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X-ray attenuation in matter

The attenuation of X-rays travelling through matter is described by
Lambert-Beer’s Law.

I0

s

µ

I = I0e
−µs

Here s is the thickness of the homogeneous medium and µ is the
linear attenuation coefficient.



X-ray attenuation in matter

In the case of spatially varying attenuation, we must modify
Lambert-Beer’s Law.

I0

0 x s

µ(x)

I (s) = I0e
−

s∫
0
µ(x)dx

Here s is the thickness of the homogeneous medium and µ is the
linear attenuation coefficient.



X-ray attenuation in matter

Because we are especially interested in the spatial variation of µ, we
usually emphasize the line integral.

I0

0 x s

µ(x)
s∫
0
µ(x)dx = − ln I (s)

I0

Here s is the thickness of the homogeneous medium and µ is the
linear attenuation coefficient.



Discretized linear imaging model in
computed tomograpy

We will model our measurements
m ∈ Rk as

m = Ax + ε,

where x ∈ Rn is the discretized
distribution of attenuation coeffi-
cients.

The forward model A ∈ Rk×n is
often called the system matrix.
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CT reconstruction:
a problem already solved?

Reconstruction
algorithm



X-ray attenuation coefficients
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Ideal, monochromatic X-ray spectrum
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Energy spectrum of X-ray tube
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Problems with Lambert-Beer’s law

When imaging with polychromatic X-rays, we must also integrate
across the source, i.e. X-ray tube, spectrum:

I (s) =

Emax∫
0

I0(E )e
−

s∫
0
µ(x ,E)dx

dE .

This makes practical X-ray tomography an emphatically non-linear
process. It also forces us to ask the following question:
What is the actual physical quantity we are trying to reconstruct?



Problems with Lambert-Beer’s law

One approach is to define an effective X-ray energy for which
we are reconstructing the attenuation coefficients.
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Problems with Lambert-Beer’s law

One approach is to define an effective X-ray energy for which
we are reconstructing the attenuation coefficients.
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Be warned: this
model does not
make the under-
lying process any
less nonlinear!



Using a linear model for a nonlinear process can
lead serious issues

Metal artefacts
in kumquat fruit
with three inserted
steel nails.
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Why use multi-energy CT?

In computed tomography, there is not bijective relationship between
the µ and the properties, i.e., elemental composition and density, of
the material.

For more precise information on the material composition, or basis
materials, we need more data. For this, we can use multi-energy
CT (MECT) or dual energy CT (DECT).

The aim is to compute a material composition and thus obtain
material specific reconstructions for the different basis materials.



Material decomposition
projection domain vs. image domain

Projection domain
Acquire projection images at
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Convert projections into basis
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Reconstruct into basis
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Acquire projection images at

multiple energies

Compute reconstructions at
each energy

Convert reconstructions into
basis material images
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X-ray attenuation coefficients
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Generalized linear model of multi-energy CT in
image space

We define the mass attenuation coefficient of a given material
through the equation

µ =

(
µ

ρ

)
ρ = uρ.

We now model the linear attenuation coefficient as a linear
combination of basis materials:

µ(E ) = u1ρ1 + u2ρ2 + . . .+ uNρN ,

where N is the number of basis materials.



Generalized linear model of multi-energy CT in
image space

Let us assume that we are imaging with M discrete X-ray energies.
The forward model is now

µ1 = u11ρ1 + u12ρ2 + . . .+ u1NρN

µ2 = u21ρ1 + u22ρ2 + . . .+ u2NρN

...
µM = uM1ρ1 + uM2ρ2 + . . .+ uMNρN ,

or in a matrix form
x = Uρ.

Usually practice dictates that the inverse model must be limited to
two energies and two energies, i.e., dual-energy CT (DECT):

x = Udρ =

(
u11u12
u21u22

)(
ρ1
ρ2

)
.



Material decomposition example:
chicken leg, water and bone bases

Material decomposi-
tion codes courtesy
of Mikael Juntunen,
University of Oulu



Clinical example of material decomposition:
detection of a pulmonary embolism

McCollough
et al., 2015
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General principle of iterative reconstruction using
regularization

Let us define the objective function

F (x) = ‖Ax −m‖22 + αW (x),

where the regularization function W (x) is used to incorporate a
priori information into the solution. α ∈ R+ is the regularization
parameter.

We now seek to obtain the reconstruction

f̃ (m) = argmin
x∈Rn

{
‖Ax −m‖22 + αW (x)

}
.



Reconstruction in multi-energy CT

We now seek to find a set of solution x1, x2, . . . , xn, where n is the
number of measurements at different energies.

Assumption: the energy dependence of xn will lead to solutions that
differ in contrast but remain structurally similar.



Reconstruction in multi-energy CT

Motivation: develop a reconstruction technique for low-dose
multi-energy CT that is robust enough for quantitative analysis.

We tested 7 different reconstruction schemes for sparse projection
multi-energy CT using real X-ray measurement data.



Measurement geometry
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Multi-energy CT Measurements:
GE Nanotom 180F at Dept. of Physics, UH

X-ray detector
50 µm pixel size

Bird phantom
Common quail

Sample
manipulator

X-ray tube
W target



Bird phantom measurements

We acquired acquired 720 projections at each energy and selected
30 projections for each:

E1 : 0°, 12°, 24° . . . , 348°

E2 : 4°, 16°, 28°, . . . , 352°

E3 : 8°, 20°, 32°, . . . , 356°

We used the ASTRA Tomography Toolbox to create our forward
model and to compute reference reconstructions (FBP, Shepp-
Logan filter, 720 projections).
www.astra-toolbox.com

https://www.astra-toolbox.com


X-ray spectra used in measurements
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No prior

We define the regularization function as

W (x) = 0.

(Only non-negativity constraint.)

The images are estimated separately for each energy.



No prior
E1 E2 E3

E1 ref. E2 ref. E3 ref.



Total variation (TV)

We define the regularization function as

W (x) =

∫
Ω

(
‖∇x‖2 + β2)1/2.

TV favors sparsity of the gradient, i.e., flat areas in x .

The images are estimated separately for each energy.



Total variation (TV)
E1 E2 E3

E1 ref. E2 ref. E3 ref.



Joint total variation (JTV)

We define the regularization function as

W (x1, x2, x3) =

∫
Ω

(
‖∇x1‖2 + ‖∇x2‖2 + ‖∇x3‖2 + β2)1/2.

JTV favors sparsity of joint gradient, i.e., nonzero gradients at the
same locations.

The images for different energies are estimated simultaneously.



Joint total variation (JTV)
E1 E2 E3

E1 ref. E2 ref. E3 ref.



Second difference (D2)

We define the regularization function as

W (x1, x2, x3) =

∫
Ω

(
‖x3 − 2x2 + x1‖2

)
.

D2 favors reconstructions that change linearly in the energy
direction.

The images for different energies are estimated simultaneously.



Second difference (D2)
E1 E2 E3

E1 ref. E2 ref. E3 ref.



Structural prior (S)

We use the structural similarity function

Si (x1, x2) =
σx1x2 + C

σx1σx2 + C
,

where the cross correlation σx1x2 and the standard deviations σx1
and σx2 , and Si are computed locally using a 11x11 window that
moves pixel by pixel over the entire image.

The final structure part is the mean of the local structure values

S =
1
M

M∑
i=1

Si .



Structural prior (S)

We now define the regularization function as

W (x1, x2, x3) =
1

S(x1, x2, x3)
,

where the structure parts are computed in pairs with

S(x1, x2, x3) = S(x1, x2) + S(x2, x3) + S(x3, x1).



Structural prior (S)
E1 E2 E3

E1 ref. E2 ref. E3 ref.



Second difference + total variation (D2+TV)

We now define the objective function as

F (x) =‖Ax −m‖22 + αD2

∫
Ω

(
‖x3 − 2x2 + x1‖2

)
α1

∫
Ω

(
‖∇x1‖2 + β2)1/2+

α2

∫
Ω

(
‖∇x2‖2 + β2)1/2+

α3

∫
Ω

(
‖∇x3‖2 + β2)1/2.



Second difference + total variation (D2+TV)
E1 E2 E3

E1 ref. E2 ref. E3 ref.



Structural prior + total variation (S+TV)

We now define the objective function as

F (x) =‖Ax −m‖22 + αS
1

S(x1, x2, x3)

α1

∫
Ω

(
‖∇x1‖2 + β2)1/2+

α2

∫
Ω

(
‖∇x2‖2 + β2)1/2+

α3

∫
Ω

(
‖∇x3‖2 + β2)1/2.



Structural prior + total variation (S+TV)
E1 E2 E3

E1 ref. E2 ref. E3 ref.



Comparison of methods:
E1 reconstructions

No prior TV JTV D2

S D2+TV S+TV Ref.



Comparison of methods:
E2 reconstructions

No prior TV JTV D2

S D2+TV S+TV Ref.



Comparison of methods:
E3 reconstructions

No prior TV JTV D2

S D2+TV S+TV Ref.



Comparison of methods:
E1 reconstructions, closeup

No prior TV JTV D2

S D2+TV S+TV Ref.



Comparison of methods:
E2 reconstructions, closeup

No prior TV JTV D2

S D2+TV S+TV Ref.



Comparison of methods:
E3 reconstructions, closeup

No prior TV JTV D2

S D2+TV S+TV Ref.



Comparison of methods: material
decomposition into water and bone bases

No prior TV JTV D2

S D2+TV S+TV Ref.



Comparison of methods: material
decomposition into water and bone bases

No prior TV JTV D2

S D2+TV S+TV Ref.



arXiv preprint:



What next?

Utilize the third energy bin for more basis materials.

Extend our method to 3D.

Larger testing with new datasets.

Establish a quantitative evaluation of reconstruction quality.

Will the method yield advantages for PCD imaging?

What is the optimal way to choose the regularization parameter?
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FIPS open datasets

The Finnish Inverse Problems Society provides open
access datasets of real X-ray tomographic data at
http://www.fips.fi/dataset.php.

MATLAB codes and computational resources are available at
the FIPS Computational Blog: https://blog.fips.fi.

http://www.fips.fi/dataset.php
https://blog.fips.fi


Industrial Mathematics
Computed Tomography Laboratory

Oxford Instruments
X-ray tube
Mb target
50 kVp

Sample
manipulator
Thorlabs
components

Hamamatsu C7942
X-ray detector
2240× 2368 pixels
50 µm pixel size



Industrial Mathematics
Computed Tomography Laboratory

Stephanorrhina guttata, common name Spotted Flower Beetle



Teaser:
new micro-CT laboratory under construction

XCounter Actaeon FX5
PCD (CdTe)
512× 256 pixels
100 µm pixel size

Hamamatsu C7942
EID
2240× 2368 pixels
50 µm pixel size



Thank you for your attention!
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