ0) ∈ T ∗M \ 0 and let γ0 be a fixed simple geodesic
through x0 normal to ξ0.

Let Jf(γ, η) = 0 for some symmetric

m-tensor f ∈ E ′(M̃) supported in M and for all γ ∈ nbd.(γ0)
and for every η ∈ γ⊥. Then (x0, ξ0) /∈WFA(f). Holman proved
a similar result for 2-tensor case (2013).

x0

ξ0
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Key steps in the proof

Sato-Kawai-Kashiwara Theorem

Let f ∈ D′(M). Let x0 ∈M and let U be a neighborhood of x0.

Assume that S is a C2 submanifold of M such that:
x0 ∈ supp(f)∩ S and ξ0 ∈ N∗x0(S) \ 0. Furthermore, let S divide
U into two open connected sets and assume that f = 0 on one
of these open sets. Then (x0, ξ0) ∈WFA(f).

M

x0
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A “support diminishing” argument

• γ0 can be continuously deformed to γ1 while remaining
within A, intermediate geodesics in this deformation are γt

• We chip away at the support using a “cone of geodesics”
around γt; t ∈ [0, 1]

• Arguments of this kind go back to [Boman, Quinto (1987)]

M

M̃

K

γ0
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Remarks on proof of the microlocal proposition

• Writing in local co-ordinates,
(x0, ξ0) /∈WFA(f) ≡ (x0, ξ0) /∈WFA(fi1...,im)

• Use generalized FBI Transform characterisation for
analytic wavefront sets: For u ∈ D′(Rn), and φ(x, y) is
holomorphic in a complex neighbourhood of
(x0, y0) ∈ Cn × Rn such that:

=(∂2
yφ)(x0, y0) > 0; (det(∂x∂y)φ)(x0, y0) 6= 0

then
T ∗(Rn) \ 0 3 (x0, y0) /∈WFA(u)

iff ∫
eiφ(x,y)/hu(y)dy = O(e−δ/h)

uniformly for (x, y) in a neighbourhood of (x0, y0) and as
h > 0 goes to 0.
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Remarks (contd.)

• Starting with Jf(γ, η1, . . . , ηm) = 0 for γ near γ0, some
algebraic manipulations later we get:
∫∫

eiΦ(y,x,ξ,υ)/haN (x, ξ)fi1···m(x)bi1(x, ξ) . . . bim(x, ξ)dxdξ = 0

I Φ = (x− y)ξ + i(ξ − υ)2/2, aN , b are analytic in (x, ξ)

• Split the x-integral above into two parts- I1 contains no
critical points of Φ, and I2 containing exactly one critical
point of Φ (w.r.t ξ). I1 is then analysed using an
integration by parts argument and I2 is estimated using
stationary phase method.

• More algebraic manipulation later we get [A.,2018]:∫
eiψ(x,ξ)/hfi1...im(x)Bi1...im(x, ξ;h)dx = O(e−δ/h) where

ψ(x, ξ) is a function with same properties as in the
definition of FBI transform and Bi1...im is a classical
analytic symbol with σp(B)ij(0, ξ0) = ηi1 . . . ηim . This
would prove the microlocal proposition.
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Support theorem for integral moments of GRT
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Support Theorem for integral moments of GRT

• q-th integral moment of a symmetric m-tensor field f , Iqf
is a function defined by

Iqf(x, ξ) =
∫ l(γx,ξ)

0 tqfi1...im(γx,ξ(t))γ̇
i1
x,ξ(t) · · · γ̇imx,ξ(t)dt

Support theorem for integral moments [A.,Mishra (2017)]

Let f be a symmetric m-tensor field on a manifold as above
with components in E ′(M̃) where M̃ is an extension of M and
K be a closed geodesically convex subset of M . If for each
geodesic γ not intersecting K, we have that Iqf(γ) = 0 for
q = 0, 1, . . . ,m then supp(f) ⊂ K.

M̃

M

K
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Why do we need integral moments of GRT?

Decomposition Theorem [Sharafutdinov]

Let M be a compact Riemannian manifold with boundary; let
k ≥ 1 and m ≥ 0 be integers. For every field f ∈ Hk(Sm(M)),
there exist uniquely determined fs ∈ Hk(Sm(M)) and
v ∈ Hk+1(Sm−1(M)) such that

f = fs + dv, δf s = 0, v|∂M = 0.

Here δ is the divergence operator and dv represents the
symmetrised covariant derivative of v.

• Writing ui1...im(γ(t))γ̇i1 . . . γ̇im := 〈u(γ(t)), γ̇⊗m〉 , we can
verify the identity:
d
dt〈v(γ(t)), γ̇(t)⊗m−1〉 = 〈(dv(γ(t))), γ̇(t)⊗m〉

• A tensor field of the form f = dv such that v|∂M = 0 lies in
the kernel of I0. This indicates additional information (e.g.,
integral moments) is required to prove a support theorem.
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Key steps in the proof

Theorem 1 [A.,Mishra (2017)]

Let f be a symmetric m-tensor field with components in E ′(M̃)
and K be a closed geodesically convex subset of M . If for each
geodesic γ not intersecting K, we have that I0f(γ) = 0, then we
can find an (m− 1)-tensor field v with components in

D′(int(M̃) \K) such that f = dv in int(M̃) \K and v = 0 in

int(M̃) \M . (Krishnan and Stefanov proved this for 2- tensor
fields)

• Lemma [A.,Mishra] : For any 1 ≤ k ≤ m, if f = dv with
v|∂M = 0. Then Ikf = −kIk−1v.

• By using the above two iteratively, we get:
Imf(γ) = m!(−1)mI0vm(γ) = 0, where vm is distribution.
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Key steps in the proof (contd.)

Theorem [Krishnan]

Assume (M, g) is a manifold as above and K is a geodesically
convex subset of M . If for a distribution u ∈ E ′(M), I0u(γ) = 0
for each geodesic γ not intersecting K, then u = 0 outside K.

Using these results, we get the proof for the support theorem
for integral moments.
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