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Motivation

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and
non-invasive manner.

Acoustic Trapping

• Sound waves
• Standing wave field
• Simultaneous trapping of many,
comparatively large particles

Optical trapping
• Optical tweezers
• Focused laser beam
• Precise and selective handling
of single particles

Thalhammer, Steiger, Meinschad, Hill, Bernet, and Ritsch-Marte “Combined acoustic and optical trapping” 2011

Courtesy of Mia Kvåle Løvmo and Benedikt Pressl
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Courtesy of Mia Kvåle Løvmo and Benedikt Pressl

Denise Schmutz (University of Vienna) 3D Motion Reconstruction from Projection Data Modern Challenges in Imaging 3 / 27



Motivation

Optical microscopy of trapped objects

Trapping is a tool for holding and moving microscopic particles in a contact-free and
non-invasive manner.

Acoustic Trapping
• Sound waves
• Standing wave field
• Simultaneous trapping of many,
comparatively large particles

Optical trapping
• Optical tweezers
• Focused laser beam
• Precise and selective handling
of single particles

Thalhammer, Steiger, Meinschad, Hill, Bernet, and Ritsch-Marte “Combined acoustic and optical trapping” 2011
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Motivation

Relation to single particle cryo-electron microscopy

Electron microscopy of a large number of identical particles

Particles are in random positions

Imaging directions are unknown

Specimen itself is unknown as well

Orientation reconstruction via common line method

Heel “Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction” 1987

Goncharov “Methods of integral geometry and recovering a function with compact support from its projections in unknown directions” 1988
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Mathematical Model

Assumptions

Bounded object inR3

Characterised by an attenuation coefficient u ∈ C(R3;R)

supp(u) 6= ∅ is compact

Center of u
C3 :=

1∫
R3 u(x) dx

∫
R3

xu(x) dx ∈ R3

Continuous rigid motion

A(t, x) = C3 + R(t)(x− C3 + T(t))

R ∈ C(R; SO(3)) . . . rotation
T ∈ C(R;R3) . . . translation

Object is illuminated from the e3-direction with a uniform intensity

Light moves along straight lines and only suffers from attenuation
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Mathematical Model

Measurements

Attenuation projection mappings J

(T,R) 7→ J [T,R](t, x1, x2) =

∫ ∞
−∞

u
(
A(t, x)

)
dx3

Denise Schmutz (University of Vienna) 3D Motion Reconstruction from Projection Data Modern Challenges in Imaging 7 / 27



Mathematical Model

Measurements

Attenuation projection mappings J

(T,R) 7→ J [T,R](t, x1, x2) =

∫ ∞
−∞

u
(
C3 + R(t)(x− C3 + T(t))

)
dx3

Denise Schmutz (University of Vienna) 3D Motion Reconstruction from Projection Data Modern Challenges in Imaging 7 / 27



Mathematical Model

Measurements

Attenuation projection mappings J

(T,R) 7→ J [T,R](t, x1, x2)

Goal
Reconstruction of R(t) and T(t) from collected data of J [T,R](t, x1, x2).

Elbau, Ritsch-Marte, Scherzer, and Schmutz Inverse Problems of Trapped Objects 2019
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Mathematical Model

Formulation in Fourier space

n-dimensional Fourier transform

Fn[f ](k) = (2π)−
n
2

∫
Rn

f (x)e−i〈k,x〉 dx

Orthogonal projection P : R3 → R2,Px = ( x1
x2 )

Its adjoint PT : R2 → R3,PT k = ( k
0 )

Lemma 1

Let u ∈ Cc(R
3;R) and J [R, T] be the attenuation mapping of a rigid body motion (R, T).

Then, the following identity holds:

F2[J [T,R]] =
√

2πF3[u](R(t)PT k) ei〈R(t)PT k,C3〉ei〈k,P(T(t)−C3)〉.

Similar to the projection-slice theorem

Natterer The mathematics of computerized tomography 2001
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Motion Estimation Reconstruction of the translation

Reconstruction of the translation T

It is not possible to reconstruct the translation along the e3-direction. For ρ ∈ C(R;R) it
holds that

J [T,R] = J [T + ρe3,R].

Let C2(t) be the center of the attenuation mapping at time t

C2(t) :=
1∫

R2 J [T,R](t, x) dx

∫
R2

( x1
x2 )J [T,R](t, x) dx.

Proposition 1

Let u ∈ Cc(R
3;R) and J be the attenuation mapping of a rigid motion of u. Then,

P(C3 − T(t)) = C2(t)

for every T ∈ C(R;R3),R ∈ C(R; SO(3)), t ∈ R.

If we start the motion at time t = 0 with the normalisaton T(0) = 0, we have

P(T(t)) = C2(0)− C2(t)
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Motion Estimation Reduced attenuation maps

Reduced attenuation map

From Lemma 1

F2[J [T,R]] =
√

2πF3[u](R(t)PT k) ei〈R(t)PT k,C3〉ei〈k,P(T(t)−C3)〉

From Proposition 1
P(C3 − T(t)) = C2(t)

Easy to get rid of the dependence on T

We define the reduced attenuation map corresponding to u as

J̃ : R×R2 → R

(t, k) 7→ F2[J [T,R]](t, k) ei〈k,C2〉

J̃ only depends on R
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Motion Estimation Reconstruction of the rotation

Symmetry property of reduced attenuation map

Lemma 2

Let u ∈ Cc(R
3;R) and let J̃ be the corresponding reduced attenuation map. Then, for

arbitrary R ∈ C(R; SO(3)) the following identity holds

J̃
(

s,
λ

t − s
P(e3 × (R(s)T R(t)e3))

)
= J̃

(
t,

λ

s− t
P(e3 × (R(t)T R(s)e3))

)
for all λ ∈ R and s, t ∈ R with s 6= t.
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Motion Estimation Reconstruction of the rotation

Some notation
Angular velocity ω

I Corresponding to R ∈ C1(R; SO(3)) defined via

R(t)T R′(t)x = ω(t)× x for all x ∈ R3

I In cylindrical coordinates

ω(t) =
(
α(t)v(t)
ω3(t)

)
=

α(t) cos(ϕ(t))α(t) sin(ϕ(t))
ω3(t)


I We set v⊥(t) = (−v2(t), v1(t))T

Tensor derivative notation
I Consider f : R×R2 → C, (t, k) 7→ f (t, k)
I Derivative of order i of the function f with respect to k for fixed t at a point κ ∈ R2

Di[f ](t, κ) : R2 ×R2 · · ·R2︸ ︷︷ ︸
i times

→ C

I Evaluation of the tensor
Di[f ](t, κ)[[h1, h2, · · · , hi]]

I For i = 1 and g : R→ R2, t 7→ (g1(t), g2(t))T this is for example

D1[f ](t, g(t))[[g′]] =
〈
∇k[f ](t, g(t)), g′(t)

〉
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Motion Estimation Reconstruction of the rotation

Reconstruction of the cylindrical component v and the height ω3

Proposition 2

Let u ∈ Cc(R
3;R) and J̃ be the corresponding reduced attenuation map. Moreover, let

R ∈ C2(R; SO(3)) and ω ∈ C1(R;R3) the associated angular velocity. Then, for all s ∈ R
satisfying α(s) 6= 0 and all µ ∈ R the following relation holds:

∂tJ̃ (s, µv(s)) = ω3(s)D1[J̃ ](s, µv(s))[[µv⊥(s)]].

How to reconstruct

Look for a vector v(s) ∈ S1 such that this function is constant

The value of this constant function will then be ω3(s)
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Motion Estimation Reconstruction of the rotation

Reconstruction of the cylindrical radius α

Proposition 3

Let u ∈ Cc(R
3;R), J̃ be the reduced attenuation mapping of a rigid motion of u. Let further

R ∈ C4(R; SO(3)), t ∈ R and ω ∈ C3(R;R3) be the angular velocity corresponding to R and
let σ(t) = ϕ′(t). Then, for all t ∈ R such that α(t) 6= 0 and σ(t) 6= −ω3(t), we have

A0(µ) + A02(µ)α(t)2 + A1(µ)µ
α′(t)
α(t)

= 0 for all µ ∈ R (?)

where

A0(µ) =
1
4
µ(ω3 + σ)

[
µ

2
ω3(ω3 − σ)D3

[J̃ ](s, µv)[[v⊥, v⊥, v⊥]]

+ 2µD2
[J̃ ](s, µv)[[v⊥, ω3σv− ω′3v⊥]] + 2D1

[J̃ ](s, µv)[[ω2
3 v⊥ + ω

′
3v]]

− µ(3ω3 − σ)∂tD2
[J̃ ](s, µv)[[v⊥, v⊥]] + 2∂ttD1

[J̃ ](s, µv)[[v⊥]]
]
,

A02(µ) =
1
2
µ(ω3 + σ)D1

[J̃ ](s, µv)[[v⊥]],

A1(µ) =
1
2
(ω3 + σ)

[
µω3D2

[J̃ ](s, µv)[[v⊥, v⊥]]− ω3D1
[J̃ ](s, µv)[[v]]− ∂tD1

[J̃ ](s, µv)[[v⊥]]
]
.

How to reconstruct
Consider (?) as an overdetermined linear system for α2(t) and α′(t)

α(t)
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Motion Estimation Reconstruction of the rotation

Uniqueness considerations

Similar non-uniqueness issue as in Cryo-EM

Reconstruction only possible up to an orthogonal transformation
Reflection of attenuation coefficient u in the x1x2-plane through the origin leads to the
same attenuation projection data
Two solutions v(t) and v̌(t) = −v(t) of

∂tJ̃ (s, µv(s)) = ω3(s)D1[J̃ ](s, µv(s))[[µv⊥(s)]].

Two solutions ω(t) and ω̌(t)
When the object is moved with respect to ω and the reflected object with respect to ω̌, we
get exactly the same attenuation projection data

Lamberg “Unique recovery of unknown projection orientations in three-dimensional tomography” 2008
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Numerics

1 Motivation

2 Mathematical Model

3 Motion Estimation
Reconstruction of the translation
Reduced attenuation maps
Reconstruction of the rotation

4 Numerics
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Numerics

Simulations

For the points P1 = (1, 1
2 ,−1), P2 = (− 1

2 , 1, 1), P3 = (0,−1, 1
2 ) and the diagonal matrix

D = diag(
√

2, 1, 1) we consider as an example the attenuation coefficient

u(x) =
3∏

i=1

|x− Pi|2e−
1
4 |Dx|2

Motion

T(t) =

cos(6t) cos(12t)
cos(6t) sin(12t)

sin(t)

 and ω(t) =

α(t) cos(ϕ(t))
α(t) sin(ϕ(t))

ω3(t)


with

α(t) = 1 + 10t2, ϕ(t) = πt + π
3 , and ω3(t) = 1

2 +
√

1
2 + 5t.

Discretisation in space

(j1, j2, j3)δx, j ∈ {−512, . . . , 511}2 × {−256, . . . , 255} with δx = 0.05

and in time
` δt, ` ∈ {0, . . . , 999} for δt = 0.0005.
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Numerics

Reconstruction procedure I

Calculate the center of the attenuation projection images and read off the first two
components of the displacement T(t) via

P(T(t)) = C2(0)− C2(t)

0.5 1 1.5

−0.6

−0.4

−0.2

T1

T2
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Numerics

Reconstruction procedure II

Consider least square minimisation problem for the function

ω̃3(ϕ(t)) = argmin
ω3


511∑

j=−512

∣∣∣∣∂t J̃
(

t, jδx

(
cos(ϕ(t))
sin(ϕ(t))

))
− ω3(t)D1

[̃J]
(

t, jδx

(
cos(ϕ(t))
sin(ϕ(t))

)) [[
jδx

(
− sin(ϕ(t))
cos(ϕ(t))

) ]]∣∣∣∣2


to get third component ω3(t) as function of the yet unknown angular value

To obtain the angular function ϕ(t), we minimise the function

φ 7→ max
j∈{−512,...,511}

{(∣∣∣∣ω̃3(φ)D1
[̃J]
(

t, jδx

(
cos(φ)
sin(φ)

)) [[
jδx

(
− sin(φ)
cos(φ)

) ]]∣∣∣∣2 + ε

)−1

×
∣∣∣∣∂t J̃

(
t, jδx

(
cos(φ)
sin(φ)

))
− ω̃3(φ)D1

[̃J]
(

t, jδx

(
cos(φ)
sin(φ)

)) [[
jδx

(
− sin(φ)
cos(φ)

) ]]∣∣∣∣2
}
,

on [0, π) with some tiny ε > 0. The minimiser gives us ϕ(t) and thus ω3(t) = ω̃3(ϕ(t)).
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Reconstruction procedure III

To obtain the cylindrical radius α, we consider

A0(µ) + A02(µ)α(t)2 + A1(µ)µ
α′(t)
α(t)

= 0 for all µ ∈ R

as overdetermined linear system (one equation for each value
µ ∈ {jδx | j ∈ {−512, . . . , 511}}) for α2(t) and α′(t)

α(t) , where the coefficients can be
explicitly calculated with the values of ϕ and ω3 obtained so far.
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Errors

Absolute errors in the reconstructions of ϕ (the crosses), ω3 (the triangles) and α (the squares).
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Conclusion and outlook

First step into the direction of tomographic reconstruction of optically and/or acoustically
trapped particles

We demonstrated—by explicit reconstruction—how the motional parameters can be
recovered

More uniqueness studies are on the way!

Proposed motion estimation will be tested on video data acquired from biological samples
(regularisation?)

Study corrections or alternative approaches required when going from attenuation
projection images to optical images
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