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Notation and convention

» Q = bounded open domain in R'*" with n > 3 and for
z:= (t,x) € Q, V, := (0, Vy) := (0p, 01,02, ,0p)

» For repeating indices, we assume the Einstein summation
notation, and also the convention that 6° = 1.

> F = ((Fij)>0<z‘j<n is symmetric 2-tensor and
oF = (3]'F0j, ajFlj,aszj, T 7aan')T

» For a vector field v = (v, v1,v2, -+ ,vy); the symmetried
derivative d of v is given by the following matrix:

do — (<aﬂ)j + ajvi>)
2 0<i,j<n
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Light ray transform

Let f = ((filiz---im)){ogz‘jgn; 1<j<m} be an m-tensor field and
then its light ray transform Lf at (t,z) € R in the direction
of (1,6) is defined by

Lf(t,x;0) ::/6i16i2‘-~9imfi1i2...im(t+s,x+s€)ds (1)
R

where § € S*"! and (¢,7) € R,

» For m = 0 (function case) Light ray transform appear in
determining the time-dependent potential appearing in
hypebolic PDE from boundary or scattering data; see for
example: Stefanov (1989), Waters (2014), Ben Aicha
(2015), Kian (2016), Oksanen-Kian (2016) and several
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Light ray transform

» For m =1 (vector field case) these transform appears in
determination of first order time-dependent perturbation in
hyperbolic equations from boundary data; see for example
Salazar (2013), Montalto (2014), Stefanov-Yang (2018),
Krishnan-Vashisth (2018),
Feizmohammadi-Ilmavirta-Kian-Oksanen (2019) and many

» For m = 2 (2-tensor case) these trasform appears in
determining the time-dependent coefficients of quadratic
non-linearity in Non-linear hyperbolic PDE; see for
example Nakamura-Vashisth (2017)

Light ray transforms for symmetric m-tensor for m = 0,1,2 in
Euclidean and Lorentzian geometry have been studied:

Stefanov, Lassas, Oksanen, Uhlmann, Wang, RabieniaHaratbar,
Waters-Salazar and several others......
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Light ray 2-tensor

Let F(t,z) = ((Fij(t,®)))o<; j<, be a symmetric 2-tensor field
defined on 2 and we extend it by zero outside 2, then light ray
transform LF of F is defined by

Light Ray 2-tensor

LF(t,x;0) := /HinFij(t +s,x+s0), (t,z) € R*"and e S* 1|
R

Kernel of L

For A € C*°(Q) function, g is the Minkowski metric with
(—=1,1,1,--- ,1) along the diagonal and a smooth vector-field v
satisfying v|gq = 0, we have

L(\g+dv) (t,z,0) =0, for all (t,7) € R*" and § € S*~ 1.
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Light ray 2-tensor

Problem of interest

If LF(t,z,0) =0, for all (t,r) € R'™ and § € S"~! near some
fixed £60y € S"~!, then can we characterize such symmetric
2-tensor fields?

In this talk, we show that only symmetric two tensor satisfying
LF(t,xz,0) = 0 are of A\g + dv form. More precisely, we prove
the following:
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Main Theorem

Theorem (Krishnan-Senapati-V.)

Let F € C*(Q) be a symmetric 2-tensor field. If for a fized
Oy € Sn_l,

LF(t,z,0) =0, for all (t,z) € R"™" and 0 near + 6o,
then F = Ag+ dv, where A is a C*° function, g is the Minkowski

metric with (—1,1,1,--- ;1) along the diagonal, v is a C*
vector field with v|sq = 0, and d is the symmetrized derivative.
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Decomposition theorem

Theorem (Krishnan-Senapati-V.)

Let F' € C*°(Q) be a symmetric 2-tensor field. Then there exists
a symmetric 2-tensor field F satisfying (F) = tmce(F) =0,a
C function X\ and a vector field v satisfing v|gg = 0 such that
F' can be decomposed as

F=F+\g+dv. (2)

Here g is the Minkowski metric with (—1,1,1,---,1) along the
diagonal and d is the symmetrized derivative of v defined by

1
(dv);; = 5 (G5v; + Ojui) -

» Analogous to the above decomposition theorem in
Riemannian geometry is proved by Sharafutdinov (2007).
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Uniqueness for trace and divergence free tensor

Assuming that the decomposition theorem is true, then we have

LF(t,z,0) = LF(t,z,0), for all (¢t,z) € R™™ and € S"~!

where F is as in the decomposition theorem. Therefore, it is
enough to prove the following:

Theorem (Krishnan-Senapati-V.)

Let F € C*(Q) be a symmetric 2-tensor field with 0F = 0 and
trace(F) = 0. If for a fived 6y € S*~1,

LF(t,z,0) =0, for all (t,z) € R"" and 6 near + 6y,

then F = 0.
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Sketch of proof

We follow the arguments similar to the one used in Stefanov
(2017), RabieniaHaratbar (2018), Krishnan and Vashisth
(2018); let

> z= (t,l‘) € R and V, = (atavx) = (807817827 T ,an)
» w € R is arbitrary

we have

(W V) (LF)(tz,0) = / B0IF O (t + 5,2+ s0)ds  (3)
R

holds for all w € R", (¢,z) € R and 6§ € S"~. Also by

fundamental theorem of calculus, we have
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Sketch of proof

d
/ (0 w*Fy)(t + s,z + s6) ds
ds

R

= /GinwkajFik(t + 5,2+ s0)ds

Subtracting (4) from (3) and using the hypothesis
» LF(t,x,0) =0 for § near +60y,

/Gimwk (OnFij — O;Fy) (t+ s,z + s6) ds = 0,

holds for all (t,z) € R § ~ +6,.
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Sketch of proof

Denote hjjj := OpFij — 0jFjy, we have

Ih(t,z;0,w) := /Hiejwkhijk(t +s,x+s0)ds=0; (5)
R

holds for all (t,x) € RM" w € R and § near =+ 6. Next
consider the Fourier transform:

Eijk(o: / hijk(t,x)e_i(t’x)'cdtdx (6)
R1+71

Using the decomposition,

R = R(1,0)®¢ with £ € (1,0)" combined with Fubini’s theorem,
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Sketch of proof

we get
hiji(C) = V2 / / 0'07 Wk by (€ + s(1,0))e " EHsLOIC g5 g
(1,0)+ R
If ¢ € (1,0)%, then
0'67w R (C) = V2 / / 0°07WF hijr(s(1,0) + £)e~*C ds de.
(L)L R

Using (5), we get that

0'67WFhijr(C) = 0; for all w € R, ¢ € (1,0)* with 6 ~ +6,.
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Sketch of proof

Finally choosing w = e; = (1,0,0,---,0) € R'*™ and definition
of hjp, we get

0'07 F;j(¢) = 0 for all ¢ € (1,0)* and 0 near +6,.  (7) ’

From here we want to show that Fj; =0 for all 0 <4,j < n.

Idea for proof

First show that Fi;(Co) = 0 for ¢ := eg = (0,0, 1,--- ,0) € RI*"
fixed space-like vector and for all 0 < 4,j < n. Then we show
that Ej(g“ ) = 0, for all space-like vector ¢ near (yp hence finally
using the Paley-Wiener thereom, we conclude that Fj;(t,z) =0
in Q for all 0 < 4,5 < n.

We give the sketch of proof for n = 3 and similar idea can be
used for n > 4.
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Proof for n = 3 special case

» Fix (o = (0,0,1,0) € R™3 and +£6y = (£1,0,0).
> (1,£6p) -G =0

Now consider
+ 6p(a) = (£cosa,0,sina). (8)

» If a is near 0, then £6p(a) is near +6y.
> Also (1, :I:HO(a)) : C() =0.
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Proof for n = 3 special case

Using this choice of y and +6y(a) in
0°67 Fy;(C) = 0 for all ¢ € (1,0)* and 6 near =+ 6

we get

(ﬁoo + 2 cos aﬁm + 2sin aﬁog + cos? aﬁn
(9)

4+ 2sina cos aﬁlg + sin? aﬁ33> (Co) =0, for a near 0.
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Proof for n = 3 special case

Now Differentiating above equation twicely w.r.t. a and taking
a — 0, we get the following set of equations

<ﬁ00 + 2F0; + ﬁn) (o) =0
(F\OB + ﬁlfﬂ) (C) =0
<:F1301 — P+ ﬁ33) (¢o) = 0.

Consider the above equations with the positive and negative
signs separately, adding and substracting, we get the following
five equations:

(ﬁoo + ﬁn) (C) = 0; Fon(¢o) = 0; Foz(o) = 05

Fi3(¢o) = 0; (-ﬁn + ﬁ33> (Co) =0
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Proof for n = 3 special case

Since §(F') = trace(F') = 0, we have

Foa(¢o) = Fra(Co) = Faa(Co) = Fi2(¢o) = 0,

_ . ~ ~ (11)
(Foo + Fi1 + Fo + F33) (Co) = 0.

From these 10 equations in (10) and (11), we get ﬁij(fo) =0 for
all 0 <i,j < 3.
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Proof for n = 3 general case

» Next, our goal is to show that Fj;(¢) =0, for ( #0
space-like vector in a small enough conical neighborhood of

Co-
We start with a unit vector in R3, ¢’ := (¢!, ¢2,¢?) € 2, and let
us choose (* = —sing. Then (—siny, (!, (2, ¢3) is a space-like

vector if —m/2 < ¢ < 7/2.
» Let us recall that in showing Fj;((o) = 0, we considered a
perturbation +6y(a) (see (8)) of the vector
+6y = (£1,0,0). Note that we required that +6y(a) was
close enough to +6y and (1,+6p(a)) - (o = 0. Our next
calculations are motivated by these requirements for the

vector ¢ = (_ sin g, Cla C27 Cg)
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Proof for n = 3 general case

Since we are interested in a non-zero space-like vector in a small
enough conical neighborhood of (p, let us choose

¢! =sinacos B, ¢2 = cosa and ¢3 = sin asin S.

Then clearly ( is close to (0,1,0) whenever o and (3 are close
enough to 0, and choosing ¢ close to 0, we get that the
space-like vector ¢ = (—sin ¢, ¢, (2, ¢3) is close enough to
(0,0,1,0).
» Next choose £6y(p) := (£ cos g, sing, 0) close to 60y when
¢ is close to 0 and the perturbation of 6y(¢) (for a close to
0) by

+60p(p,a) = (£ cosacos g,sin g, sina cos ) .
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Proof for n = 3 general case

Let us consider the orthogonal matrix A:

cosacos3 —sina cosasin 3 a1 aiz a3
A= |sinacosf cosa sinasinf| = |ag1 a9y a3
—sin [3 0 COS B aslp azz2 ass

Define +6y, +6y(p) and +6y(a,¢) by

+1 + cosacos 8
igo =AT 0| = Fsin «
0 + cosasin
B +cosp +aj; cosp + ag sine
+00(p) = AT (£60p(p)) = AT | sing | = |Faizcosp + agsing
0 +a13cos @ + ags sin g
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Proof for n = 3 general case

+ 0o(, a) = AT (£6o(, a))

+a11 cosacos ¢ + as sin @ + asy sin a cos @ A{E (a)
= |[Z£aiacosacosy + azesinp + asgsinacos | = A;E(a)
+a13 cos acos ¢ + as3 sin ¢ + ass sin a cos @ A§ (a)

» Note that if a,p,a and § are close enough to 0, then
+60o (¢, a) = £0y. Therefore LF(t,x,+00(¢p,a)) = 0.

» Also note that for all p,a,a and 8 close enough to 0,
(1, £60(, @) - ¢ =0.
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Proof for n = 3 general case

Therefore, using these choice of ¢ and +6y(¢p, a) in
eieﬂ'ﬁm(() =0 for all ¢ € (1,0)" and 6 near =+ 6
we get that

A;t(a)Af(a)ﬁij(C) = 0; for a near to 0.

» Differentiating above equation twicely w.r.t. ¢ and taking
a—0

» Consider the two equations corresponding to the positive
and negative signs and adding and substracting them, we
get five set of equations which coincides with the five
equations in (10) as «a, 8, — 0.
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Proof for n = 3 general case

» Divergence free and trace free conditions give us five more
equations, which are again identical with the five equations
in (11) as o, B, — 0.

» Since we know that Fj;((o) = 0 for 0 <4, j < 3, we have
that the determinant of the matrix formed by the 10
equations in (10) and (11) is non-zero.

» Therefore we have Ej(g) =0 for 0 <4,5 <3, where
¢ = (—sinp,sinacos 3, cos a, sin acsin ), where «, § and ¢
are near 0. By the same argument Fj;(A() = 0 for
0 <1i,5 <3, where ( is as above and A > 0.

So by using the Paley-Wiener theorem, we conclude that F' =0
in 2. This completes the proof for n = 3. Proof for n > 4
dimensions follows by using the similar arguments.
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Proof for the decomposition theorem

Assume that the decomposition is true. Then

trace(F') = trace(F') + trace(Ag) + trace(dv).
§F = 0(F) + 6 (\g) + ddv.

Using trace(F) = §(F) = 0, trace(\g) = (n — 1),
5(Ag) = (—Ao\, O\, Do, -+, 8,A)T and trace(dv) = dv, we have

trace(F) = (n — 1)A + (Govo + O1v1 + Gva + - -+ + Opvy) . (12)
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Proof for the decomposition theorem

OiFoi] gy
8jF1j al)\

0F% | _ | apn | 4 L
0Fni| | Our |

Now using A from (12) in (13), we get
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Proof for the decomposition theorem

) [ 0 fo;] [ —0otr(f)]
[ Avg + a@ojvj_ [ ]
0 f14 O tr

A’Ul + 53%]7)] ]flj ) 1 (f) uy

Avy+ B0 | = | 90ifas| _ 1 02tr(f) | . |

: n— )

Avy, + 802 v; ‘ ' Up,

- - 0j fnj Ontr(f) -
(14)

where o := (1 + %) and 8 := (1 — %) Existence of v can

be proved by solving the above system of equations.
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Proof for n = 3

302v0 + 0%vy + 02 + 3vg + 202,11 + 202,v2 + 2033 = uy,
83211 + 0%v1 + 03v; + 8%2}1 = uy,
832)2 + 8%1)2 + 8221)2 + 83?2)2 = Ug,
O3vs + 0?v3 + O3vs + 3vg = us.

(15)

The above system is decoupled and hence can be solved with
the boundary condition v|gpn = 0. Then we use (12) to solve for
A. This completes the proof of the theorem for n = 3.
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Proof for n > 4

From (14), we have

[ Avg + aagjvj- [ wp]

Avy + Bﬁfjvj U

Avy + 80505 | = | u2|; vlog =0. (16)
| Av, + B@?Ljvj_ | Un |

Our aim is to show that the coupled system (16) is uniquely
solvable.
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Proof for n > 4

To prove this it is enough (Taylor’s book on PDE 1) to show
that it is strongly elliptic with zero kernel and zero co-kernel.
Let u := (ugp, u1,ug, - ,upn) and define the (14 n) x (1 +n)

matrix A(z,d) by

[ A + a@% 04681 04302 s aa i
Bo%,  A+pOT BoL e /33
Aoy | GO 0k sk ok,
| BO B PO, - A+ BO;]
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Proof for n > 4

With this (16) becomes

(17)

A(z;0)v = u, in Q
v =0, on 0N
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Strong ellipticity for A(x;0)

Symbol A(z; &) for operator A(z;0) is given by

€% + agf
B&180
B&280
BE38o

Bénto

aéoé1
€|* + pe

B4

BE361

Bty

agoéa

B&1&2
€17 + B€3

BE3&2

B

a&)gn
Bgl g’n
552571

€2 + BE2

(18)

In order to prove the strong ellipticity for A(z;€) enough to prove
T
that the matrix P(x;¢&) := M is positive definite.
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Positivity for P(x;¢)

Let n,& € RY™\ {0} be two column vectors, then we consider

" P(a; &n = €12 n* + (o = 1) €5mg + Eomo (€ - 1)
+ (1= B)&mo (§ -1 — omo) + BE-n(€-n— Eomo)
= € + (@ + B —2) &g + B (€ - n)?
+2(1—=8) (& n)&mo.

(19)

Substituting the values of o and 3, we have

T g ey P (o (£ ((Gm) (€ m))
n P& = n_1< b+ 3>(\srm> +4< €I ),
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Positivity for P(x;¢)

Define a := |£OH0| and b = \E,I.I?vl\’ then clearly |a] <1, |b| <1 and

la 4+ b| < 1. Using these in above equation, we get

Tp(x;g)n:ff_”f(n—1+(n—3)(a+b)2+4a(a+b))

_ &Pl 2 &
=& (n—14(n+1)a®+2(n—1)ab+ (n — 3)b*)
200,12
> BEE (1 (4102 = (0 1) (02 4+ 2) 4 (0 - 3)9°)
€12 ] =
> 5 (n—1+424° - 26°) > ——|¢nl?

> C|&*|n|?*; for some constant C' > 0 provided n > 4.

This prove the strong ellipticity for A(z;0).
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Kernel of A(z;0)

Here we have to prove that the following BVP

A(z;0)v =0, in Q
v =0, on I

has only zero solution. Substituting the expression for A(z;d)
and v, we have

9 n
AUO + (1 I 7’L—1> kzoagkvk = O, U|aQ = 0, (20)

2 =\ 5 .

v
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Kernel of A(x;0)

Multiplying (20) by vp and (21) by v; and integrating over €,
we have

Q/Vvo(x)|2dx + (1 + n:) Q/v ~v(2)0gvo(z)dz =0 (22)

and

Q/|ij(a:)2dw + <

Adding the set of equations in (22) and (23), we get

- 4
/Z|ij|2dm + 5/|V v2dx + n—l/v v (Ogvg) dz = 0.
Q J=0 Q Q
(24)
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Kernel of A(z;0)
a = dovo, b= 3 7, Jjvj and ¢ := Z;L:O|ij|2 — |Bovo|?. Using

these in (24), we have

- 4
/<c+a2+n i’(a+b)2+ 1(a2+ab)>dx:0.

n— n —
Q

Now after combining the similar terms, we get

/(2na2+2(n—1)ab+(n—3)bz+(n—1)c)da::0.
Q

Now lets view the integrand in the above equation as a
quadratic in a and then its discriminant D, (z) given by

D, (z) = 4(n —1)%p* — 8n (n— 3)b% + (n — 1)c)
=4[(-n*+4n+1)b* — 2n(n —1)c| .



Kernel of A(x;0)

Using the fact that nc > b2 , we get

Dp(z) <4 (-n®+2n+3)b* <0; if b> # 0 and n > 4 ’

but if D,,(z) < 0 then we have the integrand in (24) is strictly
positive which cannot be true since integration in (24) is zero.
Hence we have b = 0, using this in (24), we get v = 0 and hence
KerA(x;0) = {0}.

» Similar arguments show that Co-kerA(z;0) = {0}.

This completes the proof for existence of v in n > 4.
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Existence of \ and F

Using v in (12) i.e. in
trace(F) = (n — 1)\ + dv
we get

_ trace(F) — v

A
n—1

and then take B
F=F—\g—dv

we get the decomposition formula for F'.

Manmohan Vashisth(CSRC) Light ray transform



Thank you very much for your attention
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