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Mumford-Shah functional as a regularization

for image reconstruction
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* Avoid computing derivatives cross edges
* Simultaneous reconstruction of image and its segmentation
¢ NP-hard when Ais not the identity
Geman and Geman [1984]
Mumford and Shah [1989]

Ambrosio [1989]
De Giorgi, Carriero, and Leaci [1989]

Alexeev, and Ward [2010]

Fornasier, March, Solombrino [2011]
Scherzer [2011, 2014]

Ramlau, Ring [2010]

Vese, Chan [2000]

Chan, Esedoglu and Nikolova [2004]
Cai, Chan, Zeng [2013]

Chan, Yang, Zeng [2014]

Rondi and Santosa [2001]

Klann, Ramlau [2013]

Jiang, Maass, Page [2014]

Storath, Weinmann; Frikel, Unser [2015]
Hohm, Storath, Weinmann [2015]

Rondi [2007] «  Carriero, Leaci, Tomarelli [2015]

An incomplete list.....
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Customization and Specialization
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Based on Fred Pollack (Inte) and Michael Taylor (UCSD)

Curtesy of Prof. Jason Cong
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Microprocessor Transistor Counts 1971-2011 & Moore's Law
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https://en.wikipedia.org/wiki/Transistor_count
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Energy-efficient computing with FPGA

* FPGA is another hardware accelerating approach
— Multi-core-CPU clusters, GPU and DSP,.
* FPGA (field-programmable gate array)
— function is defined by a user's program
— reconfigurable for computing
— Limited onboard memory vs others

* Xilinx Virtex-7 board VC707 at 100MHz
— 485K logic gates, 4.5MB onboard memory
— Transistor count: 6,800,000,000
— 4.5W (~consumer LED lamp)

How to make the best use of it? g =

https://en.wikipedia.org/wiki/LED_lamp
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Logical circuits of an 8-bit Adder

http://venividiwiki.ee.virginia.ed
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FPGA Implementation of Mumford-Shah
Imaging Algorithm

XCT Reconstruction with Mumford-Shah: 200K LUT (logic look-up tables)
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High-level Synthesis C->FPGA

Energy-efficient accelerator-rich architecture

Optimization under the performance, power, and cost
constraints

Extensive use of accelerators (algorithmic blocks)

Limited onboard memory with full control including
precision

— Extendable
VivadoHLS of Xilinx
~ . o . ) |

How to design algorithms for FPGA
— to enable the advantages of FPGA

Cong et al, High-Level Synthesis for FPGAs: From Prototyping to Deployment, 2011.
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Iterative methods

¢ Many algorithms have the structure
x(t+1) = f(x(t)), t=0,1,--
x(t) € R™, f: R™ - R™.
¢ Component form
x(t+1) = fi(xl(t),n-,xn(t)),i =1, ,n.

e It can be parallelized by letting each one of n
processors update a component x; by f;,
— at each stage, the i-th processor
= has the value of all components of x(t) on which f; depends,
= computes the new value x;(t + 1),

= communicates it to other processors in order to start the next
iteration.

Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.
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Block iterative methods

* A coarse-grained parallelization of iterative methods
with p processors.

* Eachiteration
© fiR* > RY,YP n=n,
x(t+ 1) =fi(x®),  i=1-,p

* Each f; is updated by one of the p processors.

¢ Reasons

= there may be too few processors available.
= block-parallelization reduces the communication
expense.

Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.



http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ClassECE6332Fall12Group-Fault-Tolerant_Reconfigurable_PPA
https://www.xilinx.com/products/design-tools/vivado.html
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Jacobi and Gauss-Seidel Iterations

* Jacobi-type iteration
« all components, simultaneously, updated and made available for next iteration

x(t+1) = fi(x, (), %, ()

* Gauss-Seidel Iteration
* components are updated, one at a time, using the most recently computed values of

other components
%+ 1) = fi(a (¢ 4D, 60 (1,26, %, ()

* updated in a cyclic order from 1 to n (or p for block iterative methods).
*  One update of all components is a sweep.

Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.
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Gauss-Seidel Iteration

They incorporate the newest available
information.

Hence, they sometimes converge faster than the
corresponding Jacobi-type algorithms.

* Gauss-Seidel algorithms can have different
updating orders for f;.

* In addition to the cyclic order, there are other
orders.

Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.
Censor and Zenios, Parallel Optimization: Theory, Algorithms and Applications, 1997.
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Parallelization of Jacobi and Gauss-
Seidel Iterations

«  Jacobi-type iteration

e all c_omr)onents, simultaneously, updated with the current values and made
available for next iteration

. x(t+1) = fi(2 (0, %, (0), t=0,1,-
«  Synchronous update: next iteration waits until all updates are conducted

*  Gauss-Seidel Iteration
« each update is computed with the latest available values of other components

x(t+D=fi@®), 05t <tt=01
* The latest available may not be available, but earlier values, due to communication

elay.
* Asynchronous update: iterations starts as soon as any recent values are available.
Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.

Avron, et al, Revisiting asynchronous linear solvers: provable rate through i Journal
of ACM, 2015.
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Stochastic gradient descent method
mxin F(x) = Z Fi(x)

i
* Instead of using full gradient, partial gradients of components are used.
* Its sequential version is

x(t+1) = fi(x() = x(t) — AW, (x (1))
fi:R" > R"
* Its asynchronous version is
x(t+1) = x(;(1) — AOVE (), n() < ¢

« Convex constraint leads extra projections onto convex sets.
* Incremental gradient descent

* Ordered-subset algorithm in engineering

* Block-iterative method in image reconstruction

Kiwiel, C of imate and methods for convex optimization, SIAM J. Optim., 2004.

Liu, et al, An Asynchronous Parallel Stochastic Coordinate Descent Algorithm, J. of Machine Learning Research, 2015.

Hannah and Yin, More Iterations per Second, Same Quality — why Asynchronous Algorithms may Drastically Outperform
Traditional Ones, 2017. Preprint.
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Kaczmarz Algorithm

« To solve systems of linear equations,
Ax=b
« find (relaxed) projections onto each
hyperplane iteratively,

b; — A;x™
X = o 4 Ay A i
]

—(Apx™)

N+l _ 4n bi tr
XM =x" + A, T Aj

b; — A;x™
Ax™ = A X" A Ly 7 — AAT

= A + A (by — Ax™)
=b, ifA =1

ir

* Itis an Gauss-Seidel iteration.
— Frank Natterer and Alfred Louis
* Also called the algebraic reconstruction
technique (ART)
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Kaczmarz Algorithm

e Itis a stochastic gradient descent.

_ 1IN lAox = bil?
L =32 = Tar
=1
_1llAx—hlP
" =512 -
Ax—b;

Vifix) = Aj,LW
;

b; — A;x™

A = o+ LA ——
‘) ‘) AT

Its sequential version converges under the diminishing condition.

Its asynchronous iteration is not well covered in literature.
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Asynchronous Parallel Kaczmarz (1) Asynchronous Parallel Kaczmarz (I1)

* Parallel Gauss-Seidel Iteration 1

X1 |AC |t1 |ALCY
X2 |AB |[t2 |A2,B2
X3 |GB |t3 C3,B3

x3 c In the next update of X1, will C1 or C3 be used?

. * Not the conventional Kaczmarz method.
* More accelerators, more asynchronous updates with conflicts.

Schedule/
Partition
step ‘

* The hope is that later updates will resolve the conflicts, even slowly.
* The solution is to use small or diminishing relaxations,

1 1
T Lg=te
210f 40 22 of 40
Experiments — Kaczmarz method(l) Experiments — Kaczmarz method(IV)
¢ A =005 Ay === A=1 : « A, =15 ]
* Nonoise. " * Gaussian noise: 0.05
* 10iteration 1 * 10 iteration i
+  Display window not adjusted i * Display window = [0 1]
Kaczmarz Asynchronous parallel Kaczmarz with 3 threads Kaczmarz Asynchronous parallel Kaczmarz with 3 threads
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Heuristics for Asynchronous Parallelism
Convergence results (1)

* Heuristics
— FHNIAE:
— Haste does not bring success.
— Haste makes waste.
— Eile mit Weile. (from Google translate)
— Immer mit der Ruhe. (from Thomas Schuster)

* Linear system of equations
Ax=b

e [C. M.] A symmetric and positive definite
+ Examples — p(A) < 1: convergence.
— Lifting heavy object by a group people Egvotian laborers lift the Stargate out of the _ p(A) > 1: no convergence.

— Painting a big picture by a group of painters ground in 1928 :
* [L. W. S.] Consistent system under the same spectral

e Mylessons condition.

v Do not use full strength, but do it slowly and slowly.

v No waiting does not mean to be hash. . y
€ * Kaczmarz algorithm, or ART, does not fit.

* Expected performance =
— reconstruction images in early iterations even with small or diminishing
relaxation, as ordered-subset methods do.

Rosenfeld, A case study in ing for parallel c ications of the ACM, 1969. (research
report in 1967).

Chazan and Miranker, Chaotic relaxation, Linear Algebra and its Applications, 1969.

Liu, Wright, and Sridhar, An Asynchronous Parallel Randomized Kaczmarz Algorithm, 2014. Preprint.



http://stargate.wikia.com/wiki/Egypt
http://stargate.wikia.com/wiki/Stargate
http://stargate.wikia.com/wiki/1928
http://stargate.wikia.com/wiki/Tau'ri
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Convergence results (1)

* f:R™ - R" contraction.
* Components update

- fuR" > RY%, 3P n; =n,

x(t+ 1 = fi(x(©®)

¢ Extension of [C. M.]
* Convergence for consistent linear systems

— weakly diagonal dominated matrices

— irreducible nonnegative matrix and positive solutions.

* Kaczmarz does not fit.

Bertsekas and Tsitsiklis, Parallel and distributed computation : numerical methods. 1989.

Frommer, On asynchronous iterations, Journal of C: and Applied ics, 2000.

Frommer and Spiteri, On linear asynchronous iterations when the spectral radius of the modulus matrix is one.
Topics in numerical analysis, 2001.

9/19/19
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One convergence result

* Asynchronous version
x(t+1) =x) —AOVfi(x(z:(2)).

—
* Convexit Queue of i
Y | Goieedy (&, (&, iel0) T;::\g )

Lo ) T component e ‘

* Diminishing relaxations subgradients
|
* Bounded delay ‘

1

" A~=qs<1l |
= t<7,(t)+D 8,5,0) W X |
<7 . |

puting
(Ges)

methods, 2001.

Nedi¢, Bertsekas, Borkar, Di
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Diversified convergence results

(@) Retrieve the current vector from the shared memory, say y.

28 of 40

CPU Operation vs Memory Access

*  x86 CPU fast for

X 1 . Processor package
arithmetic operations

De Sa, etal, L

Different asynchronous mode

— Master or without master?

— Update all or partial solution v
Different combinations of obj

—  Fidelity + regularization
Different communication asst

— Mostly ambiguous

— Not well modelled w.r.t compt
Different relaxations

— Fixed or diminishing?
Deterministic or probabilistic
Low precision implementatiol

— Big data applications typically

2015,

Traditional Ones, 2017. Preprint.

(b) Compute the convex combination of y with the current vector in the
local memory, say =

r=ay+(1-a)z

Store z in the local memory and in the shared memory.
() Perform the ith step of the ART algorithm on =, namely, compute

=Pzt Tf' R
RIR,

(d Go to (a).

It is further assumed that the communication time between local and
shared memories is negligibly small relative to the updating time in steps (b)
and () and that no two processors access the shared memory at the same
time.

Liu, Wright, et al, An Asynchronous Parallel Stochastic Coordinate Descent Algorithm, J. of Machine Learning Research,

Hannah and Yin, More Iterations per Second, Same Quality — why Asynchronous Algorithms may Drastically Outperform

and Optimizing

Low-Precision Stochastic Gradient Descent, ISCA'17, 2017.

Core 0
— ~lcycle
*  X86 bus architecture L1 i-cache and d-cache:
slow for memory access 32K8, 8-way,
— ~10cycle Access: 4 cycles
* Memory Wall 12 unified cache:
256 KB, 8-way,
Intel® 64 and IA-32 Architectures Access: 11 cycles
o N

Manual,
2016.

[ : L3 unified cache:

L3 unified cache i 8MB, 16-way,
(shared by all cores) i Access: 30-40
I cycles
CPU chip ‘

l Main memory

Block size: 64 bytes for
all caches.

Systembus  Memory bus

— vo L
[ KO

Writing Cache Friendly Code...

Memory protection from CPU
instruction, to operating
systems. ...

http://courses.cs.vt.edu/cs2506/Fall2014/Notes/L16.CachePoliciesAndPerformance.pdf
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Asynchronous updates in data flow

CPU

System Cache

Main Memory

Xy < Xy — Aanmfi(X)

Registers

On-board Memory

x(t+1) =|X(Ti(t)) - l(t)Vfi(x(Tt(f)))| ) st

Outline

* Background & Motivation

300f40

o Energy-efficient computing with FPGA

* Asynchronous parallel iterative algorithms

o Communication model
* FPGA implementation

o Techniques for implementation

* Summary




9/19/19

310f40

High-level Synthesis C->FPGA

Energy-efficient accelerator-rich architecture

Can be optimized under the performance, power, and
cost constraints

Extensive use of accelerators (algorithmic blocks)
Limited onboard memory vs others
— Extendable

VivadoHLS of Xilinx

—  httos://www.xilinx.com/products/design-tools/vivado htm!

How to design algorithms for FPGA?
» Asynchronous iterative parallel algorithms
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Beam-based SGD for Mumford-shah
Regularization
f|R(f)—b|2 +af172|l7f|2 +pfs||7u|2 +4 ;;,)z

=D @b = ) fn)

* Gamma-approximation by edge indicator
* Beam-based gradient descent,

X(i) < %) = Vg fi ()
* Alternative minimization algorithm for f and v

* Enable fine-grained parallelism, natural for CT
* Accelerators with minimum data communication
* Reduce communication latency and back-projection computation

FPGA Acceleration for 3D Low-Dose Tomographic Reconstruction, submitted to IEEE Transactions on
Parallel and Distributed Systems, 2019.

330f40
Implementation Techniques (1)

Pipeline for streaming dataflow
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Tile-based memory optimization

* Frequent large sized I/0 of image and projection data
in 3D.
— Memory intensive.

* Tile the image and projection data
— Prefetching and buffering strategy.
— Mathematical problem has not formulated.

* Achieve a high data reuse rate
* Save the memory bandwidth
* Increase performance

Linjun Qiao, Poster at this workshop.

-
> 0 oM o) o(n) o) L-»
! I

! dient d t )
| o || e || G || e e || onre |
' Ro V.ol fovo |
* Achieve Load balance in the hardware
pipeline.
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FPGA for XCT with Mumford-Shah

1AG) = bIP + RG) = )" ful)

Customize accelerators
Formulate data path
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Low-dose CT Experment

* CTACR 464
phantom on the

* SOMATOM

Definition AS at

UCLA.

Voltage: 120KV

Current: 215, 150,
100, or 50mA.



https://www.xilinx.com/products/design-tools/vivado.html
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Results (SSIM)

Data set method mean  max min std
215mA ours 0991 099 0942 0.0611
vendor  1.000 1.000 1.000  0.0000
ours 0981 0989 0965 0.0077

I50me vendor 0997 0998 0.995 0.0010
100mA ours 0972 0990 0901 0.0258

vendor 0997 0998 0995 0.0011
50mA ours 0976 0989 0.920 0.0188

vendor 0982 0998 0.995 0.0298

* 8.5 minutes to reconstruct a typical 3D lung

image with a quality comparable with the
vendor’s result.

9/19/19
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Summary

* Mumford-Shah regularization for XCT

— FPGA implementation with a quality comparable with the
vendor’s result.

* Asynchronous parallel computation is necessary for
architectures with rich computing units
— multi-core CPU/GPU
— accelerators rich FPGA
— multi-node supercomputer

* Algorithms with communication model

— Memory access/communication expense should not be
ignored
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Thank you for your attention.
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