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Optical Tomography

Figure: Credit: Nina Schotland
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Fluorescence + Optical Tomography (fOT)

Figure: Fluorescence Optical Tomography (fOT). Image from Yang Pu et
al, “Cancer detection/fluorescence imaging: ’smart beacons’ target
cancer tumors”, BioOpticsWorld.com., 2013.
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Fluorescence + Ultrasound Modulation + Optical Tomography (fUMOT)

S: excitation light source, D: detector
solid curve: excitation photon path
dotted curve: emitted fluorescence photon path

Figure: Fluorescence Ultrasound Modulated Optical Tomography
(fUMOT). Image from B. Yuan et al, “Mechanisms of the ultrasonic
modulation of fluorescence in turbid media”, J. Appl. Phys. 2008; 104:
103102
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Incomplete literature

Fluorescence Optical Tomography (FOT): Arridge,
Arridge-Schotland, Stefanov-Uhlmann, . . .

Ultrasound Modulated Optical Tomography (UMOT):
Ammari-Bossy-Garnier-Nguyen-Seppecher, Bal, Bal-Moskow,
Bal-Schotland, Chung-Schotland, . . .
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fOT Model

Diffusive regime for fOT (Ren-Zhao 2013):

u(x): excitation photon density, w(x): emission photon density

• excitation process (subscripted by x):{
−∇ · Dx∇u + (σx ,a + σx ,f )u = 0 in Ω

u = g on ∂Ω.

Dx(x) : diffusion coeffi. g(x) : boundary illumination
σx ,a(x) : absorption coeffi. of medium σx ,f (x) : absorption coeffi. of fluorephores

• emission process (subscripted by m):{
−∇ · Dm∇w + (σm,a +���σm,f )w = η σx ,f u in Ω

w = 0 on ∂Ω.

Dm(x) : diffusion coeffi. η(x) : quantum effciency coeffi.
σm,a(x) : absorption coeffi. of medium ����σm,f (x) : absorption coeffi. of fluorephores
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Ultrasound Modulation Model

Ultrasound modulation with plane waves:

• weak acoustic field:

p(t, x) = A cos(ωt) cos(q · x + φ).

• modulation effect on optical coefficients (Bal-Schotland 2009):

Dε
x(x) = (1 + εγx cos(q · x + φ))Dx(x), γx = (2nx − 1),

Dε
m(x) = (1 + εγm cos(q · x + φ))Dm(x), γm = (2nm − 1),

σεx ,a(x) = (1 + εβx cos(q · x + φ))σx ,a(x), βx = (2nx + 1),

σεm,a(x) = (1 + εβm cos(q · x + φ))σm,a(x), βm = (2nm + 1),

σεx ,f (x) = (1 + εβf cos(q · x + φ))σx ,f (x), βf = (2nf + 1).
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fUMOT Model

For ε > 0 small,
• excitation process (subscripted by x):{

−∇ · Dε
x∇uε + (σεx ,a + σεx ,f )uε = 0 in Ω

uε = g on ∂Ω.

• emission process (subscripted by m):{
−∇ · Dε

m∇w ε + (σεm,a +���σm,f )w ε = η σεx ,f u
ε in Ω

w ε = 0 on ∂Ω.

Meassurement: boundary photon currents (Dε
x∂νu

ε,Dε
x∂νw

ε)|∂Ω.

Inverse Problem: recover (σx ,f , η).

Our strategy: recover σx ,f from the excitation process, then η
from the emission process.
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Derivation of Internal Data: I

For fixed boundary illumination g ,∫
Ω

(Dε
x−D−ε

x )∇uε·∇u−ε+(σεx−σ−ε
x )uεu−εdx =

∫
∂Ω

(Dε
x∂νu

ε)u−ε−(D−ε
x ∂νu

−ε)uεds.

RHS is known. LHS has leading coefficient

J1(q, φ) =

∫
Ω

(
γxDx |∇u|2 + (βxσx ,a + βf σx ,f )|u|2

)
cos(q·x+φ)dx.

Varying q and φ gives the Fourier transform of

Q(x) := γxDx |∇u|2 + (βxσx ,a + βf σx ,f )|u|2 in Ω,

where u is the unpertubed solution (i.e., ε = 0).

Observation: if u can be recovered from Q, so can σx ,f .
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Inverse Problems Recast

Inverse Problem Recast: recover u from Q.
Recall {

−∇ · Dx∇u + (σx ,a + σx ,f )u = 0 in Ω
u = g on ∂Ω.

and the internal data is

Q(x) := γxDx |∇u|2 + (βxσx ,a + βf σx ,f )|u|2 in Ω.

βf = 0: solving a Hamilton-Jacobi equation to find u;

βf 6= 0: eliminating σx ,f through substitution.
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Recovery of σx ,f : uniqueness

• βf 6= 0 (conti.ed):

set θ := βf −γx
βf +γx

and Ψ := u
2

1+θ
∇ · Dx∇Ψ = − 2

1 + θ
σx ,a

(
βx
βf
− 1

)
︸ ︷︷ ︸

:=b

Ψ +
2

1 + θ

Q

βf︸ ︷︷ ︸
:=c

|Ψ|−(1+θ)Ψ

Ψ = g
2

1+θ

Theorem (Li-Y.-Zhong, 2018)

The semi-linear elliptic BVP has a unique positive weak solution
Ψ ∈ H1(Ω) in either of the following cases:

Case (1): −1 6= θ < 0, b ≥ 0 and c ≥ 0;

Case (2): θ ≥ 0, b ≥ 0 and c ≤ 0.
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Recovery of σx ,f : stability and reconstruction

Theorem (Li-Y.-Zhong, 2018)

In either Case (1) or Case (2), one has the stability estimate

‖σx ,f − σ̃x ,f ‖L1(Ω) ≤ C
(
‖Q − Q̃‖L1(Ω) + ‖Q − Q̃‖2

L2(Ω)

)
We further give three iterative algorithms with convergence proofs

to reconstruct σx ,f .

Remark: uniqueness and stability may fail if θ, b, c violate the
conditions.
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Recovery of η

Sketch of procedures:

1 derive an integral identity from the emission process;

2 derive an internal functional S from the leading order term of
the identity;

3 rewrite the equations for u and w to obtain a Fredholm type
equation

T η = S ;

4 if 0 is not an eigenvalue of T , then uniqueness, stability and
reconstruction are immediate.
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Numerical examples

Domain: [−0.5, 0.5]2; excitation source: g(x , y) = e2x + e−2y ..

The domain is triangulated into 37008 triangles and uses 4-th
order Lagrange finite element method to solve the equations.

Dx ≡ 0.1, Dm = 0.1 + 0.02 cos(2x) cos(2y),

σx ,a ≡ 0.1, σm,a = 0.1 + 0.02 cos(4x2 + 4y2).

Figure: Left: The absorption coefficient σx,f of fluorophores. Right: The
quantum efficiency coefficient η.
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Numerical examples- Case I-1

γx = −2.6, γm = −2.4, βx = −0.6, βm = −0.4, βf = −0.8 and
τ = 3.25. µ = −0.25 and θ = − 9

17 .
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Numerical examples- Case I-2

γx = −1.4, γm = 0.0, βx = 0.6, βm = 2.0, βf = 0.4 and τ = −3.5.
µ = 0.5 and θ = −9

5 .



Introduction to fUMOT Diffusive Model Results

Numerical examples- Case II

γx = 0.2, γm = 0.6,, βx = 2.2, βm = 2.6, βf = −0.3 and τ = −2
3 .

µ = −25
8 and θ = 5.
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