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What is this talk about?

Regularization of linear inverse problems

AXxirue +€=Db,
where
b e RV observations or measurements
Xtrue € RV desired parameters
A € RM*N ill-conditioned matrix models forward process
e cRY additive Gaussian noise
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What is this talk about?

Regularization of linear inverse problems

Axtruc +e= b7

where
b e RV observations or measurements
Xtrue € RV desired parameters
A € RM*N ill-conditioned matrix models forward process
ecRM additive Gaussian noise

image deblurring and denoising

computed tomography
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Applying variational regularization...

X" = arg min |Ax — b||3 + AR(x), A>0
xERN
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Applying variational regularization...

X" = arg min |Ax — b||3 + AR(x), A>0
xERN

m R(x) = [[Lx|3

Krylov methods are popular in this setting

Xk 6 ’Ck(C7 d) _ span{d7 Cd’ L ck*ld} ??'brxd Method Stabilizes the Error
rg = b — AXk 1 ICk(C',d')
AZ, = W, :1G,

Iteration
Iteration 150

xc = Ziyk, Yk = arg min |lgk — Guyl[>
yERK

Fast semi-convergence
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Applying variational regularization...
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xERN

m R(x) = [[Lx|3

Krylov methods are popular in this setting

Xk 6 ’Ck(C7 d) _ span{d7 Cd’ L ck*ld} ??'brxd Method Stabilizes the Error
rg = b — AXk 1 ICk(C',d')
AZ, = W, :1G,

Iteration
Iteration 150

X = Ziyk, Yk = arg min ||ge — Gryl|5+c||Liyl>
yERK

Fast semi-convergence
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Applying variational regularization...
X"€ = arg min ||Ax — b3 + AR(x), A >0
xERN

m R(x) = [[Lx|3
Krylov methods are popular in this setting

Hybrid Method Stabilizes the Error

xk € Ki(C,d) = span{d,Cd,...,C"d}
ri — b _ AXk J_ Kk(cl,d/) Iteration O

Relative Error

AZ, = W, :1Gx —
Iteration

Iteration 150

X = Ziyk, Yk = arg min ||ge — Gryl|5+c||Liyl>
yERK

Fast semi-convergence

Hanke (1995); Frommer and Maas (1999);
O’Leary and Simmons (1981); Calvetti, Morigi, Reichel, Sgallari (2000);
Kilmer, Hansen, Espanol (2007); Chung and Palmer (2015); G., Novati, Russo (2015)
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Applying variational regularization...
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xERN

m (P regularization
(we will consider R(x) = x|

pr R(x) = [[Wx|[5, R(x) = TV,(x); p= 1, p>0)

m Sub-gradient strategies
Shevade and Keerthi (2003), Perkins (2003), Andrew and Gao (2007), ...
m Constrained optimization
Chen et al (1999), Bertsekas (2004), Gafni and Bertsekas (1984), ...
m lterative shinkage-thresholding algorithms (ISTA)
Bioucas-Dias and Figueiredo(2007), Giryes, Elad and Eldar (2011), Beck and
Teboulle (2009), Goldstein and Osher (2009), Osher et al (2005) ....
Iteratively re-weighted norm
Rodriguez and Wohlberg (2008), Renaut et al (2017), ...
m Generalized Krylov methods for £, — ¢,
Lanza et al (2015), Huang, Lanza, Morigi, Reichel, Sgallari (2017),
Buccini and Reichel (2019),...
m Flexible Arnoldi methods (for square problems)
Gazzola and Nagy (2014)
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A basic lteratively Re-weighted Norm (IRN) strategy ...

Let W=1I1p=1
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A basic Iteratively Re-weighted Norm (IRN) strategy ...
[Rodriguez and Wohlberg (2008)]
Let W =1,p=1. Turn {1-problems into a sequence of £»-problems:

Ixlly ~ [IL(x)x]l2

IRN algorithm

Input: A, b, xo(=0), Lo = L(xo)(=1)

m For k =1,..., till a stopping criterion is satisfied
xx = arg min ||b — Ax||3 4+ A||Lx_1x||3
x€RN

m Update Ly = diag (1/”)) (lixeli]) = {ka] il ?f [[xk]i| > 7

if |[Xk],“ <T1
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A basic Iteratively Re-weighted Norm (IRN) strategy ...
[Rodriguez and Wohlberg (2008)]
Let W =1,p=1. Turn {1-problems into a sequence of £»-problems:

2
[1x[l1 & [ILC)x]2

IRN algorithm

Input: A, b, xo(=0), Lo = L(xo)(= 1)

m For k =1,..., till a stopping criterion is satisfied

m Till a stopping criterion is satisfied: run an (iterative) solver for

xx = arg min ||b — Ax||3 4+ A||Lx_1x||3
xRN

m Update Ly = diag (1/m)) (lixeli]) = {|[Xk] il ?f [x«]il > 7

if |[Xk],“ <T
Let Ly = L(xx), then X441 = L;lka where
= in [ALy — b+ Ayl 2
Yk+1 = argmin |AL, 7y — b+ Ally[l;
y
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. revisited within Flexible Krylov methods ...

[G. and Nagy (2014)]

For A € RV*N use flexible Arnoldi to generate basis vectors:
[Saad (1993, 2003)]

y [Ll—lv1 L;lvk] € RVxk
where
AZ, =V, 1H,
m Ve =[vi ... vkp1] € RV¥(HD has orthonormal columns (ONC)

m H, € R&+DxK js ypper Hessenberg
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revisited within Flexible Krylov methods ...

[G. and Nagy (2014)]

For A € RVXN "use flexible Arnoldi to generate basis vectors:
[Saad (1993, 2003)]

Zo= LT o Lty e RV
where
AZ, =V 1Hy
B Viir=[vi ... V] € RV has orthonormal columns (ONC)

m H, € R&+DxK js ypper Hessenberg
Compute solution  xx =xg + Zxyx Wwhere

1 )
yic = arg min 5 ey — rol 13 + Ay
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Flexible Golub-Kahan (FGK) Process

[Chung and G. (2018)]

A new flexible factorization
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Flexible Golub-Kahan (FGK) Process

[Chung and G. (2018)]
Given A € RMXN b ¢ RM 'initialize u; = b/j3; where 31 = ||b].

Numerical experiments Conclusions
00000000 oo

After k iterations with changing preconditioners Ly, we have
Related to inexact Krylov methods [Simoncini and Szyld (2007)]

mZ, = [Ll_lvl cee L;lvk] S RNxk
m M e ROk ynner Hessenberg

m T, € Rk upper triangular
u Uk+1 == [Ul uk+1} € RMX(k_H) ONC
.V, = [vl vk] e RNV*k ONC

such that

AZ, =U, M, and ATU, 1 =ViTius
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Flexible Golub-Kahan (FGK) Process

[Chung and G. (2018)]
Given A € RMXN b ¢ RM 'initialize u; = b/j3; where 31 = ||b].
After k iterations with changing preconditioners Ly, we have
Related to inexact Krylov methods [Simoncini and Szyld (2007)]

mZ, = [Ll_lvl cee L;lvk] S RNxk

m M e ROk ynner Hessenberg

m T, € Rk upper triangular

u Uk+1 == [Ul uk+1} € RMX(k+1) ONC
.V, = [vl vk] € RVN*k ONC
such that

AZk = Uk+1Mk and ATUk+1 = Vk+1Tk+1
Remarks:

m If Ly = L, get right-preconditioned GK bidiagonalization
m Additional orthogonalizations and storage
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Flexible LSQR and flexible LSMR

New flexible solvers
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Flexible LSQR and flexible LSMR
Use flexible GK to generate basis vectors:
Y [L;lvl L;lvk] c Rk

AZi = Ui My and ATUjp1 = Vi Tegs
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Flexible LSQR and flexible LSMR
Use flexible GK to generate basis vectors:
Y [L;lvl L;lvk] c Rk
AZi = Ui My and ATUjp1 = Vi Tegs

Compute solution x;x = Z,y, where
m Flexible LSQR (FLSQR)

yx = argmin |[Myy — Greq|f3
yERK
a Flexible LSMR (FLSMR)

yi = argmin | Te 1My — Bimuen |
yeRk
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Flexible LSQR and flexible LSMR

Use flexible GK to generate basis vectors:

Y [L;lvl L;lvk] c Rk

AZ; =U 1My and ATUppq = Vi1 T
Compute solution x;x = Z,y, where
m Flexible LSQR (FLSQR)
yk = argmin Mgy — Breq |5
yeERK
Optimality property:

X, minimizes ||Ax, — bl|, over xo + span{Z,}.

s Flexible LSMR (FLSMR)

yi = argmin | Te 1My — Bimuen |
yeRk
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Flexible LSQR and flexible LSMR

Use flexible GK to generate basis vectors:
Z, = [Lflvl e L;lvk} S Rk

AZ; =U 1My and ATUppq = Vi1 T
Compute solution x;x = Z,y, where
m Flexible LSQR (FLSQR)

. , 2
yx = argmin [|[Myy — preq;
yERK
Optimality property:
X, minimizes ||Ax, — bl|, over xo + span{Z,}.

m Flexible LSMR (FLSMR)

yi = argmin | Te 1My — Bimuen |
yERK
Optimality property:
X, minimizes HAT(Axk - b)”2 over xg + span{Z}.
Equivalency result:
FLSMR is equivalent to FGMRES applied to the normal equations.
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Flexible GK (FGK) hybrid methods

New flexible solvers
used in a hybrid framework
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Flexible GK (FGK) hybrid methods

Use flexible GK to generate basis vectors:
Z= Lt o Lty e RV

AZ, =U, .M, and ATU, 1 =Vi1Tisr
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Flexible GK (FGK) hybrid methods

Use flexible GK to generate basis vectors:
Z= Lt o Lty e RV

AZ, =U, .M, and ATU, 1 =Vi1Tisr

Compute solution xx = Z,y
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Flexible GK (FGK) hybrid methods

Use flexible GK to generate basis vectors:
Z= Lt o Lty e RV
AZ, =U, .M, and ATU, 1 =Vi1Tisr
Compute solution x, = Z,yy, where

m Flexible GK Tikhonov - R (FLSQR-R)

yk = argmin [|[Myy — Bred |5 + A [Reyl5 . Zk = QiRy
yeRK
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Flexible GK (FGK) hybrid methods

Use flexible GK to generate basis vectors:
Z= Lt o Lty e RV
AZ, =U, .M, and ATU, 1 =Vi1Tisr
Compute solution x, = Z,yy, where

m Flexible GK Tikhonov - R (FLSQR-R)

yk = argmin [|[Myy — Bred |5 + A [Reyl5 . Zk = QiRy
yeRK

m Flexible GK Tikhonov - | (FLSQR-I)

. 2 2
yi = argmin [[Myy — Brex); + A« [yl
yERK
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FLSQR-R: Approximate singular values of A

—-TaaT -1 TaaT TaAT

R, "M/M,R;' =R, "M/ U/, U, 1MR.' = Q] ATAQ,
10° ‘ ‘ ‘ ‘
==== Singular values of A| |

FLSQR

—+— FLSQR-R
1051 8
10710+ ]
5] :
O L L L L L L L L L \:

50 100 150 200 250 300 350 400 450 500
iteration k

Figure: This plot compares the singular values of A to the singular values of My
from FLSQR and of MkR;l from FLSQR-R, for iterations k between 20 and 420
in increments of 100.
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Solving the transformed problem

Let W # | (invertible), p =1 (e.g., W : image domain — wavelet domain)

Regularization by Flexible Krylov Methods August 6, 2019 12/28



Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions
0000 0000 €000000 00000000 oo

Solving the transformed problem

Let W # | (invertible), p =1 (e.g., W : image domain — wavelet domain)

Equivalent problems (for v orthogonal):
[Belge, Kilmer, Miller (2000)]

. _ K2 AW _ Whl2
Jmin [[Ax = bl + A [[Wx]l; < min [WAWZ Wx — Wb + Al Wx:

s d s

Solution subspace for flexible Arnoldi:

vi = d/[d|2 X
sk6span{Ll_IVl,Lz_lﬁz,...,Lzlﬁk}7 where Y2 = ONC(HL; "v1)

Vs = ONC(HL; )
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Solving the transformed problem

Let W # | (invertible), p =1 (e.g., W : image domain — wavelet domain)

Equivalent problems (for v orthogonal):
[Belge, Kilmer, Miller (2000)]

. _ K2 AW _ Whl2
Jmin [[Ax = bl + A [[Wx]l; < min [WAWZ Wx — Wb + Al Wx:

s d s

Solution subspace for flexible Arnoldi:

vi = d/[d|2 X
sk6span{Ll_IVl,Lz_lﬁz,...,Lzlﬁk}7 where Y2 = ONC(HL; "v1)

Vs = ONC(HL; )

Xy = lll_lsk
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Solving the transformed problem

Let W # | (invertible), p =1 (e.g., W : image domain — wavelet domain)

Equivalent problems (for v orthogonal):
[Belge, Kilmer, Miller (2000)]

. _ K2 AW _ Whl2
Jmin [[Ax = bl + A [[Wx]l; < min [WAWZ Wx — Wb + Al Wx:

s d s

Solution subspace for flexible Arnoldi:

vi = d/[d|2 X
sk6span{Ll_IVl,Lz_lﬁz,...,Lzlﬁk}7 where Y2 = ONC(HL; "v1)

Vs = ONC(HL; )
Xy = lll_lsk

Analogously for flexible Golub-Kahan (possibly without W).
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An illustration: sparsity in a wavelet domain

Signal Wavelet

10 20 30 40 50 60 10 20 30 40 50 60

—--GMRES
—FGMRES

0.5

-0.5

10 20 30 40 50 60 10 20 30 40 50 60
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TV penalization

Let R(x) = TV(x).
m 1d case:
TV(x) = ||D1ax||1~ ||W14Dx||3, where
1 -1
Dis = e RN W = diag (|D1ax|7*/?)

m 2d case:
[Wohlberg and Rodriguez. An iteratively reweighted norm algorithm for TV. IEEE, 2007]

TV(x) = || ((D"x) + (D"x)*)""? 1= || WDex|3, where

oum [ 8 ]= [P | =m0 oy )= [ W5
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Smoothing Norm, A € RV*N

Standard form transformation:

o A = AL, =A[l-(A(I-LL)A]
y. = argmin |Ay — b|3 + \|[y|l3, where b = b—Ax
Y xt = Liji+x=%+x
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Smoothing Norm, A € RV*N

Standard form transformation:

o A = ALL=Al-(A(1-LL)A]
y. = argmin ||Ay — b||3 + \|[y||5, where b = b—Ax
Y xt = Liji+x=%+x

[Hansen and Jensen. Smoothing-Norm Preconditioning for Reg. Min.-Res. SIMAX, 2007]
Write:
X, = X1 + X0 = LLyL +x9 = LI\YL + Kto, where R(K)=N(L), LL rectangular .

Equivalently:
yL
ALl K] [ & ] =b,

and, further:

(L)TALL  (LL)TAK yo | _ [ (L)
K'AL,  KTAK to '
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Smoothing Norm, A € RVxN

Standard form transformation:

o A = AL\ =A[I-(A(1-LL)A]
y. = argmin |Ay — b|3 + \|[y|l3, where b = b—Ax
Y xt = Ligi4x0 =% +xo

[Hansen and Jensen. Smoothing-Norm Preconditioning for Reg. Min.-Res. SIMAX, 2007]
Write:
X, =X + X0 = LLyL +x9 = LL?L + Kto, where R(K)=N(L), LL rectangular .
Equivalently:
i yo | _
A (L], K]{to} ,
and, further:
(L)AL, (L)TAK | [ 3 | _ [ (L) |
KTAL,  KTAK to K’
Schur complement system:

(L) PALLy = (L})"Pb, where P =1—AK(K'AK)'K" ¢ RV*".

S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 16 /28



TV regularization, A € RV*N

[G. and Sabaté Landman (2019)]

Similar idea, with reweighting...
(DHTPA(WD)"y = (D) "Pb

Building a better approximation subspace for the solution!
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[G. and Sabaté Landman (2019)]

Similar idea, with reweighting...
(DHTPA(WD)"y = (D) "Pb
Building a better approximation subspace for the solution!

m L =WD (with W = W(x)):
flexible GMRES (instead of restarted GMRES);
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TV regularization, A € RAXN

[G. and Sabaté Landman (2019)]

Similar idea, with reweighting...

(DY)TPA(WD)},y = (D')"Pb

Building a better approximation subspace for the solution!

m L =WD (with W = W(x)):
flexible GMRES (instead of restarted GMRES);
m large-scale computations:
m approximating L'

(exploiting structure, and running preconditioned LSQR or LSMR)

m thresholding the weights

S. Gazzola (UoB) Regularization by Flexible Krylov Methods
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A simple 1D example...

|—exact
2 |- - corrupted
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A simple 1D

example...
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Introduction Methods based on FGK

Sparsity under transform
0000 0000

0000000

Image deblurring example with W = |

Numerical experiments Conclusions
90000000 oo

[G., Hansen, Nagy. IR Tools (2018)]
https://github.com/silviagazzola/IRtools

http://www2.compute.dtu.dk/ pcha/IRtools/

true PSF observed

m Image is 256 x 256 pixels
m Noise level is 5 x 1072

m Reflexive boundary conditions
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Reconstruction errors

—FLSQR
----FLSQR-|

Relative Error

0 20 40 60 80 100
Iteration

[[Xk —Xtrue |2
[IXtrue Hz

m )\ for FLSQR-I and FLSQR-R use discrepancy principle

m Reconstruction errors computed as
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Basis images

k=10 k=20 k=100

FLSQR-R

LSQR
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Comparison to other methods

1 T
- - FLSQR-R
0.8 o
< ...« PIRN
s FISTA
0.6 ——SpaRSA
o
=
®0.4F | [T A fmmm e 1
© T Y |
0.2
0 ‘ ‘ ‘ S
0 100 200 300 400 500
Iteration

m GAT = Generalized Arnoldi-Tikhonov

m PIRNT = Preconditioned iteratively re-weighted norm

m FISTAT = Fast iterative-shrinkage-thresholding algorithm

m SpaRSAT = Sparse Reconstruction by Separable Approximation
(f uses A from FLSQR-R)
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Tomography example with ® = |
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Tomography example with ® = |
[G., Hansen, Nagy. IR Tools (2018)]

n = 256; optn = PRtomo(‘defaults’);
optn=PRset (optn, ‘angles’,0:2:179, ‘p’ ,round(sqrt(2)*n), ‘d’,sqrt(2)*n);
[A, b, x, ProbInfo] = PRtomo(n, optn);

® phantom is 256 x 256 pixels
m A has size 32580 x 65536 (approx. 50% undersampling)
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Tomography example with ® = |

[G., Hansen, Nagy. IR Tools (2018)]

n = 256; optn = PRtomo(‘defaults’);

optn=PRset (optn, ‘angles’,0:2:179, ‘p’ ,round(sqrt(2)*n), ‘d’,sqrt(2)*n) ;
[A, b, x, ProbInfo] = PRtomo(n, optn);

figure, PRshowx(x, ProbInfo)

m phantom is 256 x 256 pixels
m A has size 32580 x 65536 (approx. 50% undersampling)
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Tomography example with ® = |

[G., Hansen, Nagy. IR Tools (2018)]

n = 256; optn = PRtomo(‘defaults’);

optn=PRset (optn, ‘angles’,0:2:179, ‘p’ ,round(sqrt(2)*n), ‘d’,sqrt(2)*n) ;
[A, b, x, ProbInfo] = PRtomo(n, optn);

figure, PRshowx(x, ProbInfo)

bn = PRnoise(b, 1le-2);

m phantom is 256 x 256 pixels
m A has size 32580 x 65536 (approx. 50% undersampling)
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Tomography example with ® = |

[G., Hansen, Nagy. IR Tools (2018)]

n = 256; optn = PRtomo(‘defaults’);

optn=PRset (optn, ‘angles’,0:2:179, ‘p’ ,round(sqrt(2)*n), ‘d’,sqrt(2)*n) ;
[A, b, x, ProbInfo] = PRtomo(n, optn);

figure, PRshowx(x, ProbInfo)

bn = PRnoise(b, 1le-2);

m phantom is 256 x 256 pixels
m A has size 32580 x 65536 (approx. 50% undersampling)

m WV is a 4-level 2D Haar wavelet transform
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Reconstructed phantoms

exact FLSQR-I dp FISTA

0.1626, # 28 0.1722, # 150
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Image deblurring example
[G., Hansen, Nagy. IR Tools (2018)]
Cameraman example: 256 x 256 pixels.

TV-FGMRES fast gradient-based method
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Image deblurring example

10° 100
— GMRES(D)
— FGMRES(1)
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Tomography example with flexible TV regularization

small PRtomo example: 32 x 32 pixels; A € R2025x1024

. ongoing work

Exact phantom
noisy (Gaussian white noise, ||le||/||b™"¢|| = 1072) image
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Tomography example with flexible TV regularization

R2025 %1024

small PRtomo example: 32 x 32 pixels; A €
. ongoing work

LSQR
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Tomography example with flexible TV regularization

R2025 x1024

small PRtomo example: 32 x 32 pixels; A €
. ongoing work

LSQR (D)
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Tomography example with flexible TV regularization

small PRtomo example: 32 x 32 pixels; A € R2025x1024
. ongoing work

TV-LSQR
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Tomography example with flexible TV regularization

R2025 %1024

small PRtomo example: 32 x 32 pixels; A €
. ongoing work

TV-LSQR “0 norm”
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Summary of benefits ...

m Flexible Krylov methods

v Avoid inner-outer schemes (current solution immediately incorporated
in basis)

v/ Both square (flexible Arnoldi) non-square problems (flexible
Golub-Kahan)

v/ Optimality and equivalency results

m Hybrid method

v/ Stabilize reconstruction errors
v/ Automatic choice of A and stopping criteria

m Transformed problem

v/ Enforce sparsity in a transform
v/ Connections to multi-parameter regularization
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and (hopefully) (much) more work to do ...

deeper theoretical analysis (convergence, recovery guarantees);

extension to yet other regularization terms or constraints;

parameter choice for nonlinear problems and solvers;
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