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Plan of talk

The interior Radon transform

Distributions f such that the Radon transform Rf is supported in a
hypersurface

Theorem. If there exists a compactly supported distribution f such
that Rf is supported in the set of tangents to the boundary of a
domain D, then D must be an ellipse.

A conjecture of Arnold

Sketch of proof of the theorem



The plane Radon Transform

The 2-dimensional Radon transform integrates a compactly supported
function f over lines L

Rf(L) =

∫
L
f ds.

Here L is a line in the plane and ds is length measure on L.
Occasionally I shall use the familiar parametrisation

Rf(ω, p) =

∫
x·ω=p

f ds, (ω, p) ∈ S1 × R,

where the line L is defined by x · ω = p. Clearly

Rf(ω, p) = Rf(−ω,−p).



The Interior Radon Transform
Given two concentric disks D and D0 ⊂ D it is well known that there
exists a non-trivial function f with support in D such that

Rf(L) = 0 for all lines L that meet D0.

D

D0

L

In fact one can take f radial, that is, f(x) = f(r) with r = |x|. One
can prescribe g(p) arbitrarily and find f(r) so that Rf(p) = g(p), for
instance choose g(p) = 0 for |p| ≤ p0 < 1.



The Interior Radon Transform, cont.

It is natural to replace the disks by arbitrary convex sets.

Conjecture. Let D and D0 be bounded convex domains in the plane
with D0 ⊂ D. Then there exists a smooth function f , not identically
zero, supp f = D, such that its Radon transform Rf(L) vanishes for
every line L that intersects D0.
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Example:

D0
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A Radon transform supported on a curve
Let f0 be the function in the plane defined by

f0(x) =
1

π

1√
1− |x|2

for |x| < 1

and f = 0 for all other x = (x1, x2). An easy calculation shows that

Rf0(ω, p) =

∫
x·ω=p

f0(x) ds = 1 for |p| < 1,

and obviously Rf0(ω, p) = 0 for |p| ≥ 1.

Let f be the distribution f = ∆f0 = (∂2x1
+ ∂2x2

)f0.

Now use the well known formula R(∆h)(ω, p) = ∂2pRh(ω, p) with
h = f0.

Rf0(ω, p)

p



It follows that

Rf(ω, p) = δ′(p+ 1)− δ′(p− 1),

if δ(p) denotes the Dirac measure at the origin.

This means that the distribution f = ∆f0 has the property that its
Radon transform, a distribution on the manifold of lines in the plane,
must be supported on the set of tangents to the unit circle.



The Radon transform of a distribution f in Rn is defined by

〈Rf, ϕ〉 = 〈f,R∗ϕ〉, for all test functions ϕ, where

(R∗ϕ)(x) =

∫
Sn−1

ϕ(ω, x · ω)dω,

dω is surface measure on Sn−1, or

(R∗ϕ)(x) =

∫
L3x

ϕ(L)dµ(L).

By means of an affine transformation we can easily construct a similar
example where D is an ellipse.



Now back to our Conjecture:

Conjecture. Let D and D0 be bounded convex domains in the plane
with D0 ⊂ D. Then there exists a smooth function f , not identically
zero, supported in D, such that its Radon transform Rf(L) vanishes
for every line L that intersects D0.
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Proof idea for Conjecture: find a compactly supported distribution f
whose Radon transform is supported on the set of tangents to the blue
curve.

D0

D



However: to my surprise I found the following:

Theorem 1 (JB 2018). Let D ⊂ Rn be a bounded, convex domain.
Assume that there exists a distribution f 6= 0, supported in D, such
that Rf is supported in the set of supporting planes to ∂D. Then the
boundary of D is an ellipsoid.

If ∂D is C1 smooth, the supporting planes for D are of course tangent
planes to ∂D.



Newton’s lemma

A bounded domain in the plane is called algebraically integrable, if
the area of a segment cut off by a secant line is an algebraic function
of the parameters defining the line.

Lemma 28 in Newton’s Principia reads according to Arnold and
Vassiliev in Newton’s Principia read 300 years later (Notices of the
AMS 1989):

Lemma. There exists no algebraically integrable convex non-singular
algebraic curve.



Newton’s Lemma, cont..

P

AO

A segment is equal to a sector minus a triangle, and the area of the
triangle depends algebraically on the coordinates of the corners.



Higher dimensions: the case of odd dimension

x3 = p

The volume of the part of the unit ball in R3 that lies above the plane
x3 = p is∫ 1

p
π(
√

1− t2)2dt =

∫ 1

p
π(1− t2)dt =

π

3
(p3 − 3p+ 2).

So the volume function V (p) is not only algebraic but polynomial.

Same for arbitrary odd dimension.

And same for ellipsoids.



Arnold’s Conjecture

Problem 1987-14 in Arnold’s Problems reads:

Do there exist smooth hypersurfaces in Rn (other than the quadrics in
odd-dimensional spaces), for which the volume of the segment cut by
any hyperplane from the body bounded by them is an algebraic
function of the hyperplane?



The case of even dimension

Theorem 2. (Vassiliev 1988) There exist no convex algebraically
integrable bounded domains in even dimensions.

V. A. Vassiliev: Applied Picard - Lefschetz Theory, AMS 2002.



A summary

n even: p 7→ V (ω, p) is never algebraic (Vassiliev)

n odd, ∂D ellipsoid: p 7→ V (ω, p) is polynomial

n odd, ∂D not ellipsoid: unknown if p 7→ V (ω, p) can be
algebraic



The case of odd dimension
Since Arnold’s conjecture is still unsolved in this case, one has
considered a weaker statement, namely:

Denote by V (ω, p) the volume cut out from the domain D by the
hyperplane x · ω = p. Assume that p 7→ V (ω, p) is a polynomial for
every ω. Prove that the boundary of D must be an ellipsoid.

V (ω, p)

x · ω = p

Theorem 3. (Koldobsky, Merkurjev, and Yaskin 2017) Assume that
D is convex and has C∞ boundary and that p 7→ V (ω, p) is a
polynomial of degree ≤ N for every ω. Then the boundary of D must
be an ellipsoid.



Recall:

Theorem 1 (JB 2018). Let D ⊂ Rn be a bounded, convex domain.
Assume that there exists a distribution f 6= 0, supported in D, such
that Rf is supported in the set of supporting planes to ∂D. Then the
boundary of D is an ellipsoid.



Theorem 1 implies Theorem 3
Let χD(x) be the characteristic function for the domain D and let
V (ω, p) be the volume function discussed earlier.

It is clear that

∂pV (ω, p) = ∂p

∫
x·ω<p

χD(x)dx = (RχD)(ω, p).

Applying the formula R(∆h)(ω, p) = ∂2pRh(ω, p) to h = χD and
iterating gives for every k

R(∆kχD)(ω, p) = ∂2kp RχD(ω, p).

If p 7→ V (ω, p) is polynomial (for p such that the plane x · ω = p
intersects D) then p 7→ R(χD)(ω, p) is polynomial, so
∂2kp RχD(ω, p) = 0 if k is large enough except at the jump points,
which correspond to tangent planes. So

f = ∆kχD

has the property that its Radon transform is supported on the set of
tangent planes to ∂D. By Theorem 1 it follows that ∂D is an
ellipsoid.



Remark 1. Theorem 1 implies Theorem 3 without the smoothness
assumption on the boundary of D.

Remark 2. Theorem 3 shows that the Radon transform of the
characteristic function χD cannot be polynomial unless ∂D is an
ellipsoid. Theorem 1 shows that no function supported in D can have
a polynomial Radon transform unless ∂D is an ellipsoid.



Distributions supported on the set of supporting planes
Assume for simplicity that D = −D. Let ρ(ω) be the supporting
function for D

ρ(ω) = sup{x · ω; x ∈ D}.
The hyperplane x · ω = p is a supporting plane to ∂D if and only if

p = ρ(ω) or p = −ρ(ω).

If q(ω) is an even function on Sn−1, then

g(ω, p) = q(ω)
(
δ(p− ρ(ω)) + δ(p+ ρ(ω))

)
satisfies g(ω, p) = g(−ω,−p), and hence defines a distribution (of
order zero) on the manifold of hyperplanes. More generally, if
g = Rf , f compactly supported, and g is supported on p = ±ρ(ω),
then g(ω, p) can be written

g(ω, p) =

m−1∑
j=0

qj(ω)
(
δ(j)(p− ρ(ω)) + (−1)jδ(j)(p+ ρ(ω))

)
,

for some even distributions qj , qj(ω) = qj(−ω), on the sphere Sn−1.



Plan of proof of Theorem 1

1. Write down the condition that
∫
R g(ω, p)pkdp is a polynomial of

degree k in ω for each k.

2. Prove that those conditions imply that ρ(ω)2 must be a quadratic
polynomial.



To compute ∫
R
g(ω, p)pkdp

we use for instance the fact that∫
R
δ′(p− ρ(ω))pkdp = −

∫
R
δ(p− ρ(ω)) k pk−1dp

= −k ρ(ω)k−1.

Recall that

g(ω, p) =

m−1∑
j=0

qj(ω)
(
δ(j)(p− ρ(ω)) + (−1)jδ(j)(p+ ρ(ω))

)
.



The range conditions therefore mean that there must exist
polynomials p0, p2, p4 etc., where pk(ω) is homogeneous of degree k,
such that (for instance if m = 3)

q0 = p0

q0ρ
2 + 2 q1ρ+ 2 q2 = p2

q0ρ
4 + 4 q1ρ

3 + 4 · 3 q2ρ2 = p4

q0ρ
6 + 6 q1ρ

5 + 6 · 5 q2ρ4 = p6

q0ρ
8 + 8 q1ρ

7 + 8 · 7 q2ρ6 = p8

. . . .

Let us write this in matrix form.

1 0 0
ρ2 2ρ 2
ρ4 4ρ3 4 · 3ρ2
ρ6 6ρ5 6 · 5ρ4
ρ8 7ρ7 8 · 7ρ6
ρ10 10ρ9 10 · 9ρ8
. . . . . . . . .


q0q1
q2

 =



p0
p2
p4
p6
p8
. . .

 .



Recall that ρ(ω) is the supporting function of the set D. We want to
prove that ρ(ω)2 must be a quadratic polynomial, because that is
equivalent to ∂D being a quadric.

Forming suitable linear combinations of four of those equations we
can eliminate the q-functions. This gives infinitely many equations of
the form

ρ6p0 − 3ρ4p2 + 3ρ2p4 = p6

ρ6p2 − 3ρ4p4 + 3ρ2p6 = p8

ρ6p4 − 3ρ4p6 + 3ρ2p8 = p10

ρ6p6 − 3ρ4p8 + 3ρ2p10 = p12

. . .

We now have only two kinds of functions of ω: the supporting
function ρ(ω) and the polynomials pk(ω). The only known fact is that
pk(ω) is a homogeneous polynomial in ω of degree k for every k.



Considering the first three equations as a linear system in the three
“unknowns” ρ2, ρ4, and ρ6, we can write those equations

(1)

p0 p2 p4
p2 p4 p6
p4 p6 p8

 ρ6

−3ρ4

3ρ2

 =

 p6
p8
p10

 .

Provided the determinant of the matrix is different from zero, we can
solve for instance ρ2 from this system and obtain ρ2 as a rational
function

ρ(ω)2 =
F (ω)

G(ω)
,

where F (ω) and G(ω) are polynomials, and

G(ω) = det

p0 p2 p4
p2 p4 p6
p4 p6 p8

 .

However, with very little additional effort we can do much better.



The following identities are trivial.p0 p2 p4
p2 p4 p6
p4 p6 p8

0
1
0

 =

p2p4
p6

 and

p0 p2 p4
p2 p4 p6
p4 p6 p8

0
0
1

 =

p4p6
p8

 .



Combining the linear system (1) with those two trivial equations we
obtain the matrix equationp0 p2 p4

p2 p4 p6
p4 p6 p8

0 0 ρ6

1 0 −3ρ4

0 1 3ρ2

 =

p2 p4 p6
p4 p6 p8
p6 p8 p10

 .

The advantage with this equation is that it can be iterated. Setting

A =

0 0 ρ6

1 0 −3ρ4

0 1 3ρ2


we have p0 p2 p4

p2 p4 p6
p4 p6 p8

A2 =

p4 p6 p8
p6 p8 p10
p8 p10 p12

 .



And more generallyp0 p2 p4
p2 p4 p6
p4 p6 p8

Ak =

 p2k p2k+2 p2k+4

p2k+2 p2k+4 p2k+6

p2k+4 p2k+6 p2k+8


for every k. The determinant of A is ρ(ω)6. It follows that

G(ω)ρ(ω)6k is a polynomial for every k.

Since we already knew that ρ(ω)2 is a rational function, we can now
conclude that ρ(ω)2 must be a polynomial (still assuming that G(ω) is
not identically zero).



Therefore it remains only to prove

Lemma. If qm−1 6= 0, then the m×m matrix
p0 p2 p4 . . . pm−2
p2 p4 p6 . . . pm
p4 p6 p8 . . . pm+2

. . . . . . . . . . . . . . .
pm−2 pm pm+2 . . . p2m−4


is non-singular.

This fact depends on the spectral properties of the matrix A.



Not necessarily symmetric D
An arbitrary distribution g(ω, p) = Rf(ω, p) of order 0 can no longer
be written

g(ω, p) = q(ω)
(
δ(p− ρ(ω)) + δ(p+ ρ(ω))

)
.

Instead we have to write

g(ω, p) = q0(ω)δ(p− ρ(ω)) + q0(−ω)δ(p+ ρ(−ω)).

Similar for higher order, but with different sign, for instance

q1(ω)δ′(p− ρ(ω))− q1(−ω)δ(p+ ρ(−ω)).

To shorten formulas write

ρ(ω) = ρ, ρ(−ω) = ρ̌, qj(ω) = qj , qj(−ω) = q̌j .

Then we get if m = 3

g(ω, p) = q0δ(p− ρ) + q̌0δ(p+ ρ̌)

= q1δ
′(p− ρ)− q̌1δ′(p+ ρ̌)

= q2δ
′′(p− ρ) + q̌2δ

′′(p+ ρ̌).



Instead of the system



1 0 0
ρ2 2ρ 2
ρ4 4ρ3 4 · 3ρ2
ρ6 6ρ5 6 · 5ρ4
ρ8 7ρ7 8 · 7ρ6
ρ10 10ρ9 10 · 9ρ8
. . . . . . . . .


q0q1
q2

 =



p0
p2
p4
p6
p8
. . .


that we had before, we now get the system





1 0 0 1 0 0
ρ 1 0 −ρ̌ −1 0
ρ2 2ρ 2 ρ̌2 2ρ̌ 2
ρ3 3ρ2 6ρ −ρ̌3 −3ρ̌2 −6ρ̌
ρ4 4ρ3 12ρ2 ρ̌4 4ρ̌3 12ρ̌2

ρ5 5ρ4 20ρ3 −ρ̌5 −5ρ̌4 −20ρ̌3

ρ6 6ρ5 30ρ4 ρ̌6 6ρ̌5 30ρ̌4

. . . . . . . . . . . . . . . . . .





q0
q1
q2
q̌0
q̌1
q̌2

 =



p0
p1
p2
p3
p4
p5
p6
. . .


.



Eliminating the 6 densities q0, q1, q2, q̌0, q̌1, q̌2 as before we find that
the successive 6-tuples from the infinite sequence p0, p1, p2, . . . form
an orbit of the matrix

At =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
r0 r1 r2 r3 r4 r5

 ,

where the rj are now the symmetric functions of degree 6− j in the
two eigenvalues ρ and −ρ̌. So for instance r0 = detA = −ρ3ρ̌3.



In a different basis this matrix has the form

ρ 1 0 0 0 0
0 ρ 2 0 0 0
0 0 ρ 0 0 0
0 0 0 ρ̌ 1 0
0 0 0 0 ρ̌ 2
0 0 0 0 0 ρ̌

 .

This fact is used for the proof of the lemma above in this case.



Assuming that the rational function ρ− ρ̌ is not a polynomial I can
deduce a contradiction using two expressions for the trace of Ak (just
as I did using two expressions for detAk above).

Hence ρ− ρ̌ is a polynomial. But ρ is homogeneous of degree 1
(as a function on Rn \ {0}), hence ρ− ρ̌ must be a homogeneous first
degree polynomial, that is, linear in ω.

But a translation of the coordinates adds a linear function to ρ, hence
adds a linear function to ρ− ρ̌ (without changing ρ+ ρ̌).

Therefore we can make a translation of coordinates so that ρ− ρ̌
vanishes. This means that ρ becomes symmetric, ρ(ω) = ρ(−ω), and
we are back to the case already treated.



A semi-local result

Theorem 4. Let D be open, convex, bounded, and symmetric, that is
D = −D, let x0 ∈ ∂D, and let ω0 be one of the unit normals of a
supporting plane L0 to D at x0. If there exists a distribution f with
support in D and a translation invariant open neighborhood W of L0,
such that the restriction of the distribution Rf to W is supported on
the set of supporting planes to D in W, then ∂D must be equal to the
restriction of an ellipsoid in some neighborhood of ±x0.



A recent, somewhat related, result:

Theorem (Ilmavirta and Paternain, 2018). Let D ⊂ Rn be a bounded
and strictly convex domain with smooth boundary. If there exists a
function f ∈ L1(D) such that the integral of f over almost every line
meeting D is equal to 1, then D is a ball.
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