Fluorescence Ultrasound Modulated Optical
Tomography (fUMOT) in the Diffusive Regime

Yang Yang
Computational Math, Science and Engineering (CMSE)
Michigan State University

joint work with:
Wei Li, Louisiana State University
Yimin Zhong, University of California lrvine

Conference on Modern Challenges in Imaging: in the Footsteps
of Allan MaclLeod Cormack
MS1: Applied Math in Tomography, Tufts University- August 5,



Introduction to f{UMOT
®000

Outline

@ Introduction to f{UMOT



Introduction to f{UMOT
ce00

Optical Tomography

Credit: Nina Schotland
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Fluorescence + Optical Tomography (fOT)
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Figure: Fluorescence Optical Tomography (fOT). Image from Yang Pu et

al, “Cancer detection/fluorescence imaging: 'smart beacons’ target
cancer tumors”, BioOpticsWorld.com., 2013.
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Fluorescence + Ultrasound Modulation + Optical Tomography (fUMOT)

S: excitation light source, D: detector
solid curve: excitation photon path
dotted curve: emitted fluorescence photon path

Ultrasound

R Beam

!
\ s Fluorescent Target

Figure: Fluorescence Ultrasound Modulated Optical Tomography
(fUMOT). Image from B. Yuan et al, “Mechanisms of the ultrasonic
modulation of fluorescence in turbid media”, J. Appl. Phys. 2008; 104:
1037102
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Incomplete literature

@ Fluorescence Optical Tomography (FOT): Arridge,
Arridge-Schotland, Stefanov-Uhlmann, ...

e Ultrasound Modulated Optical Tomography (UMOT):
Ammari-Bossy-Garnier-Nguyen-Seppecher, Bal, Bal-Moskow,
Bal-Schotland, Chung-Schotland, ...
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fOT Model

Diffusive regime for fOT (Ren-Zhao 2013):

u(x): excitation photon density, w(x): emission photon density
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Diffusive regime for fOT (Ren-Zhao 2013):
u(x): excitation photon density, w(x): emission photon density

e excitation process (subscripted by x):

—V - -D,Vu+ (0xa+oxr)u = 0 inQ
u = g onJfQ.

Dy (x) : diffusion coeffi. g(x) : boundary illumination
0x,a(x) : absorption coeffi. of medium o, ¢(x) : absorption coeffi. of fluore
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fOT Model
Diffusive regime for fOT (Ren-Zhao 2013):
u(x): excitation photon density, w(x): emission photon density

e excitation process (subscripted by x):

—V - -D,Vu+ (0xa+oxr)u = 0 inQ
u = g onJfQ.

Dy (x) : diffusion coeffi. g(x) : boundary illumination
0x,a(x) : absorption coeffi. of medium o, ¢(x) : absorption coeffi. of fluore
e emission process (subscripted by m):

—V - DpVW + (0ma + Gprr)W = noxru  in
w = 0 on 0f).

Dp,(x) : diffusion coeffi. n(x) : quantum effciency coeffi.
om,a(x) 1 absorption coeffi. of medium g, #{xX): absorption coeffi. of fluor
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Ultrasound Modulation Model

Ultrasound modulation with plane waves:
e weak acoustic field:

p(t,x) = Acos(wt) cos(q - x + ¢).
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Ultrasound Modulation Model

Ultrasound modulation with plane waves:

e weak acoustic field:

p(t,x) = Acos(wt) cos(q - x + ¢).

e modulation effect on optical coefficients (Bal-Schotland 2009):

Di(x) = (1 + evxcos(q - x + ¢)) Dx(x), Tx = (2nx — 1),
Dp(x) = (1+ evmcos(q-x + ¢))Dm(x),  vm = (2nm — 1),
05.a(x) = (14 €Bx cos(q - x + ¢))ox,a(x), Bx = (2n, + 1),
Uren,a(x) (14 €Bmcos(q-x+ @))oma(x), Bm = (20, + 1),
0y f(x) = (L +eBrcos(q-x+ ¢))oxr(x), B =(2ns +1).
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fUMOT Model

For € > 0 small,
e excitation process (subscripted by x):

€

=V -DiVu + (o5, +oyJu” = 0 inQ
u¢ = g on 0.
e emission process (subscripted by m):

=V DL Vwe + (05, + Gmr)WS = nos puc inQ
w¢ = 0 on 0.
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€

u¢ = g on 0.

e emission process (subscripted by m):

=V DL Vwe + (05, + Gmr)WS = nos puc inQ
w¢ = 0 on 0.

Meassurement: boundary photon currents (DS0, u¢, D0, w®)|sq-
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fUMOT Model

For € > 0 small,
e excitation process (subscripted by x):

€

VDV (05, + ol Ju = 0 inQ
u¢ = g on 0.

e emission process (subscripted by m):

=V DL Vwe + (05, + Gmr)WS = nos puc inQ
w¢ = 0 on 0.

Meassurement: boundary photon currents (DS0, u¢, D0, w®)|sq-
Inverse Problem: recover (o, ¢, 7).

Our strategy: recover o, ¢ from the excitation process, then 7
from the emission process.
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Derivation of Internal Data: |

For fixed boundary illumination g,

/(Dj—D;e)Vu€~Vu_€+(0;—0;‘)usu_edx = / (Do, u )u==(D 0, u™ )
Q o)
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Derivation of Internal Data: |

For fixed boundary illumination g,

/(Dj—D;e)Vu€~Vu_€+(0;—0;‘)usu_edx = / (Do, u )u==(D 0, u™ )
Q o)

RHS is known. LHS has leading coefficient
Jl(Qa ¢) = /Q ('YXDXIVUF + (5XO-X,3 + BfO'Xf)‘U‘z) COS(Q'X+¢)dX-
Varying q and ¢ gives the Fourier transform of

Q(X) = 'VXDX|VU|2+(5X0'x,a+ﬁf(7x,f)lul2 in €,

where u is the unpertubed solution (i.e., ¢ = 0).
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Derivation of Internal Data: |

For fixed boundary illumination g,

/(Dj—D;e)Vu€~Vu_€+(0;—0;‘)usu_edx = / (Do, u )u==(D 0, u™ )
Q o)

RHS is known. LHS has leading coefficient
J1(q,9) = /Q (fyXDX]Vu]2 + (Bxox.a+ BfO'Xf)‘U‘z) cos(q-x—+¢)dx.
Varying q and ¢ gives the Fourier transform of
Q(x) := 1 Du|Vul? + (Bx0x.a + Bross)|uf’  in Q,
where u is the unpertubed solution (i.e., ¢ = 0).

Observation: if u can be recovered from Q, so can o, r.
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Inverse Problems Recast

Inverse Problem Recast: recover u from Q.
Recall

—V -D\Vu+ (0xa+oxr)u = 0 inQ
u = g onJLQ.

and the internal data is

Q(x) := 1 Dx|Vul> + (Bx0x.a + Brows)|ul®  in Q.
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Inverse Problems Recast

Inverse Problem Recast: recover u from Q.
Recall

—V -D\Vu+ (0xa+oxr)u = 0 inQ
u = g onJLQ.

and the internal data is

Q(x) := 1 Dx|Vul> + (Bx0x.a + Brows)|ul®  in Q.

@ [r = 0: solving a Hamilton-Jacobi equation to find u;

@ ¢ # 0: eliminating o, ¢ through substitution.
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Recovery of © uniqueness

e 3¢ # 0 (conti.ed):

set § = D=2 and ¥ = y1ie

T Brx
2 5 2 Q
V-DVV = ——— 5 (Z-1|v4 - X |y|-1+0)y
1+00’a<ﬁf ) T17ep A
=b =cC
2

Theorem (Li-Y.-Zhong, 2018)

The semi-linear elliptic BVP has a unique positive weak solution
W € HY(Q) in either of the following cases:

Case (1): —1#6 <0, b>0andc>0;
Case (2): 0 >0, b>0 and c <0.
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Recovery of . stability and reconstruction

Theorem (Li-Y.-Zhong, 2018)
In either Case (1) or Case (2), one has the stability estimate

lox.r = Fxrllra <C(HQ Qllxo +\|Q—©Hi2(§z)>

We further give three iterative algorithms with convergence proofs
to reconstruct oy f.

V.

Remark: uniqueness and stability may fail if 8, b, ¢ violate the
conditions.
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Recovery of

Sketch of procedures:

@ derive an integral identity from the emission process;
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@ derive an internal functional S from the leading order term of
the identity;

© rewrite the equations for u and w to obtain a Fredholm type
equation
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Recovery of

Sketch of procedures:

@ derive an integral identity from the emission process;

@ derive an internal functional S from the leading order term of
the identity;

© rewrite the equations for u and w to obtain a Fredholm type
equation

@ if 0 is not an eigenvalue of T, then uniqueness, stability and
reconstruction are immediate.
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Numerical examples

Domain: [-0.5,0.5]%;  excitation source: g(x,y) = e> + e 2V..

The domain is triangulated into 37008 triangles and uses 4-th
order Lagrange finite element method to solve the equations.

D, =0.1, D = 0.1 4 0.02 cos(2x) cos(2y),
0x2a=0.1,  Oma=0.1+0.02cos(4x> + 4y?).

Figure: Left: The absorption coefficient o, ¢ of fluorophores. Right: The
quantum efficiency coefficient 7.
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Numerical examples- Case |-1

= —2.6, ym = —2.4, BX:—06 Bm = —0.4, Br = —0.8 and
T—325 p=—0.25and § = — 17
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Figure 2: The reconstruction of o,y and 7 in Example I. First row, from left to right,
0%, 1%, 2% random noises are added to the internal data @ and the relative L' errors of
reconstructed o ; are 0.000132%, 3.88%, 7.76% respectively. Second row, from left to right,
assuming the knowledge of o ; from the first row, 0%, 1%, 2% random noises are added to
the internal data S. The relative L? errors of reconstructed n are 0.00313%, 5.60%, 11.7%
respectively.
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Numerical examples- Case [-2

Y = —1.4, Ym = 0.0, By = 0.6, Bm = 2.0, Br = 0.4 and T = —3.5.

9
p=05and f =—¢.
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Figure 3: The reconstruction of o, and 5 in Example II. First row, from left to right,
0%, 1%, 2% random noises are added to the internal data @ and the relative L' errors of
reconstructed o are 0.0086%, 2.62%, 5.27% respectively. Second row, from left to right,
assuming the knowledge of o, ; from the first row, 0%, 1%, 2% random noises are added to

the internal data §. The relative L? errors of reconstructed n are 0.0150%, 4.23%, 8.80%
respectively.
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Numerical examples- Case |l

fyX:02 Ym = 0.6,, Bx = 2.2, Bn =26, Br = —03 and 7 = —
u:——and9—5
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Figure 4: The reconstruction of o, ; and 5 in Example III. First row, from left to right,
0%, 1%, 2% random noises are added to the internal data @ and the relative L' errors of
reconstructed o ; are 0.00147%, 3.68%, 7.38% respectively. Second row, from left to right,
assuming the knowledge of o from the first row, 0%, 1%, 2% random noises are added to
the internal data S. The relative L? errors of reconstructed 7 are 0.00392%, 4.65%, 9.48%
respectively.
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