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High Resolution Imaging

Today I will speak about inverse problems that arise in Coherent
Diffraction Imaging. This is a technique that uses very high
energy, monochromatic light, either electrons or x-rays, to form
high resolution images of animate and inanimate materials. The
goal is to achieve resolutions in the 1–10nm range.
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What is Measured?

The photons used to illuminate the samples are in the 0.1-10KeV
range; the light is typically assumed to be monochromatic,
produced either by a laser or as synchrotron radiation. The object
being imaged is many wavelengths across and the measurement is
made very far from the object and light source, hence in the far
field (the Fraunhofer regime). As is well known, if �.x/ describes
the deviation of the object’s refractive index from the vacuum,
then the leading order term in the far field expansion of the
scattered radiation is proportional to the square of the Fourier
transform,b�.k/; of �: At such small wavelengths, one can only
measure the intensity of the scattered field, jb�.k/j2; and not its
phase.
Note: this data is the Fourier transform of the autocorrelation
function:

� ? �.x/ D

Z
Rd
�.y/�.x C y/dy: (1)
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Some Physical Properties of �

For many x-ray energies and materials it is reasonable to assume
that � is real valued, that is, there is no significant absorption.
There are also x-ray bands where � can also be assumed to be real
and non-negative. We often assume one, or both of these things.
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Examples, I

Here are computed far field diffraction patterns produced by (a) a
semi-circle, (b) an equilateral triangle.
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Examples, II

Here is an actual, but false colored, diffraction pattern produced
by frozen-hydrated yeast spore at 520 eV. Courtesy E. Lima PhD
thesis, Stony Brook U, from [8].

ESRF Lecture Series on Coherent X-rays and their Applications, Lecture 7, Malcolm Howells

FROZEN-HYDRATED YEAST SPORES
RECONSTRUCTION

Brightness - amplitude
Hue - phase

• E. Lima, PhD Thesis, Stony Brook University
• Unstained frozen-hydrated yeast spore, at 520 eV
• First CDI reconstruction of a frozen hydrated biological object

Signal extends to 25 nm 
half-period
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What is Needed?

We would like to reconstruct �.x/ from this measurement, but we
need to, at least, estimate the unmeasured phase ofb�.k/: This is
called the phase retrieval problem.

It also arises in x-ray crystallography, but is really quite a different
problem for a periodic structure. In the context of a compact
object, the possibility of solving this problem was first suggested
by D. Sayre in 1952. He saw it as a consequence of Nyquist’s
sampling theorem! See [1].

Many attempts have been made to solve this problem, but with
rather limited success. I’ll first review some facts about the
standard approaches to this problem, and then describe some
novel methods for its solution.
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Outline of this Lecture

We will cover the following material:

Auxiliary Data

Standard Algorithms

External Holography
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What is Measured

Without going into the details, if the measurement is made in the
far field, then a classical calculation using Kirchoff’s formula,
shows that measurement can be interpreted as samples of jb�.k/j2;
where �.x/ is the (frequency dependent) deviation of the
refractive index from the vacuum caused by the object.
To have any hope of determining samples ofb�.k/ from these
measurements, some additional information must be available.
The simplest, and most readily available information is an
estimate on the support of the object �.x/: It is also sometimes
assumed that �.x/ � 0; and has compact support.

This, or some other similar information, is referred to as auxiliary
information, which is essential for this problem to be solvable,
even in principle.
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Measurement Issues

In fact, uniformly spaced samples collected on a planar detector
do not lie on a uniformly spaced grid in k-space. This has to do
with the Ewald Sphere construction, which we do not have time to
review. The maximum angle of scatter that impinges on the
detector determines the highest spatial frequencies observed, and
thereby the maximum resolution attainable in the reconstruction
(even if we knew the phases).

In addition to the non-uniformity of the sampling, as a practical
matter one needs to place a physical obstruction (called a beam
stop) near the direct forward scattered direction, in order to
prevent the detector from being destroyed by the intense forward
scattered beam. This means that the measurements omit a
neighborhood of k D 0; where much of the energy in the Fourier
data is located.
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An Example

X-ray diffraction pattern of a single Mimivirus particle. Tomas
Ekeberg, Uppsala University:

And we haven’t even mentioned measurement noise, or the fact
that the process of measurement destroys biological samples....
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Simpler Model Problems

The phase retrieval problem encountered in coherent diffraction
imaging is fraught with many practical difficulties. For the first
part of the lecture we focus on a simpler model problem, which
already proves very difficult to solve, is the discrete, classical
phase retrieval problem.

At the end of the lecture we’ll assume that we can sample the
continuum Fourier transform of �.x/; with the goal of
reconstructing a band-limited version of this function.



The Geometry
of the Phase

Retrieval
Problem

Charles L.
Epstein

Introduction

Auxiliary Data

Standard
Algorithms

External
Holography

History of CDI

Bibliography

The Discrete Classical Phase Retrieval Problem

We imagine that the unknowns are samples of an object on a finite
uniform grid:

xj D �.j1�x; j2�x/; where j 2 J � Z2: (2)

Here J D Œn1 W N1� � Œn2 W N2�; is a rectangular grid. We call
such collections of data, indexed by J; images. For the most part
we restrict our discussion to real valued images, though most of
what we say works just as well for complex valued images.
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The Measurements

In our model problem, the measured data are the magnitudes of
the DFT of these samples:

faj D j Oxj j W j 2 bJ g; (3)

where bJ is a set of sample frequencies, with jJ j D jbJ j: If
J D Œ0 W N � 1�d ; then

Oxj D
X
k2J

xke
�
2�ij �k
N : (4)

There are important differences between these model
measurements and the samples of a continuum Fourier transform
that would actually be collected, which we don’t have time to
discuss.
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The Magnitude Torus

The measured data faj g defines a torus in RJ ; which, in the
Fourier representation, is a products of round circles in coordinate
planes

Aa D fx 2 RJ W j Oxj j D aj for all j 2 J g: (5)

We note that if we translate the image x.v/
j
D xj�v or invert the

image, Lxj D x�j ; then the DFT magnitude data is unchanged.
These are called “trivial associates”. This makes the solution to
the phase retrieval inherently non-unique.
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The Support Condition, I

As noted above we need to have auxiliary information to be able
to solve the phase retrieval problem. We imagine that the support
of the unknown image x; Sx; is contained in a rectangular subset
R � J with the side lengths of R at most half those of J: In the
literature it is often said that we “oversample,” but really we just
need to sample k-space on a fine enough grid for the measured
data to contain information about the support of x:

Our auxiliary information will be an estimate for Sx: This is a
subset S with Sx � S � R � J: We are therefore looking for an
image, with the measured DFT magnitude data, with

x 2 BS D fx W xj D 0 for j … J g: (6)

This is a linear subspace. The standard formulation of the phase
retrieval problem is therefore to find points in

Aa \ BS : (7)
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The Support Condition, II

For the purposes of analysis, this discrete model problem has a
very important feature: it has exact solutions. If our measured
data were instead finitely many samples of the continuum Fourier
transform fb�.kl/ W l 2 Lg; (as in the real physical problem) then
this would not uniquely specify (even up to translations and
inversions) any function with compact support in a particular set.
This means that one would first need to introduce a notion of
complicated notion of approximate solution before any further
analysis could be done....
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Non-uniqueness, and other problems

Unless S D Sx; then this problem usually does not have a
unique solution. Usually there are trivial associates that also
have their support in S:

There is a more insidious problem than this: unless S D Sx;
then the intersection between Aa and BS typically fails to be
transversal. This is well known to make it difficult to find the
intersection.

There are other problems beyond this one: if x0 2 Aa \ BS ;
then there are usually many directions where Tx0Aa and BS
make very small angles. The rates of convergence for all
standard algorithms are determined by these angles.
Smoother images lead to more small angles.
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Alternating Projection, I

The most classical approach to finding points in A \ BS is called
alternating projection. In Functional Analysis it was introduced
by von Neumann, and, in image reconstruction, by Gerchberg and
Saxton, see [2]. We let PBs W R

J ! BS be the orthogonal
projection, and PA W R

J ! A be the closest point map. This map
is defined on the complement of a union of codimension 2 linear
subspaces.

The idea for alternating projection is very simple. Choose a
random collection of phases fei�j W j 2 bJ g and use the inverse
DFT to find the initial image x.0/ D F�1.Œaj ei�j �/; which is a
random point on the magnitude torus.
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Alternating Projection, II

Define the alternating projection sequence

x.nC1/ D PA ı PBs .x
.n//: (8)

It is clear that any point x 2 A \ BS is a fixed point of this
iteration, and it was hoped for many years that these iterates
would converge to such a fixed point. In fact AP has many
attracting fixed points that do not come from intersection points.
These additional fixed points are local minima of the map from
A � BS ! Œ0;1/ defined by

dAB.x;y/ D kx � yk2 (The Euclidean distance): (9)

From experiments with AP it is clear that there is a great
abundance of such non-zero local minima.



The Geometry
of the Phase

Retrieval
Problem

Charles L.
Epstein

Introduction

Auxiliary Data

Standard
Algorithms

External
Holography

History of CDI

Bibliography

Difference Maps, I

It has been known for a long time that algorithms based on the
AP-map do not work very well. A different class of maps, which
we call difference maps, were introduced to correct this problem.
The first such algorithms were proposed by Fienup, using a map
given by

D
ˇ
BA D x 7! x C PB Œ.1C ˇ/PA.x/ � x� � ˇPA.x/: (10)

Here ˇ 2 .0; 1�: This is call the “hybrid input-output (HIO)
method;” there were later additions by Elser, Miao, etc. See [3],
[4], [6], [7]. There are many variants, which all behave similarly.
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Difference Maps, II

A representative case is given by the map:

DAB.x/ D x C PA ıRB.x/ � PB.x/; (11)

which, in the notation of the previous slide, is D1AB : Here RB is
the “reflection around B” defined by

RB.x/ D 2PB.x/ � x: (12)

If B is a linear subspace, then RB is just the usual orthogonal
reflection with fixed point set equal to B:
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The Fixed Point Set for Difference Maps

A easy calculation shows that x� is a fixed point for DAB if and
only if

PA ıRB.x
�/ D PB.x

�/: (13)

The fixed points do not necessarily belong to A \ BS ; but once a
fixed point is found, then the point

x�� D PA ıRB.x
�/ D PB.x

�/

automatically does lie on the intersection. In our case the fixed

points that “point to” x�� are a subset of

Cx��

AaBS
D Nx��Aa \ B

?
S : (14)

This is a subset of dimension about jJ j=4; which we call the
center manifold. It is important to note that x�� is essentially
never an attracting fixed point itself. When these algorithms
converge, they converge to points on the center manifold distant
from the intersection that defines it.



The Geometry
of the Phase

Retrieval
Problem

Charles L.
Epstein

Introduction

Auxiliary Data

Standard
Algorithms

External
Holography

History of CDI

Bibliography

Other Invariant Sets for Difference Maps

While it is true that the fixed points of difference maps are always
related to points in A \ Bs; there are other invariant sets that are
not. For example, if there exists points x1 2 A and x2 2 Bs; with
x1 ¤ x2; which are critical for dABS ; the distance between A
and BS ; then Cx1x2 D Nx1A\B?S (as affine subspaces of RJ ) is
non-empty. Many such critical points exist.

If Cx1x2 \A \ Bs D ;; then Cx1x2 is an invariant set without a
fixed point. In examples, we have seen that this sort of set may be
dynamically attracting. The map DAB translates by a fixed vector
along such an invariant set. One can study these maps when A and
B are linear subspaces, to see that it is the angles between A and
B that determine the rates of convergence. We will just look a
some low dimensional examples.
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Simple Examples of Difference Maps

(a) Difference Map with a
transversal intersection.

(b) Difference Map with a non-
transversal intersection.

Figure: Cartoon of Difference Maps
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Low Dimensional Examples for the HIO, I

We consider the effects of almost intersections, non-transversality,
small angles and nearby intersections. Trajectories are ordered
blue to red.

Near miss. Non-trans. int. 2 nearby ints. Trans. int.
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Low Dimensional Examples, II

The first images shows a near miss. There is a center
manifold defined by the closest approach of A to B , which is
attracting, and sends the trajectories spiraling out to infinity.
The second example is a tangent intersection. Only a single
coordinate needs to converge to zero. This is governed by a
non-linear process that finds a point on the 2-dimensional
center manifold near which this coordinate goes quickly to
zero. This is not how phase retrieval works!
The third example is the result of two very nearby
intersection points. The center manifold defined by the local
maximum of the dAB between these points is attracting and,
again, translates the iterates out to infinity.
Finally a transversal intersection is attracting, but the angle
between the two tangent spaces is very small, leading to
slow, spiraling convergence.
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Difference Maps in the Phase Retrieval Problem

Using maps like DABS to find points in A \ BS is the “industry”
standard. Even with perfect data, these iterations rarely converge,
but instead stagnate at points very distant from true limit points.
The reconstructions from these stagnant orbits typically display a
relative error in the 10�1 to 10�2 range, which, for many
applications, is adequate.

This stagnation is caused by presence of many attracting basins,
the non-transversailty of the intersections, A \ BS ; along with
existence of many directions where the angles between TxA and
BS are very small. Algorithms that use positivity as auxiliary
information tend to work somewhat better and are much less
sensitive to the (softness) smoothness of the underlying object.
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Phase Retrieval Example of the HIO, Hard Edge
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Phase Retrieval Example of the HIO, Soft Edge
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External Holography, I

We finish up today with a discussion of a different method,
called external holography to reconstruct the phase, which
entails a somewhat different protocol for collecting the data.
It is easiest to describe these methods in the context of a
continuum model.

As is always possible in a problem that involves a physical
measurement, one can beat the devil by changing the way
the measurement is made!
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External Holography, II

In fact there are 3 different approaches to external holography.
The unifying idea is to replace the unknown object �.x/; with
�.x/C '.x � c/; where ' is some sort of approximation to the
ı-function, at least as regards diffraction of X-rays.

In all cases it is assumed that we know the object ' and the
diffraction pattern it alone would produce. The vector c indicates
where this object is centered; which of the 3 methods we are using
depends on this location. In all cases the measured data consists
of samples of jb�.k/C e�2�ic�kb'.k/j2:
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The Far Field Method
jb�.k/C e�2�ic�kb'.k/j2:

If the choice of c locates the ı-like function quite far from the
support of �; then using the measured data, we directly compute
the autocorrelation function. It takes the form

� ? �C ' ? ' C

Z
Œ�.y/'.x C y � c/C �.x C y/'.y � c/�dy

� � ? �C ' ? ' C �.x � c/C �.x C c/:

(15)

If kck is large compared to the diameter of the support of �; then
the supports of translates, �.x � c/; �.x C c/ are disjoint from
each other and that of � ? �C' ?': Hence these terms can simply
be read off. In actual practice one needs to ‘deconvolve’ ' to get a
sharp image. This method appears in a paper of Hohage et al.
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The Mid-field Method
jb�.k/C e�2�ic�kb'.k/j2:

For this method we assume that the support of '.x � c/ is at a
moderate distance from that of �.x/: If we have a reasonable
estimate for the support of �; and the object ' has a sharp edge,
with its shape known to high precision, then the degeneracies of
difference-map method can be avoided. Even if c is not known, a
priori, then, using a fairly standard HIO algorithm, this data can
be used quite successfully to reconstruct a high resolution image
of �:
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The Near-field Method, I
H.f / D F�1Œ�i sgn.�/bf .�/�

If the support of '.x � c/ is just outside of, but very near to the
support of �; then an entirely different algorithm which relies on
the properties of the Hilbert transform, can be used. This method
works in all dimensions; we first consider the 1d -case.

Recall that the Hilbert transform is defined for a function
f 2 L2.R/ by

H.f / D F�1Œ�i sgn.�/bf .�/�: (16)

The functions f .x/˙ iH.f /.x/ are the boundary values of
functions, F˙.z/; holomorphic in the upper (lower) half planes
respectively.
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The Near-field Method, II

If g.x/ is a non-vanishing function, defined on R and
jg.x/j ! 1 as x !˙1 sufficiently rapidly so that
f .x/ D log jg.x/j belongs to L2; then the Hilbert transform,
H.f / is well defined.

If g is also the boundary value of a non-vanishing
holomorphic function in the upper (or lower) half plane, so
that jgj tends to 1 at infinity, then

H.f /.x/ D argŒlogg.x/�: (17)

It follows from the Paley-Wiener theorem, that since � has
compact support, we can use an external object to directly
determine the argŒlogb��; which is equivalent to knowing the
phase ofb�:
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The Near-field Method, 1d -case

For simplicity lets assume that '.x/ DMı.x/; then the measured
data is

jb�.k/CMe�2�ickj DM ˇ̌̌̌
e2�ick

b�.k/
M
C 1

ˇ̌̌̌
: (18)

If M is large enough, and c lies outside the support of �; then the

function
ˇ̌̌
e�2�ickb�.k/

M
C 1

ˇ̌̌
satisfies the hypotheses for g on the

previous slide. Hence

H
�

log
ˇ̌̌̌
e2�ick

b�.k/
M
C 1

ˇ̌̌̌�
D arg

�
log

�
e2�ick

b�.k/
M
C 1

��
;

(19)
from which we can easily computeb�.k/:
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The Near-field Method, 2d -case

To extend this to the 2d -case, we suppose that the unknown object
takes the form Mı.x1 � c1; x2 � c2/C �.x1; x2/: The
measurement is then proportional to

jb�.k/CMe�2�ic�kj DM ˇ̌̌̌
e2�ic�k

b�.k/
M
C 1

ˇ̌̌̌
: (20)

We can then apply the 1-variable Hilbert transform to

log
ˇ̌̌
e2�ic�kb�.k/

M
C 1

ˇ̌̌
in one of the variables k1 or k2; with the

other variable simply a parameter. Which variable is which
depends on the location of c relative to the support of �.x/:

Of course we cannot make a ı-function, but it turns out not to be
necessary. In the last slides we show numerical experiments.
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Numerical Examples, I

log10|fspike+fref/M|
 size = 256, ovr-smp = 2
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Here '.x/ D ı.x/:
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Theory with non-ı Object

To employ a non-ı-like '.x/; we need to be able to compute the
quantity in the j � j on right hand side of:

jMe�2�ic��b'.�/Cbf .�/j2 D jMb'.�/j2�ˇ̌̌̌ˇ1CM�1e2�ic�� bf .�/b'.�/
ˇ̌̌̌
ˇ
2

:

(21)
For the theory outlined above to apply, the function in j � j; on the
right hand side, should be analytic in either the upper or lower half
plane, and tend to 1 at1:

This condition can be considerably relaxed in practice. In the next
exampleb'.�/ D C 1

.Rj�j/2

h
sin.Rj�j/
Rj�j

� cos.Rj�j/
i
; which has

infinitely many real zeros!
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Numerical Examples, II

Full data log10|fspike+fref/M|
 size = 1024
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subsampled log10|fspike+fref/M|
 sub-sample = 1, size = 256
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Here '.x/ D
p
R2 � kxk2�Œ0;R�.kxk/; which is the x-ray

transform of a uniform spherical ball or radius R:
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Thanks!

Thanks for your attention!
And thanks to Flatiron Institute of the Simons Foundation for
supporting this research.
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Short History of Coherent Diffraction Imaging

This slide courtesy Malcolm Howells, ESRF
http://www.esrf.eu/files/live/sites/www/files/events/conferences/Tutorials/slideslecture7.pdf

ESRF Lecture Series on Coherent X-rays and their Applications, Lecture 7, Malcolm Howells

Sayre (1952) - Fundamentals of sampling the wave amplitude and wave intensity

Gerchberg and Saxton (1972) - First phase-retrieval algorithm successful on test data

Sayre (1980) - Idea to do "crystallography" with non-periodic objects (i. e. attempt phase retrieval) and
exploit the cross-section advantage  of soft x-rays

Sayre, Yun, Chapman, Miao, Kirz (1980’s and 1990’s) - development of the experimental technique

Fienup (1978-) - Development of practical phase-retrieval algorithms including use of the combination
of support constraint and oversampling of the amplitude pattern

Miao, Charalambous, Kirz and Sayre (1999) - first demonstration of 2-D CXDM using a Fienup-style
algorithm at 0.73 keV x-ray energy,  75 nm resolution

Miao et al (2000) - imaging of a fixed biological sample in 2-D at 30 nm resolution

Miao et al (2001) - improved resolution in 2-D: 7 nm
achievement of 3-D with moderate resolution: 55 nm

Robinson et al (2001-3) - Application to microcrystals and defects - 3D reconstruction - hardest x-rays

ALS group 2002-5 - reconstruction without use of other micoscopes - 3D reconstructions with many
(up to 280) views and 10 nm resolution

COHERENT X-RAY DIFFRACTION IMAGING:
HISTORY
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