
Lines, broken lines and stars in tomography

Gaik Ambartsoumian

University of Texas at Arlington

Modern Challenges in Imaging

Medford, MA

August 8, 2019

G. Ambartsoumian Lines, broken lines and stars in tomography



Acknowledgements

The talk is based on results of collaborative work with
Mohammad Latifi-Jebelli, University of Arizona

Partially supported by NSF DMS-1616564



Outline

Some Motivating Imaging Modalities

Prior Work and Terminology

Geometric Description

Inversion of the Star Transform

A Numerical Example



Single Scattering Optical Tomography (SSOT)

Uses light, transmitted and scattered through an object, to
determine the interior features of that object.

If the object has moderate optical thickness it is reasonable to
assume the majority of photons scatter once.

Using collimated emitters/receivers one can measure the
intensity of light scattered along various broken rays.

Need to recover the spatially varying coefficients of
light absorption µa and/or light scattering µs .
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Zhao, Schotland and Markel (2014)

Emitters and receivers collimated in several directions are used
along the lines z = 0 and z = L.
The signal measured by a detector in j-th direction due to an
emitter in k-th direction is given by

Wjk(R) = W0 Sjk µs(R) exp{−[Ij(R) + Ik(R)]},

where Ik(R) =
∫ `k (Z)
0 µ(R + ûk`)d`, µ(y , z) = µs(y , z) + µa(y , z)

W0 is the constant power generated by the emitters and
Sjk is a constant that depends of the angle between ûj and ûk .



Zhao, Schotland and Markel (2014)

Emitters and receivers collimated in several directions are used
along the lines z = 0 and z = L.
The signal measured by a detector in j-th direction due to an
emitter in k-th direction is given by

Wjk(R) = W0 Sjk µs(R) exp{−[Ij(R) + Ik(R)]},

where Ik(R) =
∫ `k (Z)
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Zhao, Schotland and Markel (2014)

If µ̄s is the background scattering coefficient, one can define the
measured data function as

φjk(R) = ln

[
Wjk(R)

W0 Sjk
µ̄s

]
= [η(R)− Ij(R)− Ik(R)] (1− δjk),

where η(R) = ln [µs(R)/µ̄s ].

Excluding η(R) from the above equations will substantially simplify
the inverse problem.

If µs(R) ≡ µ̄s then η(R) = 0 and the data function is equivalent to
the broken ray transform of µ.

If µs(R) is not constant, one can use various linear combinations of
the data function to eliminate η(R).
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The star transform

E.g., in a “3-directional” geometry one can use a data function:

Φ ≡ φ12 − φ13 = I3 − I2,

which is equivalent to the signed broken ray transform of µ.

Such an approach was used in the works of Florescu, Schotland,
Markel (2009, ’10, ’11) and Katsevich, Krylov (2013, ’15).

Notice, that in the above example we lost information about the
integrals of the image function along rays of certain direction.
The problem of excluding η, without excluding any ray integrals
can be solved by finding coefficients cjk such that

(i)
∑
jk

cjk = 0, (ii) ckk = 0, (iii) cjk = ckj , (iv) sk =
∑
j

cjk 6= 0.

Thus Φ ≡ −1

2

K∑
j=1

K∑
k=1

cjkφjk =
K∑

k=1

sk Ik .
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Florescu, Schotland and Markel (2009, 2010, 2011)

So if the scattering coefficient is known, then the reconstruction of
the absorption coefficient is reduced to inversion of a generalized
Radon transform integrating along the broken rays.
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V-line Transform (VLT) in 2D

Definition

The V-line transform of a function f (x , y) is defined as

Tf (β, t) =

∫
L(β,t)

f ds, (1)

where ds is the line measure along the V-line L(β, t).

The problem of inversion of T is over-determined, so it is natural
to consider a restriction of Tf to a two-dimensional set.



The Star Transform

𝛾1 

𝛾2 

𝛾4 

𝛾3 

𝑥 

Definition

The star transform S of f at x ∈ R2 is defined as:

Sf (x) =
m∑
i=1

Xγi f (x) =
m∑
i=1

∫ ∞
0

f (x + tγi ) dt, (2)

where each γi is a unit vectors and Xγi is the divergent beam
transform in the direction of γi .



The Star Transform

The star transform was first introduced in F. Zhao, J.
Schotland and V. Markel “Inversion of the star transform”
(2014) in relation to SSOT.

The V-line transform is a special case of the star transform,
with m = 2 and γ1, γ2 not parallel to each other.

In SSOT the star transform allows reconstruction of the
absorption and the scattering coefficients of the medium
separately and simultaneously (from the same data).



The Star Transform

The star transform can also be used in single scattering X-ray
tomography (SSXT). Here one can utilize scattered radiation
which, in the case of the conventional X-ray tomography, is
discarded.

The method presented in the original paper FSM-2014 allows
stable inversion of the star transform only for configurations
involving odd number of rays.

We present a new inversion method, which is based on simple
geometric ideas and does not depend on the number of rays.



Geometric Description



Notations

Let l(ψ, s) = {x ∈ R2| 〈x − sψ,ψ〉 = 0} be the line normal to the
vector ψ and of distance s from the origin.

Define F (x) =
∫

〈y ,ψ〉≤〈x ,ψ〉
f (y) dµ, and Fψ(s) = F (sψ).



Composition of the Radon and Ray Transforms

Lemma

Assume that f ∈ Cc(R2). If 〈ψ, γ〉 > 0, then

R(Xγf )(ψ, s) =
1

〈ψ, γ〉
F−ψ(s),

and if 〈ψ, γ〉 < 0, then

R(Xγf )(ψ, s) = − 1

〈ψ, γ〉
Fψ(s).



Inversion of the Star Transform

Theorem

Let S =
∑m

i=1Xγi be the star transform and let

q(ψ) =
−1∑m

i=1
1

〈ψ,γi 〉
.

Then the following is true for any ψ in the domain of q

Rf (ψ, s) = q(ψ)
d

ds
R(Sf )(ψ, s).

Hence, if q is defined almost everywhere, we can apply R−1 to
recover f .



Inversion of the V-line Transform

Corollary

An inversion formula for the V-line transform with ray directions
γ1, γ2 is given by

f = R−1
(
−〈ψ, γ1〉〈ψ, γ2〉
〈ψ, γ1〉+ 〈ψ, γ2〉

d

ds
R(Sf )(ψ, s)

)
.



A Numerical Example

Reconstruction using the star transform with directions γ1 =
(1, 0), γ2 = (cos(3π/4), sin(3π/4)), γ3 = (cos(5π/4), sin(5π/4))



Thanks for Your Attention!


	Imaging Modalities Motivating Broken-Ray Radon Transform
	Single Scattering Optical Tomography (SSOT)

	Injectivity and Inversion of BRT and CRT

