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Pre-cursor for Data-driven Recon (2012)

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 Sep PMCID: PMC3777547
19. NIHMSID: NIHMS509576
Published in final edited form as: PMID: 22542666

|[EEE Trans Med Imaging. 2012 Sep; 31(9): 1682-1697.
Published online 2012 Apr 20. doi: 10.1109/TM1.2012.2195669

Low-Dose X-ray CT Reconstruction via Dictionary Learning

Qiong Xu, Hengyong_Yu, Senior Member, IEEE,E Xuangin Mmu,m Lei Zhang, Member, IEEE, Jiang Hsieh, Senior
Member, IEEE, and Ge Wang, Fellow, I[EEE




Data-driven Radiomics (Yu & Wang, 2013)
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Figure 1. Flowchart of the proposed tensor dictionary and neural
network analysis for lung cancer low-dose CT screen to differentiate
true/false positive/negative results.
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AAAS Meeting (Feb. 2016)

FEBRUARY 11-15 h‘AAAS 2016 ANNUAI‘ MEETING WASHINGTON, DC

GLOBAL SCIENCE ENGAGEMENT

REGISTRATION PROGRAM FAMILY SCIENCE DAYS TRAVEL POSTERS EXHIBITORS
PROGRAM - HOME X-Ray Imaging Innovations for Biomedicine
AUTHOR INDEX Friday, February 12, 2016: 3:00 PM-4:30 PM

Coolidge (Marriott Wardman Park)

Meeting Information In computed tomography (i.e., CT scans), X-rays generated in an emission source are used to illuminate an
organism, project shadows, and undergo measurement in a detector array. Spatiotemporal multiplexing of X-

When: ray shadows enables computational synthesis of people’s internal structures. Today, X-ray CT has a central
Ef:maw 11-15,2016 role in clinical imaging, often as the first and only imaging study before definitive intervention for a wide
ere:

variety of conditions. More than 100 million CT scans are performed worldwide each year. However, current
X-ray CT technology is often insufficient to differentiate benign and malignant etiologies, describe tissue
tumor types and grades, or predict early response to therapy. X-ray CT involves ionizing radiation, which has
drawn concerns over potential risk of induced cancer formation. This symposium highlights recent
improvements in X-ray sources, detectors, and reconstruction algorithms that promise to address some of
these long-standing challenges. For example, photon-counting detectors add a spectral dimension to the
information content, X-ray gratings extract refractive and elastic scattering features that improve soft tissue
contrast, and contemporary reconstruction methods refine image quality with reduced radiation dose. New CT
scanners are being developed to offer superior imaging performance and minimize production, deployment,
and operation costs. CT scanners also serve as a source of big data that can be archived on the cloud and
reused for smarter imaging and universal accessibility.

Washington, DC

Organizer. Ge Wang, Rensselaer Folytechnic Institute

Co-Organizer: Mannudeep Kalra, Massachusetts General Hospital



Al Talk at AAAS

C | @& Secure | https://aaas.confex.com/aaas/2016/webprogram/Paper17168.html X

os @ Campus Portal §§] Check your email |U _i' OVERDRIVE [3 News Archive () Mediasite Login

FEBRUARY 11-15 h‘AAAS 2016 ANNUAL MEETING WASHINGTON, DC

GLOBAL SCIENCE ENGAGEMENT

‘TRATION PROGRAM FAMILY SCIENCE DAYS TRAVEL POSTERS EXHIBITORS

PROGRAM - HOME The Technology of Artificial Intelligence

AUTHOR INDEX Saturday, February 13, 2016: 3:00 PM-4:30 PM
Marshall Ballroom North (Marriott Wardman Park)

Meetlng Demis Hassabis, DeepMind, London, United Kingdom

Information Dr. Demis Hassabis is the Co-Founder and CEO of DeepMind, the world’s
When: leading General Artificial Intelligence (Al) company, which was acquired by
February 11 - 15, Google in 2014 in their largest ever European acquisition. Demis will draw on his
2016 eclectic experiences as an Al researcher, neuroscientist and videogames
Where: designer to discuss what is happening at the cutting edge of Al research, its
Washington, DC future impact on fields such as science and healthcare, and how developing Al

may help us better understand the human mind.



Roadmap for Deep Recon
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A Perspective on Deep Imaging

GE WANG (Fellow, |EEE)
Department of Biomedical Engineering, Biomedical Imaging Center, Center for Bintechnology and Imterdisciplimary Studies. Rensselasr Polytechmic Imstote,
Tray, WY 12180, USA

Corresponding awthor: G. Wang (ge-wang & ieee.org)

ABSTRACT The combination of tomographic imaging and deep learning, or machine leaming in peneral,
promises to empower not only image analysis but also image reconstruction. The latter aspect is considered
in this perspective article with an emphasis on medical imaging to develop a new generation of 1mage
reconstruction theories and techniques. This direction might lead to intelligent utilization of domain
knowledge from big data, innovative approaches for image reconstruction, and superior performance in
clinical and preclinical applications. To realize the full impact of machine learning for tomographic imaging,
major theoretical, technical and translational efforts are immediately needed.
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Smart Precision Imaging/Medicine
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FIGURE 2. Big picture of deep imaging - A full fusion of medical imaging
and deep learning. A high likelihood is that the direct paths from data to
features and actions may need an intermediate layer essentially
equivalent to a reconstructed/processed image.
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Image Reconstruction Is a New Frontier
of Machine Learning

Ge Wang"™, Fellow, IEEE, Jong Chu Ye"™, Senior Member, IEEE, Klaus Mueller™, Senior Member, IEEE,
and Jeffrey A. Fessler™, Fellow, IEEE

. INTRODUCTION

VER the past several years, machine learning, or more
O generally artificial intelligence, has generated over-
whelming research interest and attracted unprecedented public
attention. As tomographic imaging researchers, we share the
excitement from our imaging perspective [item 1) in the
Appendix], and organized this special issue dedicated to the
theme of “Machine learning for image reconstruction.” This
special issue is a sister issue of the special issue published in
May 2016 of this journal with the theme “Deep learning in
medical imaging” [item 2) in the Appendix]. While the previ-
ous special issue targeted medical image processing/analysis,
this special issue focuses on data-driven tomographic recon-
struction. These two special issues are highly complementary,
since image reconstruction and image analysis are two of
the main pillars for medical imaging. Together we cover
the whole workflow of medical imaging: from tomographic
raw data/features to reconstructed images and then extracted
diagnostic features/readings.




Strong Momentum of Al/ML
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the topic terms (Left), and with “deep learning” in the article title (Right). Data collected on

July 11, 2019.



Major Players of Al/ML
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Book on AlI/ML Tomography
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A learning revolution

The groundwork for machine leaming was laid down in the middle of last century. Butincreasingly
powerful computers — hamessed to algorithms refined over the past decade — are driving an explosion
of applications in every thing from medical physics to materials, as Marric Stephens discovers

When your bank calls o ask about a suspiciow \h and autonomously. As a subser of
large purchase made on your credit card ar field of artificial intelligence (AT). machin
ume, it’s unlikely that a kindly member of st h.h wchniques can be applied wherever ther
personally been com rough }.nu{ account. and compéex data sets that can be mined |
Instead. it's more likely machine has learned N inputs mdnupuh In the case
what sort ¢ iours 10 associate with criminal uhm will have a
activity — and that in's spotted something unexpected i
on your statement. Sifent Ticiently. the bank’s  produce an ¢ ‘Jl[‘(_ll “sly \(\;lud lr.
computer has been using rithms o watch over input (“high-value orde: ced at am
your account for signs of theft. But machine learning m;uuu‘d nlmmu It's
Monitoring credit ¢ ds in this way is an exam- being applied in ma
ple of “machine learning” - the p ss by which sport to the criming ;I-;u\nu \_\ 1em. Inmui (.L
a computer system, trained on a g given set of exam- a biomedical engineer from the Rensselaer
ples, develops the ability 1o perform a task flexibly Polytechaic Instimse in the US who i one of those

the more general  Marrk Stephens &
afrecionce sciesce

Physica Warid

e A new [OP Publishing ebook Machine Learning
for Tomographic Imaging by Ge Wang, Y1 Zhang,
Xiaojing Ye and Xuangin Mou will be published

later this year.

Physics World March 2019

https://physicsworld.com/a/a-machine-learning-revolutsn




Al/ML Tomography Book from IOP Publishing

Image Analysis,
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Applications of
Artificial
Intelligence &
Machine Learning
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Outline of Our Book

Chapter 1
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Vision System, Sparse Coding

Chapter 4
X-ray Computed Tomography
Data Acquisition,
Analytic & lterative Recon, Scanner

Chapter 6
Magnetic Resonance Imaging
MRI Physics,
CS-based Recon, Parallel MRI

Part IV
Others

PartV
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Tomographic Recon with Dictionary

Chapter 3
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Typical Networks

Chapter 5
Deep CT Reconstruction
Image & Data Domain, Hybrid,
Unrolled/Inserted, Direct Networks

Chapter 7
Deep MRI Reconstruction
Deep Recon Networks, Leveraging

Generic Network, Advanced MRI, Misc.

Chapter 8
Modalities & Integration
Nuclear Tomography, Ultrasound &
Optical Imaging, Multimodality Imaging

Chapter 9
Image Quality Assessment
General, Specific, Task-based Metrics,
Network-based Observers

Chapter 10
Quantum Computing
Wave-Particle Duality, Quantum Gates,
Quantum Algorithms

Appendix A
Mathematical Basics
Optimization, Inference, Information
Theory

Appendix B
Hands-on Experience
Basic Networks, Deep CT & MRI
Networks




New Algorithmic Category

Table 1: Three types of tomographic image reconstruction algorithms in an over-simplified
comparison (penalization of image reconstruction and topology of network architecture can
be complicated.

Category Form Knowledge Input Quality Speed
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Image Reconstruction: From Sparsity to
Data-adaptive Methods and Machine Learning

Saiprasad Ravishankar, Member, IEEE, Jong Chul Ye, Senior Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

Abstraci—The field of medical image reconstruction has seen
roughly four types of methods. The first type tended to be
analytical methods, such as filtered back-projection (FEP) for
X-ray computed tomography (CT) and the inverse Fourier
transform for magnetic resonance imaging (MRI), based on
simple mathematical models for the imaging systems. These
methods are typically fast, but have suboptimal properties such
as poor resolution-noise trade-off for CT. A second type is
iterative reconstruction methods based on more complete models
for the imaging system physics and, where appropriate, models
for the sensor statistics. These iterative methods improved image
quality by reducing noise and artifacts. The FDA-approved
methods among these have been based on relatively simple
regularization models. A third type of methods has been designed
to accommodate modified data acquisition methods, such as
reduced sampling in MRI and CT te reduce scan time or
radiation dose. These methods typically involve mathematical
image models involving assumptions such as sparsify or low-
rank. A fourth type of methods replaces mathematically designed
models of signals and systems with data-driven or adaptive models
inspired by the field of machine learning. This paper reviews the
progress in medical image reconstruction methods with focus
on the two most recent trends: methods based on sparsity or
low-rank maodels, and data-driven methods based on machine
learning techniques.

acquisition time) or low-dose or sparse-view data in CT (re-
ducing patient radiation exposure) has been a popular area of
research and holds high value in improving clinical throughput
and patient experience. This paper reviews some of the major
recent advances in the field of image reconstruction, focusing
on methods that use sparsity, low-rankness, and machine
learning. We focus partly on PET, SPECT, CT, and MRI
examples, but the general methods can be useful for other
modalities, both medical and non-medical. Other papers in
this issue emphasize other modalities.

A. Types of Image Reconstruction Methods

Image reconstruction methods have undergone significant
advances over the past few decades, with different paths for
various modalities. These advances can be broadly grouped
in four categories of methods. The first category consists
of analytical and algebraic methods. These methods include
the classical filtered back-projection (FBP) methods for X-
ray CT (e.g., Feldkamp-Davis-Kress or FDK method [1]) and
the inverse Fast Founer transform and extensions such as



Progress Through Questioning

o Analytic Reconstruction

Given a finite number of projections, the tomographic reconstruction is not
uniquely determined (ghosts).

o Statistical Reconstruction

A reconstructed image is strongly influenced by the penalty term, and what you
see Is what you want to see!

o Compressed Sensing

There i1s a chance that a sparse solution is not the truth. For example,
physiological texture and/or pathological plaques incorrectly eliminated

o Machine Learning

No Maxwell equations for machine learning, and a neural network as a black box
IS trained to work with big data through parameter adjustment



Machine Learning to Dominate

In Principle, Machine Learning (ML) Can Outperform Analytic
Reconstruction (AR), Iterative Reconstruction (IR) /
Compressed Sensing (CS)

AR/IR/CS Used as
® Component (Such as in the “LEARN” Network)
® Baseline (Such as for Image Denoising)

® |IR/CS Enhanced/Replaced by Neural Networks (As Extensive
Priors & Powerful Non-learning Mapping, Driven by Big Data)



Superiority Principle
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Can New Dog be Better in Old Tricks



Spiral Single-slice CT

Motorized table



Theoretical Superiority

“For a given X-ray dose, helical CT allows
substantially better longitudinal resolution than
conventional CT due to its inherent retrospective
reconstruction capability.”

Wang and Vannier
Medical Physics 21:429-433, 1994

Wang, Brink, Vannier
Medical Physics 21:753-754, 1994




Retrospective Reconstruction

Direct Retrospective
Reconstruction Reconstruction

Scanning Loci Slices Scanning Locus  Slices

Incremental (Left) vs Spiral (Right) Scans Define Imaging Planes Differently.
The Former Specifies Imaging Planes Physically/Prospectively, while the Latter
Does so Computationally/Retrospectively.



Superior Detectability

Direct Retrospective
Reconstruction Reconstruction

Retrospective Reconstruction Gives Better Lesion Detectability If There Are
Sufficiently Many Slices Reconstructed!



Top Level Comparison in LDCT Performance

nature, —
machine machine intelligence
intelligence

Article Published: 10 June 2019

Competitive performance of a
modularized deep neural network
compared to commercial algorithms for
low-dose CT image reconstruction

Hongming Shan, Atul Padole, Fatemeh Homayounieh, Uwe Kruger, Ruhani Doda Khera, Chayanin

Nitiwarangkul, Mannudeep K. Kalra®™ & Ge Wang ™

Learning an atlas for the brain Nature Machine Intelligence 1,269-276 (2019) = Download Citation




IR Methods vs MAP DL for Low-dose CT

Commercial Iterative Our MAP Network-based
Recon (IR) Algorithms Deep Learning (DL) with
in This Study Optimized Depth
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Low-dose CT Denoising: FBP + Network

62x62

CT Denoising Neural Network by RPI,
Sichuan University, & Harvard University

Low-quality CT Scan High-quality CT Scan Machine Learning Turns Low-quality
(1/4 Radiation Dose) (Standard Radiation Dose) CT Image into High-quality
Counterpart

IEEE Trans. Medical Imaging 37:1522-1534, 2018 (for details, see https://arxiv.org/abs/1802.05656
or https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8353466)
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Low-cost CT Deblurring: GAN-CIRCLE

> ® > S o

bas h

i-supervised
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You CY, Zhang Y, Zhang XL, Ju SH, Zhang ZY, Zhao Z, Cong WX, Saha PK,
Wang G: CT Super-resolution GAN Constrained by the Identical, Residual, and
Cycle Learning Ensemble (GAN-CIRCLE), arXiv, Aug. 2018




Super-resolution for Bone CT

Low Res Super- Res ngh Res

Human Distal Tibia Dataset:

 Low Resolution CT: Siemens FLASH
e Super-resolution CT. GAN-O

 High Resolution CT: Siemens FORCE

With Univ. of lowa, Dr. Saha’s Group




Ensemble Learning for MRI Super-resolution

Electrical Engineering and Systems Science > Image and Video Processing
MRI Super-Resolution with Ensemble Learning and Complementary Priors
Qing Lyu, Hongming Shan, Ge Wang

HR image

Ensemble
learning

CNN

LR image Final SR image




Sparse-data CT De-artifacts: “LEARN”

Under-sampled Datg Reconstruction

-~
e Iteration-inspired Layer Tt -~
———— —

™) Conv+RelLU

# Conv

Chen H, Zhang Y, Chen YJ, Zhang WH, Sun HQ, Lv Y, Liao PX, Zhou JL, Wang G:
LEARN: Learned Experts’ Assessment-based Reconstruction Network for Sparse-data CT. IEEE Trans. Medical Imaging, June 2018



ICT Network

Output
CT image

Input
sinogram

J S, gy Linear @ Tanh

¢ J Frozen m==p Concatenation Smsgp Devectorization

Fig. 1. Architecture of iCT-Net. The proposed deep neural network consists
of a total of 12 layers (L1-L12). The LI1 layer is a frozen layer , which
means that parameters in this layer are not updated in the training process.
Both linear and nonlinear activations are used as indicated in the graphics.
S’y 18 a hard thresholding activation function defined in Eq. (2).

Li, Yinsheng & li, ke & Zhang, Chengzhu & C. Montoya, Juan & Chen, Guang-Hong. (2019). Learning to
Reconstruct Computed Tomography (CT) Images Directly from Sinogram Data under A Variety of Data
Acquisition Conditions. IEEE Transactions on Medical Imaging. PP. 10.1109/TMI1.2019.2910760.



Exterior Tomography

x IEEE Access
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Metal Artifact Reduction in CT: Where Are We
After Four Decades?

LARS GJESTEBY'!, BRUNO DE MANZ, YANNAN JIN2, HARALD PAGANETTI®, JOOST VERBURG?,
DROSOULA GIANTSOUDI®, AND GE WANG' (Fellow, IEEE)

! Biomedical Imaging Center, Department of Biomedical Engineering, Renselaer Polytechnic Institute, Troy, NY 12180, USA
:[m:lgc Reconstruction Laboratory, General Electnic Global Research Center, Niskayuna, NY 12309, USA
iDupuﬂ.uuu of Radiabion Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA

Comesponding authors: B. De Man (deman@® ge.com) and G, Wang (ge-wang &icee.org)



Metal Artifact Reduction: Ensemble Learning

Original Sinogram

Workflow of The
Proposed CNN-MAR
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A female with diffused subarachnoid hemorrhage (in the red square). CT angiography demonstrated
a left middle cerebral artery aneurysm, which was clipped. The display window is [-100 200] HU.

Yanbo Zhang and Hengyong Yu; A convolutional neural network base metal artifact reduction in x-ray computed tomography
IEEE Transactions on Medical Imaging, 37(6):1370-1381, 2018.



Dual-stream Data Processing Flowchart

(CNN Target)

Phantom derived
from clinical images

with metal added Improved image;

minor artifacts remain

(CNN Input)

FBP NMAR
Algorithm

CNN learns to
correct leftover
artifacts

CNN Training

Image with
major artifacts filtering

Guided

(CNN Input)

Detail image derived
from filtering



Interior Tomography

Lmartased S,
Left: The conventional FBP reconstruction from a complete
dataset of a sheep chest CT scan (the white circle identifies our
selected ROI).
Right: Our TV-minimization-based interior reconstruction from
truncated projections associated with x-rays only through the
ROI. The sheep scan was done by Dr. Eric Hoffman, University
of lowa, lowa City, USA

Wang G, Yu HY: Can interior tomography outperform lambda to-
mography? Proc. Natl. Acad. Sci. USA, 2010. 107(22): p. E92-3



ICT Reconstruction

Reference LS output
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FBP of LS output

Difference

Short scan

uonenwis (e)

Sparse view sinogram L

Super-short
scan

ST

swyadx3 (q)

()|

Reference
Interior

=~ B
problem

Fig. 10. The iCT-Net reconstruction results of real human subject data
acquired in an abdomen-pelvis scan protocol with the short-scan angular
range, super-short scan angular range and interior problem. Dense view
reconstruction results are presented in the 2nd column and sparse view
reconstruction results are presented in the 3rd column. The corresponding
reference images were generated by applying a standard FBP method with
a Ram-Lak filter at full FOV (@ = 50 cm) from 644 view angles densely
sampled across a short-scan angular range. Note that the central portion of the
FBP reconstruction without truncation was cropped to generate the reference
image for the interior problem with the truncated FOV (@ = 12.5 cm).

Reference — FBP,"of L5 output Reference — iCT




FBP2ADMIRE: Computational Acceleration

Low-dose Sinogram

e

~

Ilterative Recon

(ADMIRE)

Deep Learning

(CNN)

Low Quality Image High Quality Im

Yanbo Zhang, Robert MacDougall and Hengyong Yu; Convolutional neural network based CT image
post-processing from FBP to ADMIRE. Proceedings of the 5" CT Meeting, pp.411-414, 2018
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Basic Types of Neurons
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(Interneuron) (Sensory Neuron) (Motoneuron) Cell




New Type of Neurons
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Biomedical Engineering
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A new type of neurons for machine learning
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XOR Gate

N=10

N=80 N=100

XOR-like function by the proposed 2"d order neuron after 100 iterations



Double Spirals

In J Humer Method Biomed Eng. 20158 May; 34(5):e2956. doi: 10.1002/cnm.2856. Epub 20158 Feb 6.

Generalized backpropagation algorithm for training second-order neural networks.

Fan F', Cong W', Wang G'.

Lang and Witbrock reported that the standard backpropagation network cannot classify such spirals, and
made a 2-5-5-5-1 network with shortcuts to solve this problem. With 2"d order neurons, we can do so with a

simpler network without any shortcut.

KJ Lang, MJ Witbrock: Learning to Tell Two Spirals Apart. In Proceedings of the 1988 Connectionist Models
Summer School. San Mateo, CA, 52-59, 1989



Sorting CT & MRI Images

In J Humer Method Biomed Eng. 20158 May; 34(5):e2956. doi: 10.1002/cnm.2856. Epub 20158 Feb 6.

Generalized hackprnpagatinn algorithm for training second-order neural networks.
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Fuzzy Logic Interpretation

Fuzzy Logic Interpretation of
Artificial Neural Networks

Fengle1 Fan, Student Member, IEEE, Ge Wang. Fellow, IEEE

Abstract — Over past several vears, deep learning has achieved
huge successes in various applications. However, such a data-
driven approach is often criticized for lack of interpretability.
Recently, we proposed artificial quadratic neural networks
consisting of second-order neurons in potentially many layers. In
each second-order neuron, a quadratic function is used in the place
of the inner product in a traditional neuron, and then undergoes a

nonlinear activation. With a single second-order neuron, any fuzzy

logic operation, such as XOR, can be implemented. In this sense,
any deep network constructed with quadratic neurons can be
interpreted as a deep fuzzy logic system. Since traditional neural
networks and second-order counterparts can represent each other
and fuzzy logic operations are naturally implemented in second-
order neural networks, it is plausible to explain how a deep neural
network works with a second-order network as the system model.
In this paper, we generalize and categorize fuzzy logic operations
implementable with individual second-order neurons, and then
perform statistical/information theoretic analyses of exemplary
quadratic neural networks.

were identified [8]. However, these results do not reveal the
inner working of a network, such as what and how features are
extracted and propagated between layers. Gu et al. 2017 [9]
offered an elegant explanation of the adversarial mechanism of
GAN from the viewpoint of optimal mass transportation. Dong
et al. 2017 [10] established a correspondence between deep
networks and numerical ordinary differential equations to guide
the structural design of a network with skip connections.

Instead of handling with existing models directly. researchers
also tried to find the models that are more interpretable. For
example, Wu et al. [11] utilized tree regularization to optimize
a deep model with more interpretability. Fan [12] proposed a
generalized hamming network based on the fact that neurons
calculate generalized hamming distance when a bias is adopted.
Albeit novel and interesting models developed in these pilot
studies, these arts do not reveal the key mechanism based on
which the existing models are so successful.



Deep Fuzzy Logic System
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Deep Fuzzy Features
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Fig. 3. Second-order network for recognition of Arabic digits from the MNIST
dataset. The neurons in the “convolutional™ layers are colored and inflated to
demonstrate the types and frequencies of quadratic operations.
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Approximation with Width




Width- versus Depth-Efficiency

arXiv.org > c¢s > arXiv:1709.02540

Computer Science > Machine Learning

The Expressive Power of Neural Networks: A View from the Width

Zhou Lu, Hongming Pu, Feicheng Wang, Zhigiang Hu, Liwei Wang
(Submitted on 8 Sep 2017 (v1), last revised 1 Nov 2017 (this version, v.3))

Theorem 4. Let n be the input dimension. For any integer k' > n + 4, there exists Fy: R" — R
represented by a ReLU neural network < with width d,,, = 2k* and depth h = 3, such that for any
constant b > 0, there exists € > 0 and for any function F: R™ — R represented by RelLU neural
network 98 whose parameters are bounded in [—b. b] with width d,,, < k3/* and depth h < k + 2,
the following inequality holds:

(Foy — F)* da > . (6)
R'i".'.



Abstract

The expressive power of neural networks 1s important for understanding deep
learning. Most existing works consider this problem from the view of the depth of
a network. In this paper. we study how width affects the expressiveness of neural
networks. Classical results state that depth-bounded (e.g. depth-2) networks with
suitable activation functions are universal approximators. We show a universal
approximation theorem for width-bounded ReLLU networks: width-(n + 4) ReLU
networks, where n 1s the input dimension, are universal approximators. Moreover,
except for a measure zero set, all functions cannot be approximated by width-n
ReLU networks, which exhibits a phase transition. Several recent works demon-
strate the benefits of depth by proving the depth-efficiency of neural networks. That
1s. there are classes of deep networks which cannot be realized by any shallow
network whose size is no more than an exponential bound. Here we pose the dual
question on the width-efficiency of ReLU networks: Are there wide networks
that cannot be realized by narrow networks whose size is not substantially larger?
We show that there exist classes of wide networks which cannot be realized by
any narrow network whose depth is no more than a polynomial bound. On the
other hand. we demonstrate by extensive experiments that narrow networks whose
size exceed the polynomial bound by a constant factor can approximate wide and
shallow network with high accuracy. Our results provide more comprehensive
evidence that depth may be more effective than width for the expressiveness of
ReL.U networks.



Width: n+4 & Depth: Deep
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Figure 1: One block to simulate the indicator function on [a1,b;] = [az,bz] % -+ - % [an, bs]. For k
from 1 to n, we "chop” two sides in the kth dimension, and for every E the "chopping” process is
completed within a 4-layer sub-network as we show in Figure 1. It is stored in the (n+3)th node as
L in the last layer of =", We then use a single layer to record it in the (n+1)th or the (n+2)th node,
and reset the last two nodes to zero. Now the network is ready to simulate another (n+1)-dimensional
cube.
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The Power of Depth for Feedforward Neural Networks

Ronen Eldan Ohad Shamir
Weizmann Institute of Science Weizmann Institute of Science
ronen.eldan@weizmann.ac.il ohad.shamir@weizmann.ac.il
Abstract

We show that there is a simple (approximately radial) function on R?, expressible by a small 3-layer
feedforward neural networks, which cannot be approximated by any 2-layer network, to more than
a certain constant accuracy, unless its width is exponential in the dimension. The result holds for
virtually all known activation functions, including rectified linear units, sigmoids and thresholds,
and formally demonstrates that depth — even if increased by 1 — can be exponentially more valuable
than width for standard feedforward neural networks. Moreover, compared to related results in the

context of Boolean functions, our result requires fewer assumptions, and the proof techniques and
construction are very different.

Theorem 1. Suppose the activation function o(-) satisfies as.su.fﬂprionwin’z constant cq, as well as assump-
tion 2| Then there exist universal constants c,C'" > 0 such that the following holds: For every dimension
d > C, there is a probability measure |1 on R? and a function g : Re — R with the following properties:

1. g is bounded in |[—2,+2], supported on {x : ||x|| < C‘\/&}, and expressible by a 3-layer network of
width chdlg/‘l.

2. Every function f, expressed by a 2-layer network of width at most ce®®, satisfies

Exp (f(x) — g(x))” > .




Quadratic Neural Network for Human-like Learning

M— | - E——— Fenglei Fan', Ge Wang' (Mentor) and Dmitry Krotov? (Co-Mentor)
1Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
2IBM Research Cambridge, Cambridge, MA 02142, USA
February 19, 2019

Abstract Algebraic Structure Network Interpretability

Deep learning is the mainstream of machine learning = We theoretically demonstrated the strength of quadratic| Lack of the interpretability has become a primary
that concerns with _algorithms _inspired by the ' networks [2] in the unique functional representation —a obstacle to the wide-spread translation and

functions of the human brain. univariate polynomial of degree N can be expressed as development of deep learning. We propose to

c : : . . Py(x) = CT1"(x - x) l'[l?(xz +ax +b)). interpret neural networks from the perspective of
Ir:izlrecrie:gnttlhe t:;ve;:::z oza';'ggg'zeﬁg:‘os"?i]o: o | ol ' ' : ! engineering. We consider a deep neural network
9 | P th ¥ prop d ? tional y Criml s (el <) (el =n) Faanrhddegeil Lompeh as an integrated system of fuzzy logic gates.
replacing the inner product in conventional neurons . @ . . . Each quadratic module can be topologically

with a quadratic operation of input data, thereby
enhancing the capability of the individual neuron.

[Te—x ]‘[u %) ]*[n ) [ |unh)H(,\ Tah AT« +ax+) | characterized by its eigen spectrum [3].
For instance, even a single quadratic neuron can . 7’ ‘ 5 ‘

realize the XOR logic. Along this direction, we are % g ...... > :
motivated to unlock the power of quadratic neurons @D E ; §%
in representative network architectures, towards B : 7 @ o B 5 :g\ %
human-like learning in the form of quadratic deep [Te-x T raren) -4 85
learning. ‘® @ D iy . %
Introducti '.5 | 1 2
ntroduction Fig.2. Quadratic network approximates a univariate polynomial according to ;;I;'J'm : @* D . = ‘ :
Quadratic _neuron is upgraded the conventional | theAlgebraicFundamental Theorem. B e 8 ?@ v o
neuron, which integrates input data into an inner ' Deliverable: The quadratic deep learning model will oo T e R &k
product, into the quadratic neuron that processes empower us to build more powerful Al tools that can B a0 O 3
the n-dlmensmn inputs as follows: help solve complex tasks. Fig.4 Quadratic network as a deep fuzzy system.
_ . Deliverable: Pushing explainable Al into IBM
) (Z Wk b b )(z Wigh: + by) +ZW"’X i Model Efficiency medical products so that trust is gained from

With a huge market potential, scaling deep learning to  patients and other customers.

E s T 2
_(W*x +bf)(w9x +bg)+w,,(x) te mobile/wearable apps has a major traction. We

where only 3n parameters are used. demonstrated merits of quadratic networks in terms of Future Directions
Conventional Neuron Quadratic Neuron model efflmefwy [2] = * Modularize important quadraﬁc networks
= Ti'reorem.' Given !he network * Hybrid networks with more bio-plausibility [4]
with only one hidden layer, + Develop a fuzzy theory of quadratic networks
there exists a function that a —

—  quadratic network can
approximate it with a
polynomial number of neurons
but a conventional network can
only do the same-level job with Fig.3 Heuristics of proof
exponentially more neurons. Fig.5. Quadratic autoencoder
Proof: The ke_y is to utilize the properties of the Fourier Reference
transform of inner products.

Deliverable: Real-time on-site Al modules will be %i::i %;:g}éN :55:3;:&3?52};;?1?68.0009& 2018 Jul 31.

v ™ ” : . . [3] Fan F, Wang G. : rXiv preprint arXiv:1807.03215. 2018 Jul 4.
Fig.1 Conventional neuron versus our quadratic neuron. valuable in wearable medical devices. [4] Kroto D, Hopfield J. arkir preprint arkiv:1806.10151. 2018 Jun 26.
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Universal Approximation Quadratically
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Universal Approximation with Quadratic Deep Networks

Fenglel Fan, Ge Wang
(Submifted on 31 Jul 2018 (1), last revised 8 Oct 2018 (this version, v2)}

Recently, deep leaming has been playing a central role in machine learning research and applications. Since AlexNet, increasingly more advanced
networks have achieved state-of-the-art performance in computer vision, speech recognition, language processing, game playing, medical imaging,
and so on. In our previous studies, we proposed quadratic/second-order neurons and deep quadratic neural networks. In a quadratic neuron, the
inner product of a vector of data and the corresponding weights in a conventional neuron is replaced with a guadratic function. The resultant second-
order neuron enjoys an enhanced expressive capability over the conventional neuron. However, how quadratic neurons improve the expressing
capability of a deep quadratic network has not been studied up to now, preferably in relation to that of a conventional neural network. In this paper,
we ask three basic questions regarding the expressive capability of a quadratic network: (1) for the one-hidden-layer network structure, is there any
function that a quadratic network can approximate much more efficiently than a conventional network? (2) for the same multi-layer network structure,
Is there any function that can be expressed by a quadratic network but cannot be expressed with conventional neurons in the same structure? (3)
Does a guadratic network give a new insight into universal approximation? Our main contributions are the three theorems shedding light upon these
three guestions and demonstrating the merits of a quadratic network in terms of expressive efficiency, unigque capability, and compact architecture
respectively.



Univariate Polynomial of Order N




Algebraic Fundamental Theorem
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Particle/Factor Mathematics

Kolmogorov

2

f(x) = f(z1,...,20) = Z @, (Z qu,p(mp))
0 p=1

q:

Also, aided by the concept of partially separable func-
tions, the complexity of the quadratic network can be further
reduced, such as in the case of computing an L** separa-
ble function. By the L'* separable function, we mean that
flxy,...,zy) is L' separable defined as follows:

L n
flzy, ., 2n) = Z Hfﬁh{-’fi)-

=1 1z

In practice, almost all continuous functions can be represented
as Lt" separable functions, which are of low ranks at the same
time.
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Smart Precision Imaging/Medicine

Cata — Image.?
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FIGURE 2. Big picture of deep imaging - A full fusion of medical imaging
and deep learning. A high likelihood is that the direct paths from data to
features and actions may need an intermediate layer essentially
equivalent to a reconstructed/processed image.



Rawdiomics
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Kalra M, Wang G: Radiomics in Lung Cancer: Its Time Is Here. Med. Phys., DOI: 10.1002/mp.12685, 2017
In Collaboration with Amber Simpson (MSK), Bruno De Man (GE GRC), Pingkun Yan (RPI), Mannudeep Kalra (MGH), et al.



End-to-end CT Imaging

END-TO-END ABNORMALITY DETECTION
IN MEDICAL IMAGING

Dufan Wu -
Gordon Center for Medical Imaging > \ s
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Figure 4: The schematics for joined training of the reconstruction and detection neural networks.

Quanzheng Li _ _ Red arrows stand for backpropagation through neural networks. gg_,, ..., 8¢, . stand for the gradients
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Direct Sinogram Analysis

Analysis of Blood Vessel Features in the CT
Sinogram via Deep Learning

*Quinten De Man', Eri Haneda?, Bernhard Claus?, Paul Fitzgerald?, Bruno De Man?, Guhan
Qian', James Min®, Mert Sabuncu®, *Ge Wang'

'Rensselaer Polytechnic Institute

’GE Global Research

*Cornell University

| vivAe

Figure 8: Example sinograms from the testing phase of the simulation study: (a) An input sinogram, (b) the
label sinogram, (c) estimated sinogram and (d) error sinogram. All sinograms are displayed in a [0 - 1.0]

interval.



Deep Sinogram Analysis
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Energy-integrating vs Photon-counting CT
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Photon-counting Spectral CT

NIH HEI 1S100D026811 Wang G (PI) 04/01/19 - 03/31/20

Acquisition of MARS Photon-counting Micro-CT Scanner
The goal is to acquire the state of the art MARS photon-counting micro-CT scanner to support

major users who work on NIH-funded RO1s and other research projects.

A Clinical Trial of 400 Patients in NZ (RPI plans to receive data)



Emulation on CT Benchtop (Donated by GE-
GRC)
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Simulated Example

Meng B, Yang J, Ai DN, Fu TY, Wang G
Beijing Institute of Technology, Beijing, China; Rensselaer Polytechnic Institute, Troy, NY, USA

Na YH, Zhang B, Zhang J, Caracappa PF, Xu XG: Deformable Adult Human Phantoms for Radiation
Protection Dosimetry: Anatomical Data for Covering 5th- 95th Percentiles of the Population and
Software Algorithms. Phys. Med. Biol. 55: 3789-3811, 2010



Limerick: Lady of Niger

There was a young lady of Niger
Who smiled as she rode on a tiger,;
They returned from the ride




Natural Language Processing (NLP)

Machine Learning for Tomographic Imaging
Ge Wang, YiZhang, Xiaojing Ye, & Xuangin Mou
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Semantic Tomography
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