Generalized Radon transforms with cusp singularities

Raluca Felea

Rochester Institute of Technology

Overview

- Generalized Radon transforms over curves $\gamma(t)=(t,t^n,t^m)$
- Cases n = 2, m = 3, m = 4
- FIOs with singularities
- Composition calculus

Generalized Radon transforms

• $X, Y \dim n$, $Z \subset X \times Y \dim n + k$

$$\begin{array}{ccc} \pi_X & \pi_Y \\ \swarrow & \searrow \\ X & Y \end{array}$$

- $Y_x = \pi_y \pi_x^{-1}(\{x\}) \subset Y$
- $Rf(x) = \int_{Y_x} f(y) dy$

- $Y_x = \{\gamma(x,t), t \in R\}$ are curves
- $Z = \{(x, \gamma)\}$
- X-ray transform

Generalized Radon transforms

- Greenleaf, Seeger, Wainger
- convolution with measure $\mu = \psi(t)dt$ supported on curve (t, t^2, \dots, t^n) .
- $Rf(x) = \int_{\mathbf{R}} f(x (t, t^2, \dots, t^n)) \psi(t) dt = \int_{\mathbf{R}} e^{i[(x_2 y_2 + (x_1 y_1)^2)\theta_2 + \dots + (x_n y_n + (x_1 y_1)^n)\theta_n]} f(y) a(x, y, \theta) d\theta dy$
- $Z = \{(x,y) : x_i y_i + (x_1 y_1)^i = 0\}$

- $\gamma(t) = (t, t^n, t^m), n < m$
- $Rf(x) = \int_{\mathbf{R}} f(x (t, t^n, t^m)) \psi(t) dt = \int_{\mathbf{R}} e^{i[(x_2 y_2 + (x_1 y_1)^n)\theta_1 + (x_3 y_3 + (x_1 y_1)^m)\theta_2]} f(y) a(x, y, \theta) d\theta dy$
 - FIOs with singularities depending on n,m

Applications

- Monostatic SAR: plane-trajectory-antenna
- $\gamma(s) = (s, s^3, h)$
- Single source seismology: accoustic waves-pressure field
- fold/cusp caustics
- $F: \mathsf{image} \to \mathsf{data} \mathsf{\ is\ known}$
- F is FIO with singularities
- to find the image F^*F

Fourier Integral Operators

• $F: \mathcal{E}'(Y) \to \mathcal{D}'(X)$

$$Ff(x) = \int e^{i\phi(x,y,\theta)} a(x,y,\theta) f(y) d\theta dy$$

- ullet ϕ is a nondegenerate **phase function**
- a is a symbol S^M : $|\partial_{x,y}^{\alpha}\partial_{\theta}^{\beta}a| < c(1+|\theta|)^{M-|\beta|}$
- C is a canonical relation in $T^*X \setminus 0 \times T^*Y \setminus 0$

$$C = \{(x, d_x \phi; y, -d_y \phi); d_\theta \phi = 0\}$$

- $I^m(C)$, $m = M + \frac{N}{2} \frac{n_X + n_Y}{4}$
- Adjoint $F^*f(y) = \int e^{-i\phi(x,y,\theta)} \bar{a}(x,y,\theta) f(x) d\theta dx$
- If $F \in I^m(X, Y, C)$ then $F^* \in I^m(Y, X, C^t)$

Examples

- $Q: \mathcal{E}'(X) \to \mathcal{D}'(X)$ Pseudodifferential operator
- $\phi(x, y, \theta) = (x y) \cdot \theta$
- $C=\{(x,d_x\phi;y,-d_y\phi);d_\theta\phi=0\}=\{(x,\theta;y,\theta)|\ x=y\}=\Delta$ =diagonal in $T^*X\times T^*X$

- $Q: \mathcal{E}'(Y) \to \mathcal{D}'(X)$ FIO associated to a canonical graph
- $\phi(x, y, \theta) = \psi(x, \theta) y \cdot \theta$
- $C = \{(x, d_x \psi; y, \theta); d_\theta \psi = y\} = Gr(\chi)$

Analysis

• Geometry of
$$C \in T^*X \setminus 0 \times T^*Y \setminus 0$$

$$\pi_L \qquad \pi_R$$

$$\swarrow \qquad \searrow$$

$$T^*X \setminus 0 \qquad T^*Y \setminus 0$$

- π_L , π_R are local diffeomeorphisms: F^*F a FIO
- $\Sigma = \{(x, y, \theta) \in C; \det d\pi_L = \det d\pi_R = 0\}$
- singularities: folds; cusps; blowdowns; one sided; two sided

Fold/Cusp singularities

Whitney Folds

 $f:R^n\to R^n$ has a fold singularity along $\Sigma=\{x:det\ df=0\}$ if Σ is smooth and if Ker $df\nsubseteq T\Sigma$.

- Ex: $f(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n^2)$
- $\Sigma = \{x_n = 0\}$; Ker $df = \frac{\partial}{\partial x_n}$

Cusps

 $f: R^n \to R^n$ has a cusp singularity along $\Sigma = \{x : det \ df = 0\}$ if Σ is smooth, if Ker $df \subset T\Sigma$ along Σ_1 .

- Ex: $f(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_{n-1}x_n + x_n^3)$
- $\Sigma = \{x_{n-1} + 3x_n^2 = 0\}, \quad \Sigma_1 = \{x_{n-1} + 3x_n^2 = 0 = x_n\}$
- Ker $df = \frac{\partial}{\partial x_n}$

Singularities of the generalized Radon transforms

•
$$\phi(x, y, \theta_2, \theta_3) = (x_2 - y_2 + (x_1 - y_1)^n)\theta_2 + (x_3 - y_3 + (x_1 - y_1)^m)\theta_3$$

•
$$C = \{(x_1, x_2, x_3, n(x_1 - y_1)^{n-1}\theta_2 + m(x_1 - y_1)^{m-1}\theta_3, \theta_2, \theta_3; y_1, y_2, y_3, n(x_1 - y_1)^{n-1}\theta_2 + m(x_1 - y_1)^{m-1}\theta_3, \theta_2, \theta_3; x_2 - y_2 + (x_1 - y_1)^n = 0; x_3 - y_3 + (x_1 - y_1)^m = 0\}$$

•
$$\Sigma = \{(x_1 - y_1)^{n-2}(n(n-1) + m(m-1)(x_1 - y_1)^{m-n}) = 0\}$$

- Σ smooth for n=2
- Ker $\pi_L=rac{\partial}{\partial y_1}$, Ker $\pi_R=rac{\partial}{\partial x_1}$
- $m=3, \gamma(t)=(t,t^2,t^3)$, both π_L,π_R have fold singularities
- $m=4, \gamma(t)=(t,t^2,t^4)$, both π_L,π_R have cusp singularities (RF, Greenleaf)
- $m \ge 5$, no stable class of singularities

Singularities in Inverse problems

- Singularities in monostatic SAR
- γ has nonzero curvature: both π_L, π_R have fold singularities (RF, Nolan, Cheney)
- γ has zero curvature: π_L fold; π_R blowdown (RF, Nolan, Cheney)
- curvature of γ has simple zeros: π_L fold; π_R cusp (RF, Nolan)

- Singularities in seismology
- fold caustics: both π_L, π_R have fold singularities (RF, Nolan)
- cusp caustics: both π_L, π_R have cusp singularities (RF, Greenleaf)

Open umbrella

• Ex $g: \mathbb{R}^2 \to \mathbb{R}^3, \ g(x,y) = (x^2,y,xy)$ (cross-cap)(Guillemin)

• Ex $U: R^2 \to R^4, \ U(x,y) = (x^2, y, xy, \frac{2}{3}x^3)$ (Givental)

• Ker $dU = \partial_x$; $\Sigma = \{x = y = 0\}$

F^*F cusp/cusp

- Generalized Radon transform over $\gamma(t) = (t, t^2, t^4)$ $\chi(x, y, \theta_2, \theta_3) = (x_2 - y_2 - (x_1 - y_1)^2)\theta_2 + (x_3 - y_3 - (x_1 - y_1)^4)\theta_3$
- π_L , π_R have cusp singularities
- (1) same cusp points
- (2) images of the cusp points are involutive
- $F^*F \to C^t \circ C = \Delta \cup \tilde{C}, \ \tilde{C} =$ open umbrella
- The image of a map $\psi: \mathbb{R}^n \to \mathbb{R}^{2n}$, drops rank simply at Σ codimension 2 and Ker $d\psi \not\subseteq T\Sigma$, lagrangian away from Σ
- (RF, A. Greenleaf) Let $C \subset T^*X \times T^*Y$ be a two-sided cusp. If $F\in I^m(C)$ then $F^*F\in I^{2m}(\Delta,\tilde{C})$ where \tilde{C} is an open umbrella.

F^*F Fold/cusp

- RF, Nolan
- $\phi_{model} = (x' y')\theta' + (x_{n-1}x_n + x_n^3)y_n\theta_1 + x_ny_n^2\theta_1$
- π_L has fold singularities; π_R has cusp singularities
- images of the cusp points are symplectic
- $F^*F \to C^t \circ C = \Delta \cup \tilde{C}$
- Let $\tilde{C} \subset T^*X \times T^*Y$ is a fold/cusp canonical relation, and $A,B:E'(Y) \to E'(X)$ are properly supported FIOs associated to \tilde{C} of orders $m,m' \in R$, resp., then $B^*A \in I^{m+m'}(\Delta,\tilde{C})$ where \tilde{C} is an open umbrella.

Weak normal form

- Normal form for a two sided fold: Melrose, Taylor
- Weak normal forms: Greenleaf, Uhlmann, RF, Marhuenda

•
$$\chi(x, y, \theta_2, \theta_3) = (x_2 - y_2 - (x_1 - y_1)^2)\theta_2 + (x_3 - y_3 - (x_1 - y_1)^4)\theta_3$$

Any two sided cusp canonical relation with properties 1-2

$$\chi(x,y,\theta_2,\theta_3)=(x_3-y_3)\theta_3+(x_1-y_1)^4S_3+(S_2-y_2+(x_1-y_1)^2S_4)\theta_2$$
 where $\partial_{x_2}S_2,S_3,S_4\neq 0$

- $\phi_{model} = (x' y')\theta' + (x_{n-1}x_n + x_n^3)y_n\theta_1 + x_ny_n^2\theta_1$
- Any fold/cusp canonical relation can be parametrized by
- $\tilde{\phi} = (x' y') \cdot \theta' + x_n y_n^2 \theta_1 + (x_n x_{n-1} \theta_1 + x_n^3 S(\cdot)) y_n + N(\cdot)$

Other singularities

- Morin singularities: S_{1_k}
- $f(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_{n-k+1}x_n + \dots + x_{n-1}x_n^{k-1} + x_n^{k+1})$
- $\Sigma = \{x_{n-k+1} + \dots + (k-1)x_{n-1}x_n^{k-2} + (k+1)x_n^k = 0\}$
- Ker $df = \frac{\partial}{\partial x_n}$
- If X,Y are n-dimensional manifolds, $\tilde{C}\subset T^*X\times T^*Y$ is a canonical relation with π_R a cusp and π_L with S_{1_k} singularity, and $A,B:E'(Y)\to E'(X)$ are properly supported FIOs associated to \tilde{C} of orders $m,m'\in R$, resp., then $WF(B^*A)\subset \Delta\cup \tilde{\Lambda}$.

H^s Estimates

- (Greenleaf, Seeger) one cusp: $F \in I^m(C)$ then $F: H^s \to H^{s-m-\frac{1}{3}}$
- (Comech) fold/cusp: $F \in I^m(C)$ then $F: H^s \to H^{s-m-\frac{1}{5}}$
- (Melrose) two sided fold: $F \in I^m(C)$ then $F: H^s \to H^{s-m-\frac{1}{6}}$
- (Greenleaf, Uhlmann) one sided fold: $F \in I^m(C)$ then $F: H^s \to H^{s-m-\frac{1}{4}}$