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Motivation: CAT Scanners and X-Ray Tomography

Crude model: CAT scanner as device that computes line integrals
of density functions, using x-rays,
determines a 3-D image of the mass density of the object it scans:

Let f (x) be a continuous function of compact support in R3.
The X-ray transform of f (x), also: the Radon transform, is a func-
tion of lines ` in R3 called Rf (`) :

Rf (`) =

∫

`
f (x) d`(x),

where d`(x) is the arc length measure along the line `.
f can be recovered from Rf (Radon inversion).
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Motivation: take fewer measurements, reduce radiation,
minimal x-ray sets, still recover image

Rf (`) =

∫

`

f (x) d`(x),

R : {point functions} −→ {line functions}
The set of lines in R3 is a Grassmann manifold. It is 4-dimensional .
(2-D for orientation of a line, 2-D for parallel translation of line along
normal plane)
Since dim(R3) = 3, while dim

{
lines inR3

}
= 4,

There are “more” lines than planes

The problem is overdetermined.

Reasonable to expect 3-param family of lines suffices for inversion.
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Finite models

Replace 3D space R3 by the 3D vector space over finite field
F2 ≡ Z2:

F3
2, or its projective analog, FqP3.

Replace line integrals by line sums.
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Why Finite models?

Why consider finite models?

“All” questions can be answered in principle

No analytic restrictions

Possible import/export of ideas w/ continuous case

Canonical source of interesting integral geometry questions

Limits as n 7→ ∞ may have analytic implications

Links w/ Quantum Computing, AI auto theorem proving , Cryptography

4 May 2019 | New Scientist | 9

YOU don’t need a human brain to 
do maths – artificial intelligence 
can now write airtight proofs of 
mathematical theorems.

An AI created by a team at 
Google has proved more than 
1200 mathematical theorems. 
Mathematicians already knew 
proofs for these particular 
theorems, but eventually the 
AI could start working on more 
difficult problems.

One of the core pillars of 
maths is the concept of proof. It 
is an argument, based on known 
statements, assumptions or rules, 
that a mathematical statement, 
such as a theorem, is true.

To train its AI, the Google 
team started with a database of 
around 10,000 human-written 
mathematical proofs, along with 
the reasoning behind each step, 
known as a tactic.

The team then tested the AI on 
3225 theorems that it hadn’t seen 

before, and it successfully 
proved 1253 of them. The 
remaining problems couldn’t 
be solved because the AI had 
only 41 tactics at its disposal 
(arxiv. org/ abs/1904.03241).

“Where we want to get to is 
a system that can prove all the 
theorems that humans can 
prove, and maybe even more,” 

says Christian Szegedy at Google.
For now, the AI’s main 

application could be filling in 
the details of long, arduous 
proofs. Mathematicians often 
make intellectual jumps in 
proofs, without spelling out how 
to get from one step to the next.

“You get maximum precision 
and correctness all really spelled 
out, but you don’t have to do the 
work of filling in the details,” says 
Jeremy Avigad at Carnegie Mellon 
University in Pennsylvania. 
“Maybe offloading some things 
that we used to do by hand frees 
us up for looking for new concepts 
and asking new questions.”

AIs like this could one day 
solve maths problems we can’t 
decipher, or that are too long and 
complicated. But that would take 
a much larger training set, more 
tactics and a simpler way to plug 
the theorems into the computer. 
“I think it could happen in our 

lifetime,” says Szegedy.
“Pretty much anything that 

you can state and try to prove 
mathematically, you can put 
into this system,” says Avigad. 
“You can distil just about all 
of mathematics down to very 
basic rules and assumptions, 
and these systems implement 

those rules and assumptions.”
All of this happens in a matter 

of seconds per proof, and the only 
source of error is the translation 
of the theorem into language that 
the computer can understand. The 
team is now working on creating 
an automatic translator so that it 
is easier for mathematicians to 
interact with the system.  ❚

Google’s AI mathematician
Artificial intelligence learns to prove a thousand theorems

Machine learning

Leah Crane
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THE moon may have been born 
from a fiery magma ocean that 
covered the early Earth.

The leading hypothesis for 
the birth of the moon is that a 
Mars-sized object called Theia 
hit Earth, blasting up a cloud of 
debris that coalesced to become 
the moon. In many simulations 
of this process, most of the cloud 
comes from Theia, making the 
moon unlike Earth.

In reality, the compositions 
of Earth and the moon are 
extraordinarily similar, so planetary 
scientists think the cloud should 
have contained lots of material 
from our planet.

Natsuki Hosono at the Japan 
Agency for Marine-Earth Science 

and Technology and his colleagues 
performed a new set of simulations 
that may solve this conundrum. In 
this modelling, instead of hitting  
a solid planet, Theia hits an Earth 
covered in a magma ocean.

The magma would splash into 
space much more easily than a 
rocky mantle, making the moon-
forming cloud 70 to 80 per cent 
Earth material, enough to make 
the moon and Earth match (Nature 
Geoscience, doi.org/c45q).

In this scenario, about half of 
the magma ocean would be ejected 
into space, and Theia’s core would 
eventually sink into the young  
Earth. The magma would eventually 
crystallise to form rocky crusts like 
the two worlds have today.

“It’s not impossible that there 
should be a magma ocean, but 
the timing is critical if this was 
the mechanism for the moon’s 
formation,” says Jay Melosh at 
Purdue University in Indiana.

If this hypothesis turns out to 
be true, it could help us figure out 
exactly when the moon formed, 
says Melosh, as Earth’s surface 

would need to have been molten.
The simulations also matched 

two other important properties of 
the Earth-moon system: the moon’s 
relatively high speed as it orbits the 
planet, and the fact that the moon 
has more iron oxide than Earth – 
this chemical would have been more 
abundant in liquid rock than solid.

If this is truly how our moon 
formed, it could make us rethink 
other moons in our solar system, 
says Melosh. We might have to 
consider whether Mars had a 
magma ocean when its moons 
were formed by an impact, or 
whether Pluto’s subsurface ocean 
was closer to the crust and helped 
to form its huge moon, Charon.  ❚

Lunar science

Magma splash on Earth made the moon
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We think the 
moon was once 
part of Earth, 
before a massive 
collision

Leah Crane
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About the models

The three dimensional vector space F3
2 has:

8 points

2 points per line

7 lines through a given point

28 lines in all

The three dimensional projective space F2P3 has:

15 points

3 points per line

7 lines through a given point

35 lines in all
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Overdeterminacy and Line Complexes

X-Ray transform on F3
2 overdetermined by 28− 8 = 20 dimensions.

X-Ray transform on F2P3 overdetermined by 35− 15 = 20 dimensions.

Definition: a line complex is, in a given geometry:

a collection of as many lines as there are points

In F3
2 there are

(
28
8

)
= 3, 108, 105 line complexes

In F2P3 there are
(

35
15

)
= 3, 247, 943, 160 line complexes

Line complex C is admissible if:

X-Ray transform (sums point functions) along the lines in C is injective.

This follows I.M.Gel’fand admissibility in the continuous category.

Preview:

937, 440 = 30.16 percent F3
2 complexes are admissible.

1, 238, 376, 132 = 38.13 percent PF3
2 complexes are admissible.
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Admissibility for Hyperplanes–uniformity

Theorem (G.– way back)

Let C be a complex of hyperplanes in a vector space over a finite
field. Then C is admissible if and only if:

C contains one entire family of parallel hyperplanes (a spread).

C omits precisely one hyperplane from every other parallel family
of spreads.

The proof is immediate:

The full hyperplane transform is invertible by a celebrated general result of E.D. Bolker.

If a complex of hyperplanes omits two parallel hyperplanes then a dipole distribution for the capacitor formed
by these two hyperplanes is a phantom.

If a complex of hyperplanes contains one full parallel family of hyperplanes (a spread) and omits at most one
hyperplane from every other spread, then Radon transform data on this complex extends uniquely to the full
family of hyperplanes.
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Projective space: Doubly Ruled Surfaces

Theorem (Feldman-G.)

Let C be a line complex in the projective space P3 over any finite
field. Then C is inadmissible if and only if it contains a doubly
ruled surface of lines.
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Which line complexes are admissible?

We tell our students that mathematics is value free.

Nonetheless, we will treat admissible complexes as “good” and inadmissibles as “bad”.

“Bad” examples;

Omitted Points

Isolated Trees

Even Cycles
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Admissibility Theorem for F3
2

Theorem (G-Y2K)
A line C in F3

2 is admissible iff it omits no point
and contains no even cycles nor isolated trees.

The Theorem proves itself.

Proof. It is evident that any one of the “bad” properties makes a complex inadmissible. On the other hand, assume
C has none of the “bad’ above. To determine the function value f (p) at a point p ∈ F3

2, note that

p belongs to a maximal subgraph G which is not a tree.

This subgraph contains an odd cycle T ; odd cycles are “self-invertible”.

Values of f are determined on T .

Take a path π in G from p to T .

Work backwards along π, determining values of f on each vertex of each line of π , until p is reached.
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Linear Operator and Brute Force Admissibles Count

The X-Ray transform on F3
2 is modeled by the 28× 8 matrix below.

Bolker’s Theorem implies that this matrix is of maximal rank.
Admissible complexes in F3

2 correspond to nonsingular 8× 8 sumatrices.
These can be counted by a brute force program.
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Computational and Experimental Results

First run: 937,438 admissible complexes
Second run: 937,440 admissible complexes

Suspicious
(especially since 937438 = 2 · ( large prime ) = 2 (468,719).
On the other hand, 937440 = (2× 2× 2× 2× 2× 3× 3× 3× 5× 7× 31).

Better work it out by hand....

Joint work with Mehmet Orhon follows–two can count better than one.
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Staging Enumerations: complexes omitting points, more . . .

Complexes that omit one or more points

Complexes that omit one point
Complexes that omit two or more points
Complexes that omit three or more points

Additional steps . . .

A SCRAPBOOK OF INADMISSIBLE LINE COMPLEXES FOR THE

X-RAY TRANSFORM
ERIC GRINBERG & MEHMET ORHON

Abstract. We consider a finite field model of the X-ray transform that integrates functions

along lines in dimension 3, within the context of finite fields. The admissibility problem asks

for minimal sets of lines for which the restricted transform is invertible. Graph theoretic

conditions are known which characterize admissible collections of lines, and these have been

counted using a brute force computer program. Here we perform the count by hand and,

at the same time, produce a detailed illustration of the possible structures of inadmissible

complexes. The resulting scrapbook may be of interest in an artificial intelligence approach

to enumerating and illustrating admissible complexes in arbitrary dimensions (arbitrarily

large ambient spaces, with transforms integrating over subspaces of arbitrary dimensions.)Contents

1. Telegraphic Introduction: 937,438 or 937,440 ?

1

2. Complexes that omit one or more points

3

2.1. Complexes that omit one point

3

2.2. Complexes that omit two or more points

3

2.3. Complexes that omit three or more points

4

3. Complexes with isolated lines

4

3.1. Complexes with one or more isolated lines

4

3.2. Complexes with two or more disjoint isolated lines

4

4. Complexes with both omitted points and isolated lines

6

4.1. Complexes with one or more isolated lines and one or more omitted points
6

5. Complexes with isolated trees and omitting no points

6

6. Proper Complexes : Complexes omitting no point, with no isolated trees.
8

6.1. Proper Complexes containing a 6-cycle or an 8-cycle

9

6.2. Proper Complexes containing a 4-cycle

10

7. Admissible Complexes: a complete count

17

References

17
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Just one typical step (with typical proof)

Lemma
The number of connected proper line complexes with a unique 4-cycle
with precisely one of its vertices of valence greater than 2 is

(
4

1

)[(
4

4

)
+

(
4

3

)
· 3 +

(
4

2

)((
5

2

)
− 2

)
+

(
4

1

)((
6

3

)
− 4

)]
= 500.

Proof. We parse the inner summands of (. . . 500) above from left to right. Choose a 4-cycle as before and mark
one vertex D to have valence greater than 2.

D
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One full proof: parse left hand side
Lemma. The number of connected proper line complexes with a
unique 4-cycle with precisely one of its vertices of valence greater
than 2 is

(
4

1

)[(
4

4

)
+

(
4

3

)
· 3 +

(
4

2

)((
5

2

)
− 2

)
+

(
4

1

)((
6

3

)
− 4

)]
= 500.

Proof. We parse the inner summands of () above from left to right.
Choose a 4-cycle as before and mark one vertex D to have valence
greater than 2.

D

If vertex D has valence 6, there is only 1 =
(
4
4

)
way for all 4 of the

remaining points to be connected to D.

D

IfD has valence 5, choose 3 of the 4 remaining points to be connected
to D, and then choose one of these 3 to connect to the last remaining
point.

D

E

F

G

H

If D has valence 4, choose 2 of the remaining 4 points, E,G, to
connect to D. Call the remaining two points F,H. We must choose
2 lines from the 6 in the complete graph on EFGH. But EG is
forbidden (else an isolated tree or an omitted point results), so only
2 of 5 lines are available, and we cannot choose both to go through
F and omit H nor both to go through H and omit F , so we have(
5
2

)
− 2 = 8 choices. Hence there are

(
4
2

)
·
((

5
2

)
− 2

)
= 48 complexes

with D of valence 4.

Disconnected Omitted Point

If D has valence 3, choose 1 of the remaining 4 points and connect
it to the 4-cycle at D. We need to select three more lines involving
the non-4-cycle points, and we must avoid forming a 3-cycle which
would be a connected component, contradicting the hypothesis, or
else leave one point omitted. There are 4 ways to generate a 3-cycle
among the 4 remaining points, so there are

(
4
1

) ((
6
3

)
− 4

)
= 4·16 = 64

complexes here. �

1
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Complexes w. isolated trees, omitting no points

Lemma
The number of complexes that omit no point and contain at least
one isolated line is

(
8

2

)[(
15

7

)
−
(

6

1

)(
10

7

)
− 1

2

(
6

2

)(
6

6

)]
= 159, 810

These complexes are counted without multiplicity.

Corollary

The number of complexes that contain isolated trees and omit no
points is 200, 970. These complexes are counted without
multiplicity.
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Proper Complexes Containing a 4-Cycle– the most fun

If a proper line complex has more than one 4-cycle, then the cycles
must be disjoint.

The number of proper line complexes containing more than one 4-cycle
is
(

8
4

) (
4!

4·2
) (

4!
4·2
) (

1
2

)
= 315.

The number of topologically disconnected proper line complexes with a
unique 4-cycle is:

(
8
4

) (
4!

4·2
) (

4
1

)(
7
1

)
= 5, 880.

The number of proper line complexes with a unique 4-cycle with one
of its vertices of valence greater than 2 is(

4
1

) [(
4
4

)
+
(

4
3

)
· 3 +

(
4
2

) ((
5
2

)
− 2
)

+
(

4
1

) ((
6
3

)
− 4
)]

= 500.

The number of proper line complexes with a unique 4-cycle with 2
vertices of valence greater than 2 is: 1092.

The number of proper line complexes with a unique 4-cycle with 3
vertices of valence greater than 2 is: 432.

The number of proper line complexes with a unique 4-cycle with 4
points of valence greater than 2 is 4! = 24.
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Admissible Complexes: a complete count

The grand total is:

1456875− (210 · (24 + 432 + 1092 + 500) + 5880 + 315 + 80640 + 2520) = 937440.

Note that the 210 multiplier accounts for the number of ways to
choose a 4-cycle among 8 points for lemmas above assuming a
fixed 4-cycle has been chosen.
(There are

(
8
4

)
= 70 ways to choose 4 points out of 8, and 4!

4·2
= 3 ways to form an unoriented 4-cycle out of 4

points; oh, and 70 · 3 = 210 .)
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(Appeared in The Mathematical Legacy of Leon Ehrenpreis, Springer, 2012)
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